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Abstract

Admixed populations are routinely excluded from genomic studies due to concerns over 

population structure. Here, we present a statistical framework and software package, Tractor, to 
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facilitate inclusion of admixed individuals in association studies by leveraging local ancestry. We 

test Tractor with simulated and empirical 2-way admixed African-European cohorts. Tractor 
generates accurate ancestry-specific effect size estimates and p values, can boost GWAS power, 

and improves the resolution of association signals. Using a local ancestry aware regression model, 

we replicate known hits for blood lipids, discover novel hits missed by standard GWAS, and 

localize signals closer to putative causal variants.

Introduction

Admixed groups, whose genomes contain more than one ancestral population, make up 

more than a third of the US populace, with the population becoming increasingly mixed over 

time1. Many common, heritable diseases including prostate cancer2-5, asthma6-9, and certain 

cardiovascular disorders10,11 are enriched in admixed populations, which include African 

American and Hispanic/Latino individuals. However, only a minute proportion of 

association studies address the genetic architecture of complex traits in these groups12,13; 

admixed individuals are systematically removed from many large-scale collections. This is 

due in large part to the lack of methods and pipelines to effectively account for their ancestry 

such that population substructure can infiltrate analyses and bias results if they are run with 

standard analysis of homogeneous individuals14-21. Efforts to collect genetic data alongside 

medically-relevant phenotypes are beginning to focus more on diverse groups containing 

higher amounts of admixture22-27, motivating the development of scalable methods to allow 

well-calibrated statistical genomic work on these populations. If not addressed, this inability 

to analyze admixed people will limit the clinical utility of large-scale data-collection efforts 

for minorities, exacerbating existing health disparities28-32.

In GWAS, the specific concern regarding including admixed participants is false positive hits 

due to alleles being at different frequencies across populations. Most studies currently 

attempt to control for this by using Principal Components (PCs) in a linear or linear mixed 

model framework. However, PCs capture broader admixture fractions, and individuals’ local 

ancestry makeup may differ between case and control cohorts even if their global fractions 

are identical. Even including PCs as covariates, then, still leaves open the possibility for 

false positive associations, as well as absorbing power.

Studying diverse populations in gene discovery efforts not only reduces disparities but also 

benefits genetic analysis for individuals of all ancestries. A notable example of this is multi-

ancestry fine-mapping, which can reduce the variant credible set by leveraging populations’ 

differing linkage disequilibrium (LD) patterns33-38. This is particularly helpful in 

populations of African descent, where LD blocks are the shortest and individuals have 

nearly a million more variants per person than individuals outside of the continent39. We 

note that, in admixed populations, we can utilize LD patterns from multiple ancestries as 

well as disrupted LD blocks within each, offering a more refined linkage landscape with 

which to localize GWAS signal.

Here, we have developed a scalable framework that allows for the incorporation of admixed 

individuals into large-scale genomics efforts by using local ancestry inference (LAI). Our 

framework, distributed as a software package named Tractor, generates ancestry dosages at 
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each site from LAI calls, extracts painted haplotype segments to correct population structure 

at the genotype level, and runs a local ancestry-aware regression model, producing ancestry-

specific effect size estimates and p values. Admixed individuals can thereby be analyzed in a 

well-calibrated manner, either in a cohort alone or alongside homogenous groups. Through 

testing in simulations and with empirical data on continuous and case/control phenotypes 

with differing levels of polygenicity, we demonstrate that Tractor produces accurate results 

in admixed cohorts and boosts GWAS power across many genetic contexts. We further 

demonstrate improvements in association signal localization from accounting for the 

ancestral backbone on which alleles fall. These efforts fill a gap in existing resources and 

will improve our understanding of complex diseases across diverse populations.

Incorporating local ancestry into variant identification for admixed populations has been 

discussed previously40,41,50,42-49, particularly with regard to ‘admixture mapping,’ whereby 

researchers associate an increase of a given ancestry at a locus with increased risk of a 

disease that is known to be stratified in prevalence across ancestries51-55. Admixture 

mapping has proven successful in diseases which are highly stratified, such as asthma and 

cardiovascular phenotypes56-61. However, this strategy cannot be employed for phenotypes 

which are observed at equivalent rates across groups and can be subject to false positives 

from local ancestry increases that are unrelated to the phenotype of interest. We build upon 

this important work by modeling the local ancestry dosage for each person at each variant in 

a way that accounts for differences in minor allele frequency (MAF) across populations, 

controlling for demography without an increased false positive risk. Tractor thereby 

generates accurate ancestry-specific summary statistics, which admixture mapping and 

traditional GWAS both cannot, and can be utilized for phenotypes which are seen at similar 

or different rates across populations.

The statistical model built into Tractor for binary phenotypes tests each SNP for an 

association with the phenotype using the logistic regression model:

logit(Y) = b0 + b1X1 + b2X2 + b3X3… + bkXk

where X1 is the number of haplotypes of the index ancestry present at that locus for each 

individual, X2 is the number of copies of the risk allele coming from the first ancestry, X3 is 

the number of copies coming from the second ancestry, and X4 to Xk are other covariates 

such as age, sex, an estimate of global ancestry, etc. The significance of the risk allele is 

evaluated with a likelihood ratio test comparing the full model to a model fit without the risk 

allele, thus allowing estimation of the aggregated effects in the presence of effect size 

heterogeneity. The (two degree of freedom) model presented here is for a 2-way admixed 

scenario but can be readily scaled to an arbitrary number of ancestries with the addition of 

terms.
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Results

LAI has high accuracy for African Americans

We ran LAI using RFmixv2, a discriminative approach which estimates local ancestry using 

conditional random fields parameterized with random forests62. RFmix can run on multi-

way admixed populations, outperforms other local ancestry inference methods for minority 

populations, and leverages the ancestry components in admixed reference panel individuals, 

important when there is a lack of homogenous reference panels as is often the case for 

understudied groups63,64. As Tractor relies heavily on LAI calls, we quantified RFmix’s 

accuracy using a simulated 2-way admixed cohort created from African American (AA) 

individuals from the Psychiatric Genomics Consortium PTSD working group (PGC-PTSD). 

LAI was highly accurate in a realistic demographic model for AA individuals65-67, assigning 

the correct ancestry ~98% of the time (Methods, Supplementary Table 1).

To ensure that Tractor performed well across demographic models, we varied admixture 

fractions and pulse timings. Specifically, we varied the pulse of admixture in time to 3 

generations and 20 generations ago and changed the admixture fractions to 30/70% and 

50/50% EUR and AFR ancestry, respectively (Extended Data Figure 1). We also checked the 

ancestry-specific accuracy in the realistic demographic scenario to assess if there was a bias 

in calling dependent on ancestry. Across all demographic models and ancestries, site-wise 

LAI calls were similarly accurate, with the correct call being obtained ~98% of the time 

(Supplementary Table 1). While we refer solely to continental level ancestry here, we 

appreciate the high level of diversity and admixture within the continents and particularly in 

Africa. As reference panels for diverse groups grow in size, we will have increased ability to 

examine ever more geographically refined groups.

Recovering haplotypes disrupted by statistical phasing

While errors in statistical phasing can lead to errors in LAI, we found that iterating between 

LAI and statistical phasing improved the accuracy of both. Errors in statistical phasing are a 

major concern68,69, but few methods to recover disrupted haplotypes exist. Phasing errors 

result in incorrect switches of the chromosome strand on which the haplotype is assigned, 

which artificially reduces tract lengths and increases the overall tract counts. This 

phenomenon could also be misinterpreted as recombination events. Taking advantage of the 

ability to visualize tracts offered by admixed individuals, we are able to consistently correct 

switch errors and recover disrupted haplotypes, making tract distributions significantly more 

realistic (Extended Data Figure 2, Supplementary Table 2, Supplementary Information).

Evaluating the landscape of GWAS power gains from Tractor

To quantify the potential increase in power from the inclusion of local ancestry, we 

simulated individuals’ likelihoods of being cases as a function of AFR admixture fraction, 

the risk allele dosage, and the ancestral background of each allele. This initial framework 

can be thought of as modeling a risk allele with a true effect only in the AFR background, 

and/or as modeling a tagging variant having a marginal effect size estimated in only one 

ancestry. This latter case may arise for multiple reasons due to genomic differences across 

ancestries, such as a mutation being monomorphic in EUR but variable in AFR (probable as 
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individuals from Africa contain almost a million more variants than other populations70), 

differing demographies resulting in LD structure variation that affects causal variant tagging, 

and MAF differences. Therefore, our model quantifies both Tractor’s ability to estimate and 

leverage power from ancestral differences in true effect sizes, as well as for differing 

marginal effect sizes of tagging SNPs, as may be systematically expected across the genome. 

Our simulation framework also incorporates the clinically observed phenomenon of disease 

prevalence differing as a function of ancestry. We then ran association tests and compared 

the power across the odds ratio spectrum under the traditional GWAS and Tractor models.

Compared to the traditional model, we observe a significant gain in power using the Tractor 
framework with comparable improvements across sample sizes and disease prevalences 

(Figure 2A). We ran similar simulations varying the effect size difference, absolute MAF, 

MAF difference across ancestries, and admixture fractions. To summarize, Tractor is most 

powerful when there is heterogeneity in the apparent effect size for a variant across 

ancestries (Figure 2, Extended Data Figures 3,4). As described above, such heterogeneity 

may be a consequence of a variant truly having different effects in different populations 

(e.g., in the context of gene-environment interactions) or may arise from differences in the 

indirect association evidence of the variant (i.e., the contribution to the estimated effect size 

from tagging other causal genetic variants). The biggest power gain within the case of effect 

size heterogeneity comes if an allelic effect is present in the smaller fraction ancestry only 

(Figure 2D). For example, using a realistic AA demographic history, if we model an allele 

with an effect only in the EUR background (~20% of the sample), analyzing the tracts 

without LAI information will have essentially no power to detect an association due to the 

higher noise relative to signal from uninformative tracts. However, Tractor is able to recover 

the effective sample size and power analyzing just the effect haplotypes, i.e. the EUR 

segments alone.

We assessed the required level of heterogeneity in effect sizes required for Tractor to benefit 

from power gains over standard GWAS. We note that the amount of heterogeneity required 

depends heavily on other parameters, in particular on the relative admixture fraction of the 

ancestry containing a larger effect. This is because the inflation of variance and bias of the 

effect estimate will vary based on not only the difference in means, but the relative sizes of 

groups. However, all parameters being equal, unless group effects are substantially different 

the penalty of additional model complexity can be more severe than the penalty of a biased 

estimate of effect and higher variance estimate found in a regular model. In our AA 

simulation framework with equivalent MAF and an effect present in both ancestries but 

stronger in AFR, Tractor would require an effect difference of more than ~60% to benefit 

from effect size heterogeneity (Figure 2E, Extended Data Figure 3E-F).

Notably, however, under scenarios where there is no expected benefit from incorporating 

local ancestry (that is, when all features are equivalent across ancestries), the power loss is 

minimal, reflecting the penalty for adding an additional model parameter (Extended Data 

Figures 3,4). In no case does Tractor dramatically underperform compared to the traditional 

GWAS model. Additionally, Tractor reliably estimates ancestry-specific effects whereas in a 

regular GWAS the effect estimate generated would be a weighted average of these. 

Therefore, even when failing to demonstrate elevated power in variant identification, the 
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Tractor model may provide more power in downstream applications where correct effect 

estimates are required.

We additionally benchmarked Tractor against asaMap50. Instead of local ancestry, asaMap is 

based on a mixture model, where the mixture components are the phenotype distributions 

corresponding to the given ancestries of the tested SNP and the mixture weights are the 

probabilities of these ancestries. asaMap thereby generates ancestry-specific effect sizes 

without local ancestry, making it a useful point of comparison. We also tested the impact of 

variability in LAI accuracy on Tractor, modeling perfect, realistic (98%), and a lower bound 

of 90% LAI accuracy. All Tractor models reached higher statistical power than both standard 

GWAS and asaMap (Extended Data Figure 5). As expected, decreasing LAI accuracy 

reduced power for Tractor, however even at the lowest accuracy tested, Tractor outperformed 

these other methods.

Tractor accurately estimates ancestry-specific effects

To ensure that Tractor generates reliable ancestry-specific effect sizes, we checked the effect 

size estimated as compared to that modeled across a range of absolute and ancestrally 

differing effect sizes using the simulation framework described above. Across all genomic 

models, Tractor accurately estimated the ancestry-specific effect size (Figure 3).

No increase in false positive rate with the Tractor model

We quantified the type I error rate of the Tractor model by simulating a variant with no 

effect in either ancestry and counting the spurious significant associations identified in a 

simulated AA population with 10% disease prevalence given α = 0.05. Across our tests, we 

observe no statistically significant difference in false positive rate between Tractor and the 

expected type I error rate of 5% (Supplementary Figure 1). In addition, we calculated the 

genomic inflation factor, λGC, of null simulated phenotypes across GWAS permutations and 

confirmed no significant inflation using the Tractor GWAS model (Supplementary Figure 2). 

Therefore, there does not appear to be an elevation in false positive rates with the Tractor 
framework, suggesting that the observed power increases result from improved detection of 

true biological signal.

Tractor replicates known loci and identifies novel hits

To ensure that our Tractor joint-analysis GWAS model also performs well on empirical data, 

we ran the method on well characterized blood lipid phenotypes previously demonstrated to 

have ancestry-specific effects: Total Cholesterol and Low-Density Lipoprotein Cholesterol. 

We constructed a pseudo-cohort of 4,309 two-way African-European admixed individuals 

from the UK Biobank (UKB) with blood panel phenotype data to serve as our sample. To 

ensure LAI was unbiased across regions of the genome, we examined its genomic 

distribution. Local ancestry was relatively evenly distributed and was proportional to global 

fractions, being 97.5% correlated with admixture proportions (Supplementary Figure 3).

Tractor GWAS replicated known associations for blood lipids in this cohort43,71-73, reaching 

the standard genome-wide significance level of 5×10−8 at previous top associations, 

including in genes PCSK9, LDLR, and APOE (Figure 4, Supplementary Figure 4). In some 
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cases, Tractor improved the observed top hit significance. We describe Total Cholesterol in 

detail here; see Supplemental Information for further description of validation with LDL 

Cholesterol.

Our model also identified additional hits in these admixed individuals missed by standard 

GWAS (Figure 4). For example, we identify an association present only on the AFR 

background on chr1 (rs12740374, p=3.46x10−8). This locus has previously been shown to 

affect blood lipid levels, metabolic syndrome, and coronary heart disease risk in independent 

AA cohorts71,74-79, and was determined to be the causal variant for affecting LDL 

Cholesterol in a multi-ancestry fine-mapping study80. Had we not deconvolved ancestral 

tracts for our GWAS, we would have missed this site with a demonstrated effect in the 

phenotype and population of interest.

We additionally identify a novel peak on chr15 that only reached significance in the AFR 

tracts. The lead SNP (rs12594517, p= 1.915x10-8) lies in an intergenic area and is 

uncharacterized. The closest gene neighboring it is MEIS2, lying ~70kb upstream, followed 

by C15orf41. While the precise role and mechanism this locus plays in affecting blood lipids 

remains unclear, MEIS2 has previously been found to be associated to body mass index and 

waist circumference and C15orf41 was a significant hit in a previous GWAS of 

cholesterol81,82. Though further follow-up is needed to clarify any direct relationship to 

Total Cholesterol, this association highlights the utility of Tractor to identify signals that 

would be undetectable in admixed cohorts without accounting for local ancestry.

Tractor is also able to refine the location of signals closer to the causal variant than is 

possible using standard GWAS procedures. Total Cholesterol was previously mapped to an 

intron in the gene DOCK6 in AA cohorts71, a finding we replicate at the suggestive 

significance threshold with standard GWAS. Tractor identified a lead DOCK6 SNP 20kb 

downstream in the AFR and a meta-analysis of hits from deconvolved AFR and EUR tracts. 

This new lead SNP (rs2278426) spans DOCK6 as well as ANGPTL8, where it is a missense 

mutation (NC_000019.9:g.[11350488C>T]) that is predicted to be possibly damaging and 

deleterious by polyphen and SIFT, respectively83,84 (Discussion, Figure 5). ANGPTL8, also 

known as lipasin, has been shown to regulate plasma lipid levels in mice by inhibiting the 

enzyme lipoprotein lipase85-88. In humans, ANGPTL8 levels correlate with metabolic 

phenotypes including type 2 diabetes and obesity89-92 and HDL Cholesterol levels across 

diverse populations have been demonstrated to better correlate with ANGPTL8 than 

DOCK693. Altogether ANGPTL8 appears to be a more promising candidate, highlighting 

how leveraging diverse populations allows for improved identification of risk variants. 

Notably, asaMap improved localization compared to standard GWAS, but was unable to 

identify the putative causal variant (Supplementary Figure 5).

To assess whether our ability to identify rs2278426 was due to a true or marginal effect size 

difference driven by MAF or LD differences across ancestries, we attempted validating its 

association with fine-mapping in 345,235 white, British UKB individuals and 135,808 

Japanese individuals from Biobank Japan94. rs2278426 was successfully fine-mapped to a 

95% credible set in both populations, with maximum posterior inclusion probability of 0.993 

in Biobank Japan. This variant occurs at 26% frequency in gnomAD East Asian individuals, 
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18% in African, and 4% in non-Finnish Europeans95. We estimated the frequencies in our 

admixed empirical cohort to be ~22% in the AFR and ~4% in the EUR. To assess the role of 

LD on localization improvement, we created within-sample LD heatmaps for this DOCK6 
region of interest from the full dataset, AFR and EUR tracts, finding broadly similar patterns 

(Supplementary Figure 6). These trends suggest that localization improvement was driven by 

higher power in non-European populations to identify the causal variant rather than LD 

differences directly. Though below the traditional genome-wide significance level, this locus 

highlights the improved ability to localize GWAS signal thanks to leveraging additional 

ancestral breakpoints in admixed genomes. See Supplemental Information for demonstration 

of signal localization for LDLC in the canonical gene PCSK9 (Supplementary Figure 7).

Discussion

Despite recent advances in understanding the genetics of complex diseases, major 

limitations remain in our knowledge of the architecture of such disorders in minority and 

admixed populations. Here, we present an analytic framework and gene discovery method 

distributed as a scalable software package named Tractor, which allows admixed samples to 

be appropriately analyzed alone or alongside homogenous cohorts in statistical genomics 

efforts. We test our framework in a simulation model designed to emulate AA cohorts. We 

then apply it to empirical data from admixed African-descent individuals of the UKB. We 

observe a gain in power to detect risk loci across sample sizes, demographic models, and 

disease prevalences using Tractor, particularly when true or marginal effect sizes are 

heterogeneous across populations. Our approach incorporates a local ancestry aware GWAS 

method that generates ancestry-specific estimates, which admixture mapping and standard 

GWAS cannot, and which can be extremely helpful in downstream efforts such as 

constructing genetic risk scores for understudied populations. Tractor also gives increased 

precision in localizing GWAS signal closer to the causal variant in recently admixed groups. 

This reduces the credible set of SNPs and aids in the prioritization of variants for subsequent 

functional testing.

The Tractor pipeline requires several inputs, most importantly accurate local ancestry calls. 

Users should ensure good LAI performance in their target cohorts. A major determinant of 

accurate LAI calls is a comprehensive and well-matched reference panel47,96. Existing 

reference panels are more plentiful for Eurasian populations than for other groups, 

underscoring the need to expand sequencing efforts in diverse global populations. An 

additional consideration is to ensure high quality imputation if Tractor is to be run on 

imputed genotype array data. A final consideration is to ensure consistent phenotyping 

across ancestry groups, as is standard in multi-ancestry GWAS. We note that we have 

thoroughly tested Tractor here in the two-way admixture scenario reflecting AA 

demographic history. The analytic infrastructure can currently also run on three-way 

admixed populations, and our statistical model can scale to an arbitrary number of 

ancestries. Future work will test power and optimize the code for multi-way admixed 

models.

We evaluated the landscape of when Tractor does and does not add GWAS discovery power 

using simulated data modeled after AA cohorts (Figure 2, Extended Data Figures 3-5). 
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Modifying several interacting parameters (absolute and difference in effect size, absolute 

and difference in MAF, sample size, disease prevalence, and admixture proportions), power 

gains from Tractor are generally most dramatic when there is a large effect size difference 

between ancestries. Gains from observed effect size differences are heightened when 

coupled with highly differing MAF across groups. The most extreme examples of such a 

case are when a there is an effect only on one haplotype background or an allele only present 

in one ancestry. Another interacting feature is the overall admixture proportions and whether 

the stronger effect allele is on the more frequent or more rare ancestry background. Tractor 
power gains are most dramatic when a variant with an effect in only one ancestry falls on the 

ancestry that is less common in the dataset. In such an instance in a standard GWAS setting, 

noise from the uninformative majority haplotypes would result in extremely low power to 

detect the locus (Figure 2D). Power can be recovered, however, by analyzing genotypes on 

ancestry-specific haplotypes, thus controlling for population structure as well as identifying 

risk variants that would otherwise be undetectable.

Conversely, we find that it is generally not necessary to include local ancestry in a GWAS 

model when there is no difference in the estimated effect size between ancestry groups. 

Notably, we are referring here to detection of both marginal as well as true effects. By a true 

effect, we mean an effect at a causal mutation directly impacting the phenotype. By a 

marginal effect, we imply the estimated effect at a variant tagging a causal variant; these 

marginal effects will represent the majority of results from a standard GWAS. Differences in 

indirect association can come from features such as ancestry-specific variation or different 

patterns of LD. Both true and marginal effect sizes are useful in post-GWAS efforts such as 

the construction of genetic risk scores and heritability estimation. There is evidence 

suggesting that in most cases (with some notable exceptions8,71,97), the effects of causal 

variants are similar across ancestries33,38,98-103. However, the marginal effect sizes of tag 

SNPs are routinely expected to differ across ancestries due to differences in ancestral MAF 

and the LD patterns resulting from each ancestral population’s demographic history104,105. 

Therefore, the most powerful use case for Tractor – when there are effect size differences 

across ancestries – should impact many more sites across the genome than just variants 

which have a true biological difference in effect across ancestry groups. Said differently, we 

clarify that Tractor benefits from power gains to detect the marginal beta in addition to the 

rarer case of variants with true effects only on one haplotypic backbone.

Tractor is also expected to benefit from increased power when functionally important (and 

likely rare) alleles only present in one population are missed by genotyping or imputation. In 

such situations the common alleles in LD, despite being shared across populations, would be 

associated with the phenotype as a function of which haplotypic background they are found 

on and thus would have a haplotype-specific effect. Another relevant scenario is the presence 

of LD in regions where there are ancestry-specific markers intermingled with shared ones. 

This would affect univariate scan results such that considering the haplotypic background on 

which alleles fall would particularly aid in localizing signal through improved marginal beta 

estimates, even with consistent causal effects in both ancestries. To expand on this idea, 

assuming a shared causal variant across ancestries, even in genomic regions with all variants 

present in both groups, one could hone in on the causal variant by minimizing the difference 

between betas across ancestries. If one assumes the beta at the causal variant is the same in 
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both populations, then optimizing for reduced beta difference across groups using ancestry-

specific effect size estimates can help in fine-mapping signal.

To summarize, the primary benefits we observed from Tractor are power gains from 

leveraging ancestral genomic differences, accurate estimation of ancestry-specific effect 

sizes, and improved GWAS signal resolution. At admixed cohort sample sizes of the scale 

we tested (4-12k cases), 10 PCs adequately controlled for false positives using standard 

GWAS procedures. With increasing sample sizes, however, Tractor’s fine-scale correction of 

population structure is expected to better control false positive associations than PCs alone, 

in addition to improving GWAS signal.

In empirical data, Tractor was able to replicate established GWAS hits, discover new ones, 

and aid in the localization of GWAS signal. We replicated known hits for blood lipids in 

~4300 admixed African-European individuals from the UKB and demonstrate an improved 

ability to identify putative causal SNPs fine-mapped in another diverse collection, Biobank 

Japan94 (Figures 4,5, Supplementary Figures 4,7). We additionally identify novel hits using 

our local ancestry aware method that would have been missed using standard GWAS.

Portions of the Tractor pipeline may be helpful for working with admixed cohorts in use 

cases beyond GWAS. For example, recovering long-range haplotypes and correcting for 

population structure is key in evolutionary genomic studies for analyses such as genome-

wide scans of selection106-108. Within medical genetics, accounting for the ancestral 

background of alleles will be valuable in studies of rarer variants which are more population 

specific109,110.

In sum, Tractor allows users to account for genotype-level ancestry in a precise manner, 

enabling the well-calibrated inclusion of admixed individuals in large-scale gene discovery 

efforts. This approach provides a number of benefits over traditional GWAS, including the 

production of accurate ancestry-specific summary statistics, improved localization of GWAS 

signals, and power boosts in many genetic contexts. This infrastructure is designed as a 

series of steps to be flexible and easily ported into other statistical genomics activities. 

Tractor advances the existing methodologies for studying the genetics of complex disorders 

in admixed populations.

Online Methods

QC and LAI Pipeline

The core feature of the Tractor framework relies on accounting for fine-scale population 

structure as informed by local ancestry (i.e. ancestral chromosome painting). Tractor then 

uses this information to (i) correct for individuals’ ancestral dosage at all variant sites, (ii) 

recover long-range tracts in admixed individuals; and (iii) extract the tracts and ancestry 

dosage counts from each ancestry component for use in ancestry-specific association tests. 

We have tested and built this framework around LAI calls from RFmix_v262, and have built 

an automated pipeline (https://github.com/eatkinson/Post-QC) to perform post-genotyping 

QC, data harmonization, phasing, and LA inference to consistently prepare the data for 

downstream analysis (Supplementary Information)1,2.
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In all tests, we ran RFmix with 1 EM iteration and a window size of 0.2 cM with the 

HapMap combined recombination map3 to inform switch locations. The -n 5 flag (terminal 

node size for random forest trees) was included to account for an unequal number of 

reference individuals per reference population. We used the --reanalyze-reference flag, 

which recalculates admixture in the reference samples for improved ability to distinguish 

ancestries. This is especially important when the reference samples are themselves admixed. 

As a reference panel, we used AFR and EUR individuals from the 1000G reference panel. 

Painted karyogram plots were produced using a modified version of publicly available code 

(https://github.com/armartin/ancestry_pipeline). We have optimized this pipeline under the 

two-way admixed AA demographic model. Tractor additionally supports 3-way admixture 

calls with an expanded set of scripts.

LAI Accuracy

We validated that LAI was performing well in the AA use case. To do this, we generated a 

truth dataset by simulating individuals with known phase and LA from empirical data. Our 

simulation reference panel consisted of haplotypes from homogenous PGC-PTSD 

individuals who had ≥95% EUR or AFR ancestry as inferred by SNPweights4. We simulated 

admixture between these reference individuals with admix-simu5 using a realistic AA 

demographic model of 1 pulse of admixture 9 generations ago with 84% contribution from 

Africa and 16% from Europe. The resultant population mixes amongst itself until the present 

day, copying haplotypes from the previous generation with break points informed by the 

recombination map. This retains the LD structure and genetic variation present in real 

genomic data and ensures that the truth dataset resembles cohort data as closely as possible. 

We then ran LAI and calculated LAI accuracy as how often the ancestry call was correct in 

the simulated truth data. The overall proportion of the genome estimated by RFmix in the 

realistic scenarios was within the range of expectations given the simulation model of 16% 

European, 84% African ancestry (15.1% and 84.9%, respectively).

Correcting Switch Errors using Local Ancestry

Despite LAI calling ancestry dosage accurately, frequent chromosomal switches were visible 

in painted karyograms (Figure 1), which we determined were due to phasing errors. It is 

important to retain complete tracts, as spurious breakpoints will reduce the accuracy of 

haplotype-based tests. Tractor detects and fixes phase switches, which we define as a swap 

of ancestry across a chromosome within a 1 cM window at a region with heterozygous 

ancestry dosage, using local ancestry. This level of information is accessible due to the 

admixture; no local ancestry switches would be visible if a cohort were homogenous.

To ensure that correcting phase switch errors improved results compared to the truth 

expectations, we modeled the expected distributions of EUR tract within AA individuals 

using a Poisson process with rate equal to the number of generations ago when the pulse of 

admixture occurred. The waiting time until a recombination event disrupts a tract is expected 

to follow this distribution, with a slight shortening of tracts proportional to the percent 

admixture due to the inability to visualize tract switches that occur across regions of the 

same ancestry. In this way we could quantify the probability of observing the observed 
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number of tracts after a particular data treatment given the truth expectations (See 

Supplementary Information, Supplementary Table 2, Extended Data Figures 1,2).

GWAS power simulations incorporating local ancestry

We assessed the improvements in GWAS power from using Tractor through simulations. We 

formulated our simulation framework on the suggestions of Skotte et al. (2019). Power 

calculations were based on a simulation framework that initially models an AA population 

assuming a bi-allelic disease risk allele with a 20% overall MAF and an additive effect in the 

AFR genetic background but not in the EUR. Specifically, the overall admixture proportions 

were drawn from a beta distribution with shape parameters 7.76 and 2.17, the fitted 

parameters to this distribution for AFR ancestry proportions observed in the PGC-PTSD 

Freeze 2 AA cohorts. The genotype of each copy of the allele was drawn from a binomial 

distribution with the probability of having the minor allele set to the MAF. We simulated a 

disease phenotype with individuals’ risk drawn from a binomial distribution assuming a 10% 

disease prevalence. Risk of developing the phenotype was modified on a log-additive scale 

according to the admixture proportions and the presence of the minor allele on an AFR 

background using a logit model. In this model, the probability of disease was set to −2.19 + 

log of allelic risk effect size*number of copies of the minor allele coming from an AFR 

ancestral background + 0.5*AFR admixture proportion. −2.19 was chosen as it represents a 

10% probability of disease given no AFR admixture or copies of the minor allele from either 

ancestral background. The 0.5 value in 0.5*AFR proportion was set in order to induce 

stratification in the simulated population, as is observed in empirical data. In other words, all 

of our simulations modeled increasing disease prevalence with admixture fractions, 

reflective of clinical observation. With this simulation design, individuals with higher AFR 

ancestry proportions are more likely to be cases whereas those with higher EUR ancestry 

proportions are more likely to be controls. Subjects’ disease status was then drawn from a 

binomial distribution with the probability parameterized to their individual disease risk 

according to the logit model. Cases and controls were sampled at random from the simulated 

population at a 2.5:1 control to case ratio, the approximate ratio of controls to cases in PGC-

PTSD freeze 2.

Under each simulation, we fit three logistic regression models of disease status that 

included: M1) admixture only, M2) number of copies of the risk allele only, and M3) 

admixture + number of copies of the risk allele on a EUR background + number of copies 

on an AFR background. M1 serves as a null comparison to evaluate the significance of 

including the SNP as a predictor. M2 is equivalent to standard GWAS procedures. M3 

models our Tractor method. In all cases we included the first 10 PCs to account for 

population structure, as is common practice in current GWAS on admixed cohorts. The 

significance of M2 and M3 are evaluated by likelihood ratio tests comparing them to M1. 

For each 100 simulations at a given effect size and sample size, for both M2 and M3 we 

estimated power as the proportion of the time that the likelihood ratio test was significant (p 

< 5e-8). We performed 1000 rounds of simulation with this model at each level of allelic 

effect size ranging from Odds Ratio (OR) 1.05 to 1.3 and case sample size N=4000 and 

12000. It should be noted that the 2-way Tractor model is by nature a 2 degree of freedom 
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test. Adding additional ancestries/terms into the model could reduce power gains, due to the 

additional penalty.

We additionally benchmarked Tractor against asaMap under our primary models assessing 

the effect of differing sample sizes, MAF differences, admixture fractions, and relative 

ancestry-specific effects (Figure S5). The specific asaMap model test that we assessed in 

these runs is equivalent to the M1 vs M5 comparison described in Skotte et al. (2019), 

namely an effect in either population. A comparison of results from different asaMap models 

for the DOCK6 region of interest can be seen in Supplementary Figure 5.

We also built in LAI uncertainty into the Tractor model in these comparisons to quantify the 

effect of LAI accuracy on Tractor power. For this, we modeled perfect, realistic - 98%, and a 

lower tolerable bound of 90% LAI accuracy (Extended Data Figure 5). In all cases, 1000 

replicates were run under a model of 12k cases, 30k controls, 10% disease prevalence, and a 

realistic 80/20 AFR/EUR admixture ratio using 10 PCs as covariates.

Characterizing the landscape of Tractor power gains

To evaluate Tractor power gains, we ran similar sets of simulations varying effect size 

differences across ancestries, MAF differences, admixture fractions, and disease prevalence 

(Figures 2, Extended Data Figures 3, 4). Additional detail about these runs can be found in 

Supplementary Information.

Varying effect size across populations: To examine the effect of modifying the effect 

sizes, we introduced an effect on EUR haplotypes as well, rather than just on AFR. All these 

simulations assumed 80% admixture, 10% disease prevalence, and 20% MAF in both 

groups. We modeled cases across the OR spectrum where there was an effect of equal size in 

both ancestries, a 30% larger effect size on the EUR background, an effect size 30% larger 

on the AFR haplotype, and an effect size only in the EUR.

Varying absolute MAF: We next fixed all other parameters and modified the absolute 

MAF of the simulated risk allele, with the relative difference in MAF between ancestries 

remaining constant. We changed our MAF from 20% to 10% and 40% under both the 

models of an effect only in the AFR background and with matching effect sizes between 

EUR and AFR.

MAF differences between groups: To see if having a difference in the MAF between 

the two ancestral groups affected GWAS power, we varied the MAF in the EUR background 

to be 10, 20, and 30% while keeping the AFR MAF set to 20%.

False positive rate: We quantified the false positive rate by simulating a variant with no 

effect and counting significant associations identified in a simulated realistic AA population 

given α = 0.05 across a range of absolute and relative differences in ancestral MAF. In all 

cases, 5000 replicates were run, individuals were 80/20% admixed AFR/EUR, the disease 

prevalence was set at 10%, and the sample size was modeled as 12k cases and 30k controls.
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Selection of two-way admixed African-European individuals

To select individuals with 2-way admixture with European and West African ancestry 

(Supplementary Figure 3), we took a two-pronged approach. First, we combined genetic 

reference data from the 1000 Genomes Project and Human Genome Diversity Panel6, then 

harmonized meta-data according to consistent continental ancestries. We then ran PCA on 

unrelated individuals from the reference dataset. To partition individuals in the UKB based 

on their continental ancestry, we used the PC loadings from the reference dataset to project 

UK Biobank individuals into the same PC space. We trained a random forest classifier given 

continental ancestry meta-data based on the top 6 PCs from the reference training data. We 

applied this random forest to the projected UK Biobank PCA data and assigned AFR 

ancestries if the random forest probability was >50%, otherwise individuals were dropped 

from further analysis. To restrict to only two-way admixed West African-European ancestry 

individuals, we restricted to individuals with at least 12.5% European ancestry, at least 10% 

African ancestry, and who did not deviate more than 1 standard deviation from the AFR-

EUR cline. This resulted in approximately 4300 individuals per blood lipid trait. Global 

ancestry fraction and ancestral allele frequency estimates were obtained from running 

ADMIXTURE7 with k=2 (which was the best fit k value to this dataset based on 5-fold 

cross-validation) on these individuals with 1000 Genomes Project EUR and AFR 

superpopulation individuals as reference data. To ensure there were no major areas of the 

genome where local ancestry inference was skewing significantly from the expected global 

fractions, we also assessed the cumulative local ancestry calls across the genome for the 

UKB admixed subset.

Software implementations

We developed separate scripts to deconvolve ancestry tracts and calculate haplotype dosages, 

correct phase switch errors, and run a Tractor GWAS to obtain ancestry-specific effect size 

estimates and p values. Pre-GWAS steps are available as independent python scripts to allow 

for maximum flexibility. To implement the joint modeling GWAS approach with the novel 

linear regression model described here, we have built a scalable pipeline in Hail8 which can 

be implemented locally or on the Google Cloud Platform9. Descriptions of the steps and an 

example Jupyter notebook10 demonstrating analytical steps and visualization of results of 

the Tractor joint-analysis GWAS are freely available on github (https://github.com/

eatkinson/Tractor). The Hail implementation of Tractor GWAS generally runs on the order 

of minutes depending on the sample size and variant density. Alternatively, users can run a 

separate/meta-analysis GWAS version of Tractor (see Supplemental Information). This 

pipeline requires the initial processing steps to optionally correct phase switch errors and 

deconvolve ancestry tracts into their own VCF files. Next, GWAS can be run for the 

deconvolved files containing different ancestral components with the user’s preferred GWAS 

software, such as plink11. In this implementation, a standard GWAS model can be run on 

each ancestral component separately using the ancestry-specific VCF output by Tractor, 
which contains fully or partially missing data including only haplotypes from the ancestry in 

question. Results from the different ancestry runs could then be meta-analyzed to increase 

power by incorporating summary statistics from both populations, though we recommend 

preferentially using the joint-analysis method described in this manuscript to avoid any 

potential bias from combining multiple ancestral portions of the genome of the same 
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individuals. This implementation is also compatible in large-scale collections where there 

are large numbers of homogenous individuals, for example many Europeans, but too limited 

a number of admixed individuals to be run in a GWAS alone. The EUR sections of the 

admixed cohorts could be analyzed alongside the homogenous European cohorts, making 

better use of the admixed samples even if other ancestry portions are not utilized, and 

increasing the effective sample size.

Empirical test of Tractor on blood lipid phenotypes

To ensure that Tractor replicated well-established associations, we ran standard GWAS, the 

Tractor joint-analysis model, and inverse variance weighted fixed effects meta-analysis of 

summary statistics from EUR and AFR deconvolved tracts on ~4300 admixed African-

European individuals from the UKB on the biomarker blood lipid traits of Total Cholesterol 

and low-density lipoprotein cholesterol. We included covariates capturing global ancestry 

(PCs or global ancestry fraction), age, sex, and blood dilution factor in all runs. All 

simulation results for both Tractor and standard GWAS include the first 10 PCs to account 

for population stratification, as is currently standard practice in studies of admixed cohorts. 

To confirm good performance regardless of the global ancestry estimation strategy, we 

assessed meta-analysis performance using both metrics to capture global ancestry, namely 

PCs versus the AFR fraction as determined by ADMIXTURE, finding that these did not 

result in substantive differences. In the empirical joint-analysis framework, we used the 

measure of global AFR ancestry fraction to more directly capture global ancestry and avoid 

any potential collinearity with local ancestry from PCs. We generated QQ plots alongside 

each trait and compared the inflation of test statistics in each GWAS case by looking at the 

genomic inflation factor, λGC. We then compared results to those obtained from the same 

individuals using a standard GWAS approach. No individuals overlap between the previous 

study of interest, Natarajan et al. (2018), and the UKB individuals included here. As 

expected, near-identical results were obtained from the meta- and joint-approaches. Gene 

visualizations were produced with LocusZoom12, Manhattan and QQ plots with bokeh in 

Hail13.

We further investigated the pattern of LD in the DOCK6 region of interest to assess how 

much LD differences across ancestries aided in localization improvements with Tractor. For 

this we generated within-sample LD heatmaps for the region of interest (Supplementary 

Figure 6) in the full dataset, as well as within just the AFR and EUR tracts. Squared inter-

variant allele count correlations were generated with PLINK11 for the region 

chr19:11325000-11360000. LD heatmaps were created with the LDheatmap package14 in R.

Statistical fine-mapping of top hits in independent cohorts

We conducted GWAS and statistical fine-mapping in two additional large-scale cohorts: 

345,235 white British individuals from UKB and 135,808 Japanese individuals from BBJ. 

For the UKB white British, we used previously conducted fine-mapping results for Total 

Cholesterol (https://www.finucanelab.org/data). Briefly, we computed association statistics 

for the variants with INFO > 0.8, MAF > 0.01% (except for rare coding variants with MAC 

> 0), and HWE p-value > 1e-10 using BOLT-LMM15 with covariates including the top 10 

PCs, sex, age, age2, sex * age, sex * age2, and blood dilution factor. We used FINEMAP 
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v1.3.116,17 and susieR v0.8.1.052118 for fine-mapping using the GWAS summary statistics 

and in-sample dosage LD matrices computed by LDstore v2.0b. We defined regions based 

on 3 Mb window surrounding lead variants and merged them if overlapped. The maximum 

number of causal variants in a region was specified as 10. For BBJ, we additionally 

conducted fine-mapping using the same pipeline as we did for UKB. The GWAS summary 

statistics of Total Cholesterol was computed for the variants with Rsq > 0.7 and MAF > 

0.01% using BOLT-LMM with the covariates including top 10 PCs, sex, age, age2, sex * 

age, sex * age2, and disease status (affected versus non-affected) for the 47 target diseases in 

the BBJ. The details about genotyping and imputation was extensively described 

previously19,20.

Assessment of the empirical p value threshold

To evaluate the appropriate p value threshold for Tractor associations, we estimated 

ancestry-specific empirical null p value distributions via permutation. Although the genome-

wide significance threshold (p < 5 × 10−8) is widely adopted in the current literature, 

previous work has shown that different ancestry groups have different numbers of 

independent variants39. Here, we permuted a null continuous phenotype 1,000 times using 

the same admixed African-European individuals from UKB as in the Tractor cholesterol 

GWAS to assess the correct p value threshold for the admixed individuals in this study. We 

measured the minimum p values of associations (pmin) for each ancestry and derived an 

ancestry-specific empirical genome-wide significance threshold as the fifth percentile (α = 

0.05) of pmin across permutations as previously described21. We calculated this percentile 

using the Harrell–Davis distribution-free quantile estimator22 and calculated the 95% 

confidence interval via bootstrapping. Based on the permutation results (Supplementary 

Figure 2), a study-wide significance threshold at a conservative level of p = 1 × 10−8 for both 

AFR- and EUR-specific associations was deemed appropriate for admixed African-

European cohorts, consistent with the presence of additional recombination breakpoints 

present in such admixed populations. In addition, we calculated the genomic inflation factor, 

λGC, of null phenotypes across permutations and confirmed no significant inflation using 

the Tractor GWAS model (Supplementary Table 3).

Code Availability Statement

All code is freely available. The automated QC pipeline to prepare datasets for Tractor and 

run LAI is located at https://github.com/eatkinson/Post-QC. We freely provide Tractor code 

in python and Hail, as well as examples of implementation in a Jupyter notebook at https://

github.com/eatkinson/Tractor alongside a detailed wiki. Specific scripts used to produce the 

simulated data and results is additionally freely provided at https://github.com/eatkinson/

Tractor_ms_results.
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Extended Data

Extended Data Fig. 1. Painted karyograms of a simulated AA individual showing EUR (red) and 
AFR (blue) ancestral tracts across demographic models.
The first column shows the results for the demographic model of one pulse of admixture 3 

generations ago, the middle column shows the realistic model of one pulse 9 generations 

ago, and the right column shows a pulse 20 generations ago. In all cases the model involved 

84% AFR ancestry and 16% EUR. The rows show the results from treatments of the data 

across steps of the Tractor pipeline. The top row shows the truth results from our 

simulations. Painted karyograms after statistical phasing of this truth cohort is shown in the 

second row. The third row illustrates the recovery of tracts broken by switch errors in 

phasing obtained by unkinking. The bottom row shows the smoothing and further 

improvement of tracts acquired through an additional round of LAI.
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Extended Data Fig. 2. Tractor recovers disrupted tracts, improving tract distributions.
The top row (A-C) shows the improvements to the distributions of the number of discrete 

EUR tracts observed in simulated AA individuals under demographic models of 1 pulse of 

admixture at 3, 9 (realistic for AA population history) and 20 generations ago. The bottom 

row (D,E) shows the results from different initial admixture fractions, of 70% and 50% 

AFR, respectively, at 9 generations since admixture. These can be compared to the inferred 

realistic demographic model shown in B. In all panels, the simulated truth dataset is shown 

in black, after statistical phasing in purple, immediately after tract recovery procedures is in 

orange, and after one additional round of LAI after tract recovery in yellow.

Extended Data Fig. 3. The contribution of absolute MAF and effect size to Tractor power.
All cases assume an 80/20 AFR/EUR admixture ratio, 10% disease prevalence, 12k 

cases/30k controls with an effect only in the AFR genetic background. In all panels, the 

solid line uses a traditional GWAS model while the dashed line is our LAI-incorporating 

Tractor model. (A,B): Equal effect in EUR and AFR with shifted absolute MAF. (C,D): 

effect only in AFR background. (A,C): MAF is set to 10% in both AFR and EUR. (B,D): 

MAF is set to 40% in both AFR and EUR. Panels E and F illustrate the heterogeneity in 

effect sizes required to observe gains in Tractor power over traditional GWAS assuming 

Atkinson et al. Page 18

Nat Genet. Author manuscript; available in PMC 2021 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20% MAF in both ancestries and an effect that is stronger in AFR with varying difference to 

the EUR effect.

Extended Data Fig. 4. The interaction of between-ancestry MAF differences and effect sizes on 
Tractor power.
In all cases, the grey solid line uses a traditional GWAS model while the black dashed line is 

our LAI-incorporating model, admixture proportions are 80/20 AFR/EUR, disease 

prevalence is 10%, and the AFR MAF is fixed at 20%. A and E model the same effect size 

between EUR and AFR while varying the EUR MAF. B,D,F model the case when there is 

no effect in the EUR background while varying EUR MAF. C models an effect size 

difference of 30% with the effect being stronger in the EUR background. For comparison, 

Figure 2F shows the same effect at matched 20% MAF.
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Extended Data Fig. 5. The impact of LAI accuracy on Tractor’s performance as compared to 
standard GWAS and asaMap.
We modeled perfect accuracy, realistic accuracy as derived from simulations of our AA 

demographic model (98%), and a lower bound of 90% LAI accuracy. Black lines all indicate 

Tractor runs: the solid black line is Tractor’s performance with perfect LAI accuracy, the 

dashed line is at 98% accuracy, and the dotted line is at 90% accuracy. The red line 

represents the power obtained from standard GWAS, and the blue line for the asaMap model 

for the ancestry in which the effect was modeled (AFR for A,B, and C, and EUR for D). In 

all cases we included 10 PCs as covariates and 1000 replicates were run.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Painted karyograms of a simulated AA individual showing local EUR (red) and AFR 
(blue) ancestral tracts across data treatments.
The top panel shows the truth results for an example individual in our simulated AA cohort. 

The same person after statistical phasing is shown in the second row – note the disruption of 

long haplotypes resulting from phasing switch errors. The third panel illustrates our recovery 

of tracts broken by switch errors in phasing. The bottom panel shows the smoothing and 

further improvement of tracts acquired through an additional round of LAI. The same 

section of chr13 showing an example tract at higher resolution is pictured on the right to 

highlight tract recovery.
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Figure 2. GWAS power gains across sample sizes, ancestral MAF differences, admixture 
proportions, and effect size differences.
In all scenarios shown, dashed lines correspond to the power from the Tractor model 

incorporating local ancestry, solid lines are for a traditional GWAS model. In all panels we 

modeled a 10% disease prevalence. Unless otherwise noted, we used the parameters for a 

realistic demographic scenario for AA individuals: 80% AFR ancestry, an effect present only 

in the AFR genetic background, 12k cases and 30k controls, and 20% MAF. (A) There are 

similar gains in GWAS power when using the Tractor LAI-aware model across samples sizes 

of 4,000 (grey) and 12,000 (black) cases with 2x controls. (B) When there is a MAF 

difference between ancestries, the boost in power is even more pronounced. Gains vary 

across the allele frequency spectrum: black=MAF 10% AFR, 30% EUR; grey=MAF 20% 

AFR, 40% EUR. (C) Gains become more pronounced when the admixture fractions are 

modified to 50/50. (D) Dramatic gains are obtained when the effect is switched to instead 

only be present on the less common EUR background. (E) The threshold for heterogeneity 

in ancestral effect sizes required to observe gains in Tractor power over traditional GWAS 

assuming 20% MAF in both ancestries and an effect that is stronger in AFR with varying 

difference to the EUR effect. (F) There is a small loss in power from incorporating local 

ancestry into the GWAS model when all parameters are identical across ancestries.
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Figure 3. Tractor accurately estimates ancestry-specific effect sizes.
Boxplots show the effect size estimated by Tractor as compared to that modeled in the 

simulation across a range of effect sizes where the center is the median, the bounds of box 

represent the first quantile to third quantile, and whiskers are 1.5 * IQR. The lines indicate 

the simulated values for each ancestry. Blue represents effects in AFR, red in EUR. The 

models presented all include 1000 simulation replicates with 12k cases, 30k controls at 10% 

disease prevalence in a realistic AA population with an admixture ratio of 80/20 AFR/EUR. 

Unless otherwise noted, the risk allele MAF was set at 20% in both ancestries. (A) The 

initial simulation framework of an effect only in AFR. (B) An effect only in AFR with 

differing minor allele frequencies across ancestries: AFR being 10% and EUR 30%. (C) An 

effect in both ancestries, with a 30% weaker effect modeled in the EUR. (D) Effect only in 

EUR.
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Figure 4. Tractor GWAS replicates established hits for Total Cholesterol in admixed African-
European individuals and identifies new ancestry-specific loci.
QQ and Manhattan plots for Total Cholesterol using (A) the standard GWAS model 

compared to Tractor joint-analysis results for the (B) AFR and (C) EUR backgrounds. The 

traditional genome-wide significance threshold of 5e-08 is shown as the red dashed line.
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Figure 5. Tractor better localizes a top hit for Total Cholesterol.
Runs on UKB admixed individuals with (A) standard GWAS model, (B) AFR-specific 

GWAS with Tractor, and (C) a meta-analysis of GWAS runs on deconvolved EUR and AFR 

tracts. Both Tractor runs pinpoint a lead SNP ~20kb downstream of the intronic standard 

GWAS top hit in DOCK6 spanning a better candidate gene, ANGPTL8. No significant 

signal was seen in the EUR segments. In all plots, point size is proportional to the number of 

samples included for that test, and color indicates r2 to the named lead SNP. The 

recombination rate is shown as a blue line generated from the AFR superpopulation of the 

1000 Genomes Project in B, or the EUR superpopulation for other panels.
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