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Abstract

Establishing the tissue source of epithelial cells within a biological sample is an important

capability for forensic laboratories. In this study we used Imaging Flow Cytometry (IFC) to

analyze individual cells recovered from buccal, epidermal, and vaginal samples that had

been dried between 24 hours and more than eight weeks. Measurements capturing the

size, shape, and fluorescent properties of cells were collected in an automated manner and

then used to build a multivariate statistical framework for differentiating cells based on tissue

type. Results showed that epidermal cells could be distinguished from vaginal and buccal

cells using a discriminant function analysis of IFC measurements with an average classifica-

tion accuracy of ~94%. Ultimately, cellular measurements such as these, which can be

obtained non-destructively, may provide probative information for many types of biological

samples and complement results from standard genetic profiling techniques.

Introduction

Characterizing the type of cells present in biological evidence and, therefore, the tissue they

originated from within the body, can assist with crime reconstructions and downstream DNA

profiling methods. Traditionally, caseworking methods for determining tissue source are

based on microchemical and/or enzymatic reactions targeted toward proteins within bodily

fluids, which have limited sensitivity and/or specificity. Recently, there has been considerable

research into biomolecular markers for tissue identification. These include mRNA transcripts

[1], micro-RNAs [2,3], proteomics [4], and DNA methylation patterns [5]. Although promis-

ing, the specificity of many of these systems is still being investigated and interpretation can

require complex bioinformatic workflows.

In contrast, few forensic techniques have utilized morphological or intrinsic biochemical

differences to differentiate between cells from different tissues, particularly epithelial cells.

This is likely due to the laborious nature of microscopic characterizations or the need for tis-

sue-specific antibody probes which have limited success on dried or compromised samples
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[6,7]. One potential strategy to address these challenges is the use of Imaging Flow Cytometry

(IFC). In IFC, conventional flow cytometry analysis whereby the optical properties of individ-

ual cells are interrogated with lasers at set wavelengths, is combined with fluorescence and

bright field imaging of those same cell events. IFC is routinely used in biomedical and clinical

research for identification of unusual cell types as well as high resolution surveys of both cellu-

lar and sub-cellular processes [8]. The primary advantage of IFC over conventional micro-

scopic analysis is that images of single cells are collected in a high throughput manner (as

many as hundreds per second) and at multiple fluorescence channels simultaneously. The

resulting multivariate data streams can therefore be used to compare profiles between individ-

ual cells or between larger populations. For forensic applications, another potential advantage

of IFC is that it is an inherently non-destructive technique, with the possibility of collecting all

cells after analysis for DNA profiling or other biological characterizations.

In this study we tested whether IFC could be used to differentiate epithelial cells from three

separate tissue sources—buccal, touch epidermal, and vaginal—based on autofluorescence and

morphological signatures. Identifying the presence of one or more of these cell types in a bio-

logical sample when combined with DNA profiling results may be useful when evaluating

either single source or mixture samples in light of competing prosecution and defense proposi-

tions to explain the presence (or absence) of particular individuals’ DNA (e.g., claims of sexual

assault versus denial of such activity and suggestions of indirect transfer). Additionally,

because DNA yield has been observed to systematically vary between epidermal cells and other

types of epithelial tissue [9], determining the presence and relative quantities of each cell type

can help direct downstream DNA profiling efforts. We conducted an initial IFC survey of each

epithelial cell type by analyzing existing biological specimens from a forensic sample repository

consisting of ten donors per cell type. To assess the robustness and consistency of IFC signa-

tures against samples approximating those that would be encountered during forensic case-

work (e.g., samples collected different lengths of time after deposition, and/or stored for

different lengths of time prior to analysis), the samples were “aged” for different amounts of

time prior to analysis, ranging from ~24 hours to more than eight weeks.

Methods

Sample collection and preparation

Buccal and epidermal samples were obtained from male and female volunteers pursuant to the

Virginia Commonwealth University Institutional Review Board (VCU-IRB) approved proto-

col ID#HM20000454_CR3. Written informed consent was obtained from all participants for

this study. For buccal samples, ten volunteers were asked to swab the inside of cheek for 30 sec-

onds. Swabs were left to dry for between 24 hours and 6 days. Dried and fresh swabs were pro-

cessed in the same manner. For epidermal samples, ten individuals (six of whom were buccal

cell donors) were asked to hold/rub a conical tube (P/N 229421; Celltreat Scientific; Pepperell,

MA) for five minutes to deposit cells. Tubes were then left out for 24 hours to 5 days to dry

before collecting cells. Cells were collected from the surface with one sterile, pre-wetted swab,

and one sterile, dry swab.

Vaginal cell samples were obtained from an existing sample repository at Virginia Com-

monwealth University. Samples were collected pursuant to VCU-IRB approved protocol

ID#HM20002931_Ame2. Volunteers were asked to swab the inside of the vaginal cavity, and

swabs were dried and stored at room temperature until analysis. Storage times ranged from 72

hours to approximately eight weeks.

All collection swabs were eluted in 1 mL of 1x Cell Staining Buffer (P/N 420201; Biolegend;

San Diego, CA), and gently vortexed for 10 seconds. Samples were centrifuged at 1500 × g at
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4˚C for 5 minutes. The supernatant was discarded, and the cell pellets were dissolved in 100 uL

of 1x Cell Staining Buffer for imaging flow cytometry. A list of all donor samples used in this

study and their respective drying times are provided in S1 Table. The IRB approved protocols

required the donors to confirm that they were over 18 years of age, but did not require that

their age be recorded.

Imaging Flow Cytometry and statistical analysis

All samples were analyzed using an Amnis1 Imagestream X Mark II (EMD Millipore; Bur-

lington, MA) equipped with 405nm, 488nm, 561nm, and 642nm lasers. Laser voltages for all

tests were set at 120mW, 100mW, 100mW and 150mW, respectively. Images of individual

events were captured in five detector channels labeled: 1 (430-505nm), 2 (505-560nm), 3 (560-

595nm), 5 (640-745nm), and 6 (745-780nm). Channel 4 was used to capture Brightfield

images. Magnification was set at 40x and autofocus was enabled so that the focus varied with

cell size. Examples of cell images collected across multiple wavelengths are provided in S1 Fig.

Scatterplots of Aspect Ratio and Area values for a sample of each cell type are also given in S1

Fig (aspect ratio and area are comparable to forward scatter/side scatter measurements col-

lected with conventional flow cytometry instrumentation). Raw image files (.rif) were then

imported into IDEAS1 Software (EMD Millipore; Burlington, MA). Display Width and Dis-

play Height were changed to 120x120 pixels for each image. The ‘Shape Change Wizard’

option in Ideas was used to select focused cells on a Gradient RMS_M04Ch04 x Normalized

Frequency histogram. Once the data was filtered for focused cells, single cells were selected on

an Area_M04 x Aspect Ratio_M04 scatterplot. This was to ensure that cell aggregates were not

incorporated into the downstream analysis.

Data for individual cell events were collected for 17 different features: area, aspect ratio,

aspect ratio intensity, contrast, intensity, mean pixel, median pixel, max pixel, length, width,

height, brightness detail intensity (‘R3’ pixel increment), raw centroid X, raw centroid Y, and

circularity. These feature measurements were collected across multiple detector channels (i.e.,

fluorescence and brightfield wavelengths) with the exception of measurements that could only

be determined from brightfield images such as centroid X/Y and circularity. This yielded a

total of 88 measurements/variables collected for each cell. Cell yield varied across each of the

study samples but did not appear to be correlated with tissue type, drying time, or individual

donor. Most cell populations yielded between 200 and 400 cell images with nine samples pro-

viding between 80 and 200 images.

IFC measurement values were then imported into SPSS v23 (IBM, Inc. Chicago, IL). Differ-

ences in mean values between the three cell types were tested using a one-way ANOVA analy-

sis with a Tukey HSD post-hoc test performed in SPSS. Next, multivariate differences among

the three cell type groups were analyzed using a Discriminant Function Analysis (DFA) based

on the within-group covariance matrix. We initially compared results from direct analysis of

IFC measurements and those obtained from transforming the data first into principal compo-

nents (PCs) and then conducting DFA on the PC scores. We found that the latter approach led

to less differentiation in the canonical variate plot and poorer classification accuracy and thus

used direct analysis of raw measurements. Different combinations of variables were initially

tested based on their impact on group separation in the canonical variate plot and classifica-

tion accuracy. Inclusion of all variables in the analysis resulted in the greatest degree of separa-

tion in the canonical variate plot and the highest rate of accurate classifications.

Source IFC data (.rif files) and extracted cellular measurements used for statistical analyses

are available through a Figshare repository; doi: 10.6084/m9.figshare.5847933.
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Results

We first tested whether IFC could be used to distinguish cells from the three different epithelial

tissue sources. During image collection and processing, we noted some general qualitative dif-

ferences between images from each of the three cell types. For example, circular features with a

size consistent with nuclei (~8μm), were observed in the center of many of the buccal cells and

vaginal cells (e.g., Images 1507, 1796, respectively, Fig 1), while they were rarely observed in

epidermal cell images. Buccal and vaginal cells were generally larger in size,>40 μm compared

to epidermal cells, which were ~20–50 μm although we noted some size overlap between cell

sources. This could be due in part from the folding or degradation of buccal and vaginal cells

during drying or sampling prior to IFC. Epidermal cells generally exhibited higher contrast

features in brightfield images compared to buccal or vaginal cells.

For the 264 pairwise comparisons between group means (88 variables and three sample

groups), only 42 yielded p-values greater than 0.01, with the vast majority showing p values

less than 0.0001 (S2 Table). Of note were differences in means for circularity (7.8 epidermal,

4.1 buccal, 4.3 vaginal), intensity (e.g., in 430-505nm channel 3x105 RFU epidermal, 6x104

RFU buccal, 5x104 RFU vaginal), and brightness detail (e.g., in 403–505 nm channel 1x104

RFU epidermal, 9x103 buccal, 7x103 RFU vaginal). However, the range of values for each cell

group showed a high degree of overlap across the three cell types (Boxplots in S2 Fig). Simi-

larly, most variables showed large standard deviations for each cell type, with coefficients of

variation for individual measurements ranging from ~20% to more than 280%.

Fig 1. Image gallery for three epithelial cell tissue sources. IFC Brightfield images for buccal cells (columns 1–3), epidermal cells (columns 4–6), and vaginal cells

(columns 7–9). Each image frame is 50 μm x 50 μm. Object identifiers are included with each image.

https://doi.org/10.1371/journal.pone.0197701.g001
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In order to determine whether the observed variation in IFC measurements could be used

to differentiate cell types, we employed Discriminant Function Analysis (DFA) as a supervised

multivariate technique to model variation between groups. In DFA, linear combinations of the

original variables are constructed (i.e., canonical variates) such that the variation between

user-defined sample groups is maximized and within group variation is minimized. DFA is a

well-established technique with demonstrated applications for other forensic signature systems

[10–12]. For this dataset, the primary advantages of DFA are that differences in measurement

scales across variables do not impact the analysis and it is relatively robust to non-normally

distributed data [13]. Additionally, the canonical variates generated with DFA can be used to

classify individual samples into one of the user-defined groups. For this study we used DFA to

initially examine multivariate differences between groups. A DFA plot of all IFC measure-

ments from the three cell types showed distinct separation between buccal, epidermal, and

vaginal cell populations (Fig 2). Multivariate differences between groups were statistically sig-

nificant, Wilk’s Lambda = 0.114, p<0.001. Some overlap is observed among the sample groups

on the DFA plot, in particular between buccal and vaginal cell groups. A leave-one-out (LOO)

classification on individual cell images for each of the three groups and all 30 cell populations

showed an overall classification accuracy of ~90%.

Next we used DFA-based algorithms to classify entire donor cell populations into one of

the three cell groups in a blinded fashion to determine the accuracy and robustness of this

approach for identifying cell types from an unknown forensic sample. This was accomplished

by withholding a given donor cell population from the DFA and classifying each cell image

into one of the three epithelial cell types based on information from the remaining contributor

cell populations. Classification results for cell populations against three tissue types are given

in Table 1. In general, epidermal cells showed the highest overall classification accuracy (88%)

Fig 2. Discriminant Function Analysis of epithelial cells from three tissue sources using IFC variables. The first

discriminant function (x-axis) accounted for ~74% of the between group variation and the second discriminant

function (y-axis) accounted for ~26%.

https://doi.org/10.1371/journal.pone.0197701.g002
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with six of the ten donor cell populations having accuracies over 90%. Only one cell popula-

tion, P22, was below 80%. Buccal and vaginal cell populations yielded lower overall classifica-

tion rates, 72% and 75% respectively (Table 1). Interestingly, classification accuracies were

highly variable across individual cell populations for these two groups, with buccal cells rang-

ing between 24% and 96% and vaginal cells ranging between 26% and 95%.

In an attempt to improve the classification accuracy for each cell type, individual cell popu-

lations were also tested with two-group classification schemes where one tissue group was

excluded completely from the analysis, i.e., buccal cells against epidermal cells; vaginal cells

against epidermal cells; and buccal cells against vaginal cells (Tables 2–4 respectively). Simpli-

fied classification schemes could be run subsequent to the original classification to help iden-

tify samples assigned to one of the closely related sample groups, i.e., a cell image classified as a

buccal cell in the three group DFA could then be run against a two group DFA containing

Table 1. Classification test of buccal, epidermal and vaginal cells.

Predicted Cell Type

Cell Type Contributor ID Buccal Epidermal Vaginal Classification %

Buccal L49 254 23 30 83

Buccal I66 244 2 69 78

Buccal C58 198 13 49 76

Buccal R47 157 6 1 96

Buccal 5001 214 3 134 61

Buccal B21 185 1 15 92

Buccal N08 130 4 6 93

Buccal Y60 126 12 59 64

Buccal Z32 138 16 48 68

Buccal 5034 59 3 183 24

Total — 1705 83 594 72

Epidermal Q17 3 190 10 94

Epidermal Z32 18 175 10 86

Epidermal Y60 3 189 10 94

Epidermal K36 0 421 12 97

Epidermal P22 24 216 123 60

Epidermal S95 2 76 6 90

Epidermal I66 15 295 26 88

Epidermal L49 3 347 1 99

Epidermal R47 55 247 0 82

Epidermal N08 7 286 10 94

Total — 130 2442 208 88

Vaginal 2368 171 7 200 53

Vaginal 4017 7 9 296 95

Vaginal 1022 37 8 312 87

Vaginal 1028 96 1 35 26

Vaginal 1031 1 22 344 94

Vaginal 5020 49 1 118 70

Vaginal 5021 4 41 92 67

Vaginal 5005 12 72 79 47

Vaginal 4502 20 0 180 90

Vaginal 4504 80 0 222 74

Total — 477 161 1878 75

https://doi.org/10.1371/journal.pone.0197701.t001
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only buccal and vaginal cells. Tiered or successive DFA analyses have been described for other

types of forensic samples [10,14]. Additionally, two group comparisons could approximate

caseworking scenarios in which one of the epithelial cell types could be ruled out a fortiori for

an unknown cell population. Results from two-group DFA generally showed improved classi-

fication accuracy. Buccal and epidermal cell populations could be differentiated with the high-

est accuracy (~94%). The lowest classification rate of individual donor cell populations in this

comparison was 80% (P22, Epidermal) with the majority of cell populations exhibiting classifi-

cation accuracy of 95% or higher (Table 2). The vaginal-epidermal cell classifications showed

comparable results with an overall classification accuracy of ~91%. Two individual cell popula-

tions in this scheme exhibited markedly lower success rates (P22 epidermal 63% and 5005 vag-

inal 32%). However, the remaining cell populations had classification accuracy>80% with the

majority >95% (Table 3). Less differentiation was observed between buccal and vaginal cells

with an overall classification accuracy of 78% (Table 4). Seven donor cell populations still

showed accuracies greater than 95% and three donor cell populations were below 60% accu-

racy (e.g., 5034, Buccal; 2368 Vaginal; 1028 Vaginal).

To investigate whether the DFA classification scheme can accurately assess the proportion

of cell types in a two-person mixture, we created simulated mixtures by randomly sampling

two donors’ cell images. These images were then classified into cell types using with the

remaining contributor cell populations as the reference dataset for DFA. A 1:1 simulated mix-

ture consisting of L49 (epidermal) and B21 (buccal) cell images was classified as 50% epider-

mal cells and 46% buccal cells, with the remaining 4% of images classifying as vaginal cells.

Using the two-group classification scheme, the cell population was determined to be 50%

Table 2. Classification test of buccal vs. touch epidermal cells.

Predicted Cell Type

Cell Type Contributor ID Buccal Epidermal Classification %

Buccal L49 287 20 94

Buccal I66 308 7 98

Buccal C58 229 31 88

Buccal R47 151 13 92

Buccal 5001 348 3 99

Buccal B21 198 3 98

Buccal N08 135 5 96

Buccal Y60 174 22 89

Buccal Z32 174 27 87

Buccal 5034 233 11 96

Total — 2237 142 94

Epidermal N08 3 300 99

Epidermal R47 32 270 89

Epidermal L49 2 349 99

Epidermal I66 10 326 97

Epidermal S95 3 81 96

Epidermal P22 71 292 80

Epidermal K36 1 432 100

Epidermal Y60 4 198 98

Epidermal Z32 19 184 91

Epidermal Q17 3 200 98

Total — 148 2632 95

https://doi.org/10.1371/journal.pone.0197701.t002
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epidermal cells and 50% buccal cells. Similar results were obtained for a 1:1 simulated mixture

consisting of Q17 (epidermal) and 1031 (vaginal) cell images, with the population character-

ized as 49% epidermal cells, 49% vaginal cells and 2% buccal cells. The two group classification

scheme estimated a cell population of 50% epidermal cells and 50% vaginal cells. Mixtures con-

taining contributor populations that demonstrated lower classification accuracy in earlier

experiments had lower success rates. For example, a 1:1 simulated mixture consisting of C58

(buccal) and R47 (epidermal) cell images classified as 42% epidermal cells, 51% buccal cells,

and 7% vaginal cells.

Discussion

Overall, the relatively high classification accuracy of epidermal cells against buccal cells and epi-

dermal cells against vaginal cells (>90%) suggests that systematic differences in morphological

and/or optical properties measured by IFC can be used to distinguish between epithelial cell types

in these two comparison schemes. Further, measurement values can potentially be used to con-

struct an analysis framework for characterizing unknown cell populations into one of these three

sample groups. The observed variation between sloughed epidermal cells and buccal/vaginal cells

is consistent with the intrinsic biochemical, structural, and morphological differences for cells

originating from each tissue source. For example, shed epidermal cells are derived from the stra-

tum corneum and characterized by a high degree of keratinization with few if any organelles and

little intracellular DNA owing to the apoptotic processes occurring as cells migrate from the basal

to the upper layers of the epidermis [15]. In contrast, buccal and vaginal cells are derived from less

stratified epithelial tissue and may be only partially keratinized or unkeratinized. Although no

Table 3. Classification test of vaginal vs. touch epidermal cells.

Predicted Cell Type

Cell Type Contributor ID Vaginal Epidermal Classification %

Vaginal 2368 329 49 87

Vaginal 4017 301 11 96

Vaginal 1022 336 21 94

Vaginal 1028 113 19 86

Vaginal 1031 351 16 96

Vaginal 5020 163 5 97

Vaginal 5021 119 18 87

Vaginal 5005 54 114 32

Vaginal 4502 200 0 100

Vaginal 4504 302 0 100

Total — 2268 253 90

Epidermal Q17 10 193 95

Epidermal Z32 12 191 94

Epidermal Y60 4 198 98

Epidermal K36 15 418 96

Epidermal P22 134 229 63

Epidermal S95 6 78 93

Epidermal I66 20 316 94

Epidermal L49 2 349 99

Epidermal R47 2 300 99

Epidermal N08 5 298 98

Total — 210 2570 92

https://doi.org/10.1371/journal.pone.0197701.t003
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studies to date have explicitly surveyed cellular differences between these three tissue sources

using fluorescence signatures, previous work has shown that changes in cellular autofluorescence

can be used to differentiate layers of epidermal tissue with different intracellular components (e.g.,

keratin, tryptophan, FAD) [16,17]. Additionally, the morphological and size differences detected

with IFC (e.g., area and circularity measurements) are consistent with histological context of each

cell type, i.e., shed epidermal cells hexagonal and ~20–50 μm, while buccal and vaginal cells are

typically>40 μm with elongated shapes [18,19].

The overlap between cell sources shown in Fig 2 and misclassifications of individual cell

images may be impacted by a number of factors. First, some similarities in fluorescence and/or

morphological attributes are expected, particularly for buccal and vaginal cells given that both

are derived from non-keratinized epithelial tissue. This is consistent with poorer classification

accuracy of buccal-vaginal cell comparisons relative to buccal-epidermal and vaginal-epider-

mal (Table 4 vs. Tables 2 and 3 respectively). Second, cell populations in this data set represent

a wide range of drying/exposure times prior to sampling and analysis. Levels of intrinsic fluo-

rescence are likely to change with time owing to the degradation of cellular components such

that specimens with longer periods of environmental exposure may be harder to distinguish

from each other. Although there were no clear relationships between exposure time and mis-

classification rate (Tables 1–4) or position on the DFA plot (Fig 2), this should be systemati-

cally tested with future studies. A preliminary analysis of buccal cell populations from two

donors, each aged for 3, 24, 48, and 72 hours, suggests that fluorescence and/or morphological

features may change in a characteristic way over time (S3 Fig). Further study may permit the

development of an analysis framework that allows for estimations of “age” of cell samples.

Table 4. Classification test of buccal vs. vaginal cells.

Predicted Cell Type

Cell Type Contributor ID Buccal Vaginal Classification %

Buccal L49 294 13 96

Buccal I66 267 48 85

Buccal C58 227 33 87

Buccal R47 164 0 100

Buccal 5001 188 163 54

Buccal B21 195 6 97

Buccal N08 133 7 95

Buccal Y60 157 39 80

Buccal Z32 146 55 73

Buccal 5034 31 213 13

Total — 1802 577 76

Vaginal 2368 250 128 34

Vaginal 4017 19 293 94

Vaginal 1022 8 349 98

Vaginal 1028 56 76 58

Vaginal 1031 3 364 99

Vaginal 5020 46 122 73

Vaginal 5021 0 137 100

Vaginal 5005 17 151 90

Vaginal 4502 16 184 92

Vaginal 4504 66 236 78

Total — 481 2040 81

https://doi.org/10.1371/journal.pone.0197701.t004
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Another factor that could be contributing to misclassifications is inter-individual variation.

Previous work from our group has shown that autofluorescence signatures in shed epidermal

cells can vary between contributors, likely owing to the presence of exogenous materials asso-

ciated with the cell [20]. Cell populations from different contributors of the same tissue type

(epidermal or buccal) and drying time (24 or 48 hours, respectively) showed some separation

in a preliminary DFA (Fig 3). It is also possible that the number of donor cell populations in

this study did not adequately capture the full range of morphological and/or fluorescence vari-

ation that exists between contributors. Increasing the number of unique donor cell populations

in the reference/comparison dataset will likely help to isolate any tissue-specific signatures that

are present. Nevertheless, contributor-specific variation in IFC measurements is a potentially

promising avenue of future research for this technique, particularly how it might be used for

estimating the number of individual cell populations in a biological sample and/or facilitating

front-end cell separation in a DNA profiling workflow.

It should also be noted that earlier studies have suggested that sex-specific differences in the

size and morphology of epidermal cells may exist [18]. Although there were no obvious differ-

ences in classification accuracy or position on the DFA plot across male and female donors,

IFC could be a viable approach for systematically testing for sex specific signatures in a larger

dataset of epidermal cell populations.

Our goal with this study was to conduct an initial assessment of high-throughput analysis

of autofluorescence and morphological signatures and its potential applications for character-

izing epithelial cell types in an unknown biological sample. An important aspect of this

workflow is that intrinsic properties of the cell are being analyzed and no biochemical or

immunological stains or probes are required. High-throughput, single cell measurements

combined with a multivariate classification framework were used to distinguish epidermal

cells from other epithelial cell sources across a range of drying times with an overall high

degree of accuracy. Although a range of factors may contribute to morphological or optical

properties in any given sample (e.g., individual-specific signatures and degradation time),

these results suggest that multivariate approaches may be used to extract tissue-specific signa-

tures from biological samples. Future work should test alternative classification methods such

Fig 3. Discriminant function analysis of cell populations derived from different contributors for buccal and

epidermal tissue sources. Buccal cells (left) were dried for 48 hours at room temperature and epidermal cell samples

(right) were dried for 24 hours at room temperature prior to analysis. Red, green, blue circles represent three different

individuals in each graph.

https://doi.org/10.1371/journal.pone.0197701.g003
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as machine learning algorithms as well as different combinations of cellular measurements to

maximize classification accuracy particularly for cell types with similar biochemical and physi-

cal properties but different source tissue, and eventually establish cell count thresholds for

inferring the presence and/or proportions of one or more cell types in a biological sample. For

mixture samples in particular, the ability to quantify epithelial cell types in a non-destructive

and high-throughput manner at the front end of a DNA profiling workflow could improve

methodological decision making during DNA analysis and interpretation, and ultimate results.

We also note that the fluorescence and morphological signatures identified here could be

detected and analyzed using other microscopy setups and open source software platforms

(e.g., [21]) which may facilitate its use in caseworking laboratories.

Supporting information

S1 Fig. Imaging Flow Cytometry output. Top-Example data output from imaging flow

cytometry analysis of buccal cell population. Each column corresponds to a different detector

channel. Bottom-example scatterplots of area and aspect ratio for each cell type determined

with IFC.

(TIF)

S2 Fig. Box plots of feature values measured for individual cells within each tissue group.

Group 1 = Buccal cells, Group 2 = Epidermal cells, Group 3 = Vaginal cells.

(PDF)

S3 Fig. Discriminant function analysis of buccal cell populations from the same donor

aged for different amounts of time. Left and right panels correspond to two separate individ-

uals (I66 and L49 respectively).

(TIF)

S1 Table. Tissue type and drying time for each sample.

(DOCX)

S2 Table. ANOVA (Tukey HSD) for IFC measurements across cell types.

(PDF)
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