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Abstract: The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have
been making for several decades. The challenge the world is facing is that of trying to find a possible
treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs.
However, in some cases, although these drugs are approved for use in humans, the mechanisms of
action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it
is ideal, but not necessary, to know the basic mechanisms of action involved in a drug’s biological
effects. This review compiled the available information regarding the various effects attributed to
Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this
report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this
effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and
impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible
mechanisms through which the treatment may be helpful in defining safe doses and schedules
of Ivermectin.
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1. Introduction

Ivermectin (IVM) is a broad-spectrum antiparasitic agent, developed and funded
by Merck & Co. in 1974 to control and eradicate onchocerciasis caused by the parasitic
worm Onchocerca volvulus in West Africa, which in the 1980s infected approximately
340,000 people [1,2]. At the time, Africa did not have the resources necessary to seek
treatments for this condition. The avermectins, of which IVM is a member, were discovered
by Professor Satoshi Ōmura as fermentation products of the bacterium Streptomyces
avermitilis at the Kitasato Institute in Tokyo. For this discovery, he received the 2015 Nobel
Prize in Physiology and Medicine, which he shared with William Campbell. IVM is used to
treat onchocerciasis, lymphatic filariasis, strongyloidiasis and scabies, and, very recently,
has been used to combat lice. The drug’s low cost, high efficacy, safety, and marked tropism
for helminths, as well as the fact that it has almost no impact on human biochemistry, have
led to the inclusion of IVM in the twentieth list of essential medicines and sixth list of
vital medicines in children, a recommendation made by the expert committee of the World
Health Organization (WHO) in 2019 [2–4]. The safety profile is attributed to its selective
affinity for ion channels [5,6].

In humans, the SARS-CoV-2 virus is transmitted through aerosols produced by in-
fected people by talking, coughing or sneezing [7]. SARS-CoV-2 has four structural proteins:
spike glycoprotein (S), small envelope glycoprotein (E), membrane glycoprotein (M), and
nucleocapsid protein (N) [8,9]. Once in the respiratory tract or oral mucosa, it binds to
the angiotensin-converting enzyme 2 (ACE2) receptor to enter the cells. This process is
mediated by the proteolytic cleavage of the S protein’s receptor binding domain (RBD)
by the transmembrane protease serine 2 (TMPRSS2) [10]. This receptor is abundantly
expressed in various tissues, mainly in enterocytes, renal tubules, gallbladder, cardiomy-
ocytes, the cells of the reproductive organs, placentals, trophoblasts, ductal cells, the eyes,
vasculature [11,12], lung epithelium [13] and mucosa of the oral cavity [14]. The tissue
location of the receptors is relevant, since, in this way, the clinical manifestations of the
infection can be explained. Common early symptoms are fever, a cough, headache, chest
tightness, dyspnea and myalgias or fatigue, amongst other symptoms [15,16]. The course of
the disease is influenced by various factors that determine its severity, such as age, sex [17],
comorbidities and genetics, which contribute to the development and evolution of the
infection. Considering these and other aspects, there is a wide range of clinical presenta-
tions. Young people mostly experience a mild illness, and only a tiny percentage of cases
are under 19 years of age [18], which, in part, can be attributed to the body’s capacity to
modulate an appropriate balance of the pro-inflammatory and anti-inflammatory responses,
which diminishes with aging [17,19]. Moreover, sexual differences have been observed,
with men having a higher risk than women of progressing to severe disease [19,20]. The
most frequently reported comorbidities worldwide are obesity, hypertension and cardio-
vascular disease, posing a risk of severity and death [21]. One of the risk factors usually
overlooked is the socioeconomic level, posing a greater risk of severity and death [22,23].
In some countries, such as the United States, minority populations have between a 21% and
35% higher probability of being hospitalized than Caucasian populations, and this increase
is often associated with other comorbidities [23]. The same situation has been observed
in the UK, where minority populations are at higher risk of adverse outcomes than the
Caucasian population [24]. Furthermore, minority patients were primarily young and/or
overweight/obese and had type-2 diabetes, hypertension, or asthma. Moreover, they also
lived in disadvantaged areas compared to white patients [23]. One study reported that
patients with high SOFA, qSOFA, APACHE II and SIRS scores, who also had some subsets
of lowered immune cells, elevated inflammatory indices, dysregulated multi-organ damage
biomarkers, and deleterious complications, were at increased risk of hospital death from
COVID-19 [25]. SARS-CoV-2 infection, in severe cases, causes multisystemic inflammation,
which affects multiple organs, including the lungs, heart, kidneys, liver and pancreas, and
also causes endothelial damage, often leading to death or complications [26].
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It is noteworthy that, even though COVID-19 is described as an acute infectious
disease, recently, there has been a rise in post-acute symptoms, referred to as the post-
acute sequelae of SARS-CoV-2 infection (PASC). In Italy, France and the United States,
around 66% to 87% of hospitalized patients remain symptomatic after being discharged,
especially those with severe cases of COVID-19. The clinical manifestations presented in
PASC vary greatly, affecting multiple systems and causing mental, cognitive and physical
impairments [27] (Figure 1).
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COVID-19 is an infectious disease producing mild symptoms in most cases [28].
The Chinese Center for Disease Control initially described the different clinical spectra
of the disease, which they were classified as mild, severe and critical. Asymptomatic
patients may present with mild or no pneumonia and, despite having no symptoms,
asymptomatic patients are a potential source of infection [29], while mild cases sometimes
present as an influenza-like illness. Some of these cases can progress to severe cases, where
hospitalization is required, as well as intensive therapy that includes non-invasive and
invasive ventilation, along with antipyretics, antivirals, antibiotics and steroids [29]. Severe
cases present with dyspnea, a respiratory rate of ≥30/min, a blood oxygen saturation
of ≤93%, a PaO2/FiO2 ratio of <300 and pulmonary infiltrates, resulting in respiratory
failure [29]. The WHO defines the severity of the disease as follows. A critical case is
defined by the criteria of acute respiratory distress syndrome (ARDS), sepsis, septic shock
or other conditions that would generally require the provision of life support therapies,
such as mechanical ventilation (invasive or non-invasive) or vasopressor therapy [16]. A
severe case is defined by any of the following parameters: oxygen saturation of <90% in
ambient air, signs of severe respiratory distress (the use of accessory muscles, inability to
complete sentences and, in children, the very severe retraction of the chest wall, grunting,
central cyanosis or the presence of any other general signs of danger) (Figure 1). A non-
severe case is defined as the absence of signs of severe or critical COVID-19 [30]. Given the
critical importance of the cytokine storm in the pathophysiology of SARS-CoV-2, this has
become a major pharmacological target during the process of drug discovery, and many
proposed treatments have immunomodulatory and anti-inflammatory effects [8,31].
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The innate immune cells (macrophages, dendritic cells and circulating monocytes) can
be activated by pathogens through the TLR (toll-like receptor) by the recognition of PAMPs
(pathogen-associated molecular patterns). In the case of viruses, these are called VAMPs
(viral-associated molecular patterns), and this signaling pathway has been associated with
the immune response induced by the SARS-CoV-2 virus [8,32,33]. A major player in the
immunopathogenesis of COVID-19 is the “cytokine storm”, which can lead to pulmonary
dysfunction, multiorgan failure and death. This response can be induced by the TLR–RNA
interaction. Through in silico studies, the TLR3, -7 and -9 have shown a strong binding
affinity for the SARS-CoV-2 mRNAs that encode for NSP10, E-protein, NSP8 and S8, leading
to a pro-inflammatory response [34]. Specifically, the TLR4–S protein interaction promotes
the expression of the ACE2 receptor, facilitating viral entry, and it has been linked to a
pro-inflammatory and hypercoagulatory state in COVID-19 patients [35].

After TLRs and other pattern recognition receptors (PRR) are activated by the SARS-
CoV-2 virus, the activation of the interferon regulatory factors (IRF3 and IRF7) and the
nuclear transcription factor (NF-κβ) takes place. NF-κβ mediates the production of pro-
inflammatory cytokines (TNF-α, IL-1 and IL-6), while IRF3 and IRF7 stimulate the produc-
tion of type-I and -III interferons (IFN-α, -β and -λ). IFNs activate the JAK/STAT signaling
cascade that, in turn, activates the synthesis of the pro-inflammatory cytokines (TGF-β,
IL-2, IL-4, IL-6 and IL-12) [8,36].

Evidence suggests that the cytokine storm is a determining factor in the death of
critically ill patients because it triggers an exaggerated systemic inflammatory response
that leads to tissue damage [37,38]. This storm occurs when the leukocytes are activated and
release pro-inflammatory cytokines, such as IL2, IL7, GSCF, IP10, MCP1, MIP1A, IL-6, IL-10,
IL-8, TNF-α, IL-1β, IL-2R and other pro-inflammatory markers, such as ferritin, hs-CRP
and procalcitonin. Exacerbated increases in these cytokines have been observed in patients
who died from COVID-19 [15,26]. The most common form of organ failure in critical
illness due to COVID-19 is acute hypoxemic respiratory failure, which clinically presents
as acute respiratory distress syndrome (ARDS) [31,39]. This syndrome includes severe
pulmonary infiltration/edema and inflammation, leading to impaired alveolar homeostasis;
impaired lung physiology, resulting in pulmonary fibrosis; endothelial inflammation;
vascular thrombosis; and immune cell activation [40]. Lymphocytopenia occurs in a high
percentage of patients upon admission (83.2%) [41]. However, the specific conditions that
cause this decrease in the number in lymphocytes are yet to be determined, as are the roles
of participating factors related to the host or virus.

Conceivably, the necessity of effective pharmacological treatments directed against
the COVID-19 disease has led to the investigation of the application of known drugs and
their possible use in these patients. The multifactorial characteristics of COVID-19 have
encouraged the development of different strategies for upgrading the clinical treatment of
the disease. We and other research groups have taken a particular interest in IVM in this
case, given its mechanisms of action and favorable safety profile. Multiple studies have
sought to determine IVM’s effects on the pathophysiology of SARS-CoV-2. However, its
effectiveness must be defined with certainty through well-designed clinical trials.

2. Mechanisms of Action of Ivermectin

Ivermectin is a broad-spectrum drug with numerous effects on parasites, nematodes,
arthropods, flavivirus, mycobacteria and mammals through a variety of mechanisms. The
mechanism of action of Ivermectin as an anthelmintic agent at various stages in the life
cycle works by binding to glutamate-gated chloride ion channels in the nerve cells and
invertebrate muscles of microfilaria [42,43]. The union of IVM with the channels causes
an increment in the cell membrane permeability for chloride ions, hyperpolarizing the
membrane and interrupting the motility, feeding and reproduction, leading to the paralysis
and death of the parasite. In addition to the glutamate-gated ion channels, ivermectin
is also an agonist of the neurotransmitter gamma-aminobutyric acid (GABA)-activated
channels. Since GABA channels in mammals are exclusively found in the central nervous
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system, and IVM does not readily cross the blood–brain barrier, it has a favorable safety
profile in regard to the treatment doses used in humans [6,42,43]. Ivermectin achieves
adequate levels of availability when administered orally, and due to its high lipid solubility,
IVM is widely distributed, with a volume of distribution of 46.8 L. The metabolism of IVM
is hepatic, primarily effected by the CYP3A4, and it is removed through the feces and only
1% through urine [2,42,44].

3. Possible Benefits of Ivermectin in SARS-CoV-2

The following sections will review the effects attributed to IVM derived from some
in vivo and in vitro studies, beginning with one of the most controversial effects.

3.1. Antiviral Activity

One of the most exciting effects of IVM is its possible role as an antiviral against
COVID-19 [45]. Certain reviews have emphasized the antiviral effect of IVM in vitro
and in vivo against RNA and DNA viruses [46]. An experiment in which cell cultures
were treated with and without IVM (20 µmol/L) over 24 h identified increases in the
gene expression of proteins participating in four antiviral pathways that were statistically
significant, including the routes of infection of HCMV, HPV, EBV and HIV1. These results
support the broad-spectrum antiviral activity of IVM [47]. It is essential to highlight that
the movement of proteins between the cytoplasm and the nucleus is mediated by the
superfamily of proteins called importins, which are essential for cellular processes, such as
differentiation and development, and are fundamental in the pathological states of viral
diseases and oncogenesis [48]. The specific viral proteins enter the nucleus of infected cells
to perform essential functions as part of the viral replication cycle [49]. An example is
the interaction between the HIV-1 integrase protein and the importin α/β1 heterodimer,
which is blocked by IVM, thus inhibiting the nuclear import of the integrase protein and,
therefore, damaging the viral replication mechanisms [48].

The broad-spectrum antiviral activity of IVM is related to the fact that RNA viruses, to
transport viral proteins to the nucleus of the host cell, depend on the importin alpha-beta
(IMPα/β1) heterodimer during the viral infection process. This importin is blocked by IVM.
The transport of viral proteins through IMPα/β1 to the nucleus occurs in order to inhibit
the antiviral response that is assembled by a portion of the host cells. This mechanism has
been observed in viruses such as Zika, Dengue, HIV-1, yellow fever, Chikungunya and
many more [45,48,50]. Regarding the antiviral response of IVM to DNA viruses, it has been
shown that, if the viral proteins necessary for viral replication require entry to the nucleus
through IMPα/β1, then this can have an antiviral effect, as in the case of the pseudorabies
virus and polyomavirus BK [51].

In the case of SARS-CoV-2, it is known that there is no transport of viral proteins to the
cell nucleus, as in the case of the infection mechanisms of other viruses. This is because the
viral replication cycle takes place exclusively in the cytoplasm of infected cells. However, it
is also known that, as part of the antiviral response, there is a communication that involves
the transport of proteins related to the regulation of the antiviral responses of infected
cells [52–54] (Figure 2). There is great controversy regarding antiviral activity in the case of
SARS-CoV-2; thus, we believe that more studies are required to clarify the mechanism by
which a molecule can be considered to have an antiviral capacity.

One of the first studies to suggest that IVM might have an effect against SARS-CoV-2
reported that IVM caused SARS-CoV-2 viral RNA to be reduced approximately 5000 fold
within 48 h of its administration in infected cell cultures [45]. Unfortunately, controversy
arose after the publication of this study, after observations that the IVM concentration
used in this study was 35 times higher than that approved by the FDA (Food and Drug
Administration) for parasitic diseases, which raised doubts about the drug’s efficacy at the
FDA-approved doses [55]. It should be noted that the study questioning the dosage was
based on an in silico analysis, meaning that the results obtained in an in vivo model could
differ. Furthermore, the virus infects the alveolar epithelial cells [55], and in the referred
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work, the African green monkey kidney cell line, Vero/hSLAM, was used, which does not
express the ACE2 receptor, as expressed in the lung tissue.
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Figure 2. Proposed mechanism of action of ivermectin in COVID-19. IVM blocks the binding complex
of the SARS-CoV-2 S protein and the ACE2 receptor, and additionally it blocks the TMPRSS2 protein,
inhibiting viral entry into the host cell. IVM could also inhibit the TLR receptors and block NF-
κβ, inhibiting the production of the cytokines TNF-α, IL-1 and IL-6 and ROS. TLR also activates
IRF3 and IRF7, which initiate the production of type-I and -III IFNs. IFNs activate the JAK/STAT
pathway, while IVM can lower the expression of JAK2 and the activity of STAT3. Moreover, in the
cytosol, IVM blocks the 3CLpro, the main protease that participates in the viral replication, and
blocks the importin complex α/β1 that transports the VP to the nucleus. Furthermore, IVM blocks
the overexpression of HIF-1α, induced by the viral protein ORF3a. IVM has also been shown to
mitigate the proinflammatory state, where the cytokine storm activates the participation of monocytes,
dendritic cells and macrophages, and IVM also promotes the polarization of M2 macrophages over
M1. IVM, ivermectin; IC, intracellular; EC, extracellular; VP, viral protein; TLRs, toll-like receptors;
NF-κβ, nuclear factor-kappa beta; TNF-α, tumor necrosis factor-alpha; IL-1, interleukin-1, IL-6;
interleukin-6; ROS, reactive oxygen species; IRF 3/7, interferon regulatory factors; DC, dendritic
cells; M1, M1 macrophage; M2, M2 macrophage; 3CLpro, 3-chymotrypsin-like protease. Created with
BioRender.com.

What is currently known is that one of the mechanisms by which IVM could be
effective against SARS-CoV-2 is its interference with the viral entry, since it was shown
that IVM interacts with the SARS-CoV-2 spike protein and the ACE2 protein, binding to
the spike protein at leucine 91 and the receptor ACE2 at histidine 378 [56,57]. Therefore,
it is likely that high doses are not required in order to treat patients with COVID 19, as
suggested by some authors. Similarly, Choudhury et al., through in silico studies, indicated
that IVM could inhibit the formation of the spike-ACE2 complex formation, targeting the
S2 subunit in the spike protein, as well as having a high binding affinity for TMPRSS2,
interfering with viral entry. Though these findings are promising, further experimental
studies are required to corroborate them [58] (Figure 2).
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Through a computational analysis, in which 2447 drugs were analyzed to determine
their capacity for interfering with the main protease (3CL pro), which is essential for the
replication of SARS-CoV-2, IVM, Diosmin, and Selinexor were identified as candidates for
use as anti-COVID-19 drugs through this mechanism of action [59] (Figure 2).

Another option that has been proposed is to enhance the effect of IVM by combining
it with other molecules that could enhance its effects. As seen on the Clinicaltrials.gov
platform, there are clinical trials of IVM in combination with different molecules. As we
can see in Table 1, studies have already published on IVM combinations with nitazoxanide,
ribavirin, doxycycline, remdesivir, azithromycin, zinc, aspirin, montelukast, hydroxychloro-
quine and favipiravir. Out of all the combinations, the general conclusion was that IVM
has a synergic effect when used in combination and has a greater effect on symptoms
and outcomes.

Some preprints describe therapeutic benefits with safe doses of IVM. Thus, more
attention should be paid and research devoted to IVM as a possible antiviral agent against
SARS-CoV-2. A clinical trial reported that, after five days of IVM treatment, there was an
earlier virological clearance (9.7 days) in the IVM-treated group than in the placebo group
(12.7 days) [60]. One study reported that IVM treatment did not affect the viral load of
SARS-CoV-2 in the respiratory tracts of infected hamsters and attributed its beneficial effect
to its anti-inflammatory effect, as described in the work [61].

Table 1. Clinical and experimental effectiveness of combining Ivermectin with other drugs in
COVID-19. Studies already published on IVM combinations with other drugs.

Study Population Combination IVM with: Results

Sixty-two patients on a triple
combination therapy versus

fifty-one patients on
symptomatic supportive
therapy matched for age

and sex.

Nitazoxanide and Ribavirin
compared to routine

supportive treatment.

This study showed that the clearance rates were 58.1% and 0%
on day 7 and 73.1% and 13.7% on day 15 in the combined

antiviral group compared to the symptomatic support
treatment group. Therefore, the combined use of nitazoxanide,

ribavirin and ivermectin plus a zinc supplement effectively
eliminated SARS-CoV2 from the nasopharynx in a shorter time

than symptomatic therapy [57].

Two hundred patients with
mild to moderate symptoms
of COVID-19 were randomly

assigned to the treatment
group and two hundred to the

placebo group.

Doxycycline versus placebo.

The median time to recovery was seven days (4–10) in the
treatment group and 9 (5–12) in the placebo group, while the

percentage of patients with a recovery of ≤7 days was 61% and
44%, respectively [62].

In vitro model of RAW264.7
macrophages infected

with MHV.
Remdesivir.

The combination of remdesivir and ivermectin showed a highly
potent synergism by significantly reducing the 7-log10 of live

virus and 2.5-log10 of viral RNA in infected macrophages. This
combination also resulted in the lowest IL-6, TNF-a and

leukemia inhibitory factors [63].

The intervention group of five
hundred and eighty-five

patients and control group of
five hundred eighty-five

patients were treated with a
placebo, along with a second
control group of one hundred

and thirty-seven
untreated patients.

Azithromycin plus
nitazoxanide or

hydroxychloroquine.

Compared with control group 1 and control group 2, the
intervention group showed a 31.5 to 36.5% reduction in viral
excretion (p < 0.0001), 70 to 85% in the duration of symptoms

(p < 0.0001) and 100% in respiratory complications,
hospitalization, mechanical ventilation, deaths and post-COVID
manifestations (p < 0.0001). For every 1000 confirmed cases of

COVID-19, at least 70 hospitalizations, 50 mechanical
ventilation and 5 deaths were averted [64].

Clinicaltrials.gov
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Table 1. Cont.

Study Population Combination IVM with: Results

Four hundred and eighty-one
patients with combined

therapy and two hundred and
eighty-seven with

standard treatment.

Azithromycin, montelukast,
and acetylsalicylic acid vs.

standard therapy.

A total of 85% of cases who received the combined therapy
recovered within 14 days, and the total was 59% in the

comparison group. The likelihood of recovery within 14 days
was 3.4 times greater among the combined therapy group than
in the comparison group. Patients treated with the combined
therapy had a 75% and 81% lower risk of being hospitalized

and death, respectively, than the comparison group [65].

Nine hundred and twenty-two
outpatients, of which three
hundred and twenty were
given a multidrug therapy

with ivermectin.

At least two agents with
antiviral activity against

SARS-CoV-2 (zinc,
hydroxychloroquine) and one

antibiotic (azithromycin,
doxycycline, ceftriaxone).

A total of 320/922 (34.7%) patients were treated, resulting in
6/320 (1.9%) and 1/320 (0.3%) patients hospitalized and who
died, respectively. We concluded that early ambulatory (not

hospitalized, treated at home) multidrug therapy is safe,
feasible and associated with low rates of hospitalization

and death [66].

Sixty-six patients were
included in the study, with

thirty-six in the study group
and thirty in the
control group.

Reference treatment protocol:
hydroxychloroquine +

favipiravir + azithromycin.
Patients in the control group

received only standard
treatment with three other
drugs, without ivermectin.

At the end of the first 5-day follow-up period, the rate of clinical
improvement was 73.3% (22/30) in the study group and 53.3%

(16/30) in the control group (p = 0.10). At the end of the
follow-up period, the mean peripheral capillary oxygen

saturation (SpO2) values of the study and control groups were
93.5 and 93.0%, respectively. PaO2/FiO2 ratios were

determined as 236.3 ± 85.7 and 220.8 ± 127.3 in the study and
control groups, respectively. At the end of the follow-up period,
mortality was recorded for 6 patients (20%) in the study group

and 9 (30%) patients in the control group (p = 0.37) [67].

3.2. Immunomodulatory Effects

An interesting study showed that the standard dose of IVM (400 µg/kg) presented
with an immunomodulatory activity through the cholinergic anti-inflammatory pathway,
preventing clinical deterioration, reducing the olfactory deficit, and limiting the inflamma-
tion of the upper and lower respiratory tract in infected golden hamsters. IN the case of
SARS-CoV-2, it was also observed that the IL-6/IL-10 ratio in the lung decreased dramati-
cally [61]. Macrophage polarization towards the M2 subpopulation was observed [61,68].
On the other hand, it was observed that the anti-inflammatory effect is influenced by
sex, since the treatment led to a better response in women [61]. It has been suggested
that this positive allosteric effect of IVM is caused by the activation of neuronal α7 nico-
tinic acetylcholine receptors (α-7 nAChR) [69] expressed in the subpopulation of the M2
macrophages [70,71]. Another study performed using a rat spinal cord injury model found
that treatment with a combination of IVM and carbon nanotubes led to a decrease in the
pro-inflammatory cytokines and oxidative stress modulated by the M1/M2 macrophage
subpopulations [72] (Figure 2). Over the past few years, there have been several reports on
the anti-inflammatory effects of IVM [73,74], with reports indicating that, to achieve this
effect in humans, 36 mg should be administered in a single dose with a standard weight of
70 kg [75].

In in vitro and in vivo models, IVM has been observed to inhibit immune cell recruit-
ment and to suppress mucus hypersecretion and cytokine liberation based on bronchoalve-
olar lavage in a mouse model of allergic asthma [76]. Similarly, in a model sensitized by
lipopolysaccharides (LPS), IVM inhibits the production of TNF-alpha, IL-1 and IL-6 [77].
This effect is probably due to the suppression of pro-inflammatory factors, such as NF-κB
and the MAP pathway kinase [74]. Similarly, in an in vitro study, IVM was demonstrated
to cause a significant reduction in TNF-α production, induced by TLR agonists, suggesting
that IVM could block TLR activity [58,78]. In the pathogenesis of SARS-CoV-2, STAT1
activity is inhibited by the viral proteins NSP1 and ORF6, favoring the activation of STAT3
and enhancing the production of IL-6 [36,79]. IVM decreases the expression of JAK2 [80]
and the activity of STAT3 [36,80,81], leading to a reduction in IL-6 production and inflam-
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mation. IVM has also been shown to modulate the immune activity in mast cells and
macrophages [3] and limit the production of nitric oxide and prostaglandin E2 [82]. Fur-
thermore, in animals infected with SARS-CoV-2, IVM treatment improves clinical outcomes
and is associated with a reduction in the inflammatory state, though without impacting the
viral load in the upper and lower respiratory tract [61]. Additionally, the effect of IVM is
being explored in the context of its participation in the pathogenesis of SARS-CoV-2 [59,83]
(Figure 2).

3.3. Antitumoral Mechanisms

The effect of IVM as an anti-tumor agent has been explored, and the concentrations
necessary for achieving these effects in vivo are within the clinically approved dosages
for the treatment of parasitosis [84]. Some of the anti-tumor mechanisms attributed to
IVM are the inhibition of the Akt/mTOR and WNT-TCF pathways [85,86], inhibition of
MDR proteins, PAK1 helicase, DDX23 and the SIN3 domain [87,88], the activation of the
P2X4/P2X7 [89,90], an increment in the chloride channel activity [91], the downregulation
of Nanog/Sox2/Oct4 genes [92], and an antimitotic activity (through the damage of tubulin
dynamics) [93]. In the breast cancer cell lines MDA-MB-231, MDA-MB-468 and MCF-7,
and the ovarian cancer cell line SKOV-3, IVM was demonstrated to have a more significant
anti-tumor effect (the induction of the cell cycle arrest at the G0-G1 phase and reductions
in the cell viability and tumor size) and a synergistic effect combined with docetaxel,
cyclophosphamide and tamoxifen [86]. In glioma cells, it was observed that it stimulated
the activity of caspase-3 and -9, enhancing the expression of p53 and Bax, thus causing
apoptosis and blocking the cell cycle in the G0/G1 phase [94]. On the other hand, IVM
increased TFE3-dependent autophagy via ROS signaling pathways in melanoma cells,
inducing apoptosis [95]. In porcine trophectoderm and uterine luminal epithelial cells,
IVM has also been shown to cause apoptosis through the loss of calcium ion overload,
the mitochondrial membrane potential, and the generation of reactive oxygen species [96].
Furthermore, hypoxia, through hypoxia-inducible factors (HIF), plays an essential role
in drug resistance [97,98], since, through HIF, cancer cells can resist the decrease in the
oxygen concentration and even proliferate. In particular, HIF-1α is translocated to the
nucleus by IMPα/β1, and IVM has been shown to block this mechanism [99], making it
a viable target for cancer treatments [100]. Furthermore, Tian et al. found that the SARS-
CoV-2 protein ORF3a elevates the production of HIF-1α, promoting an inflammatory state,
and IVM could potentially mitigate the inflammatory response through the inhibition of
HIF-1α [101] (Figure 2).

4. Systematic Review of Ivermectin in COVID-19

Despite the many positive outcomes of IVM when used against SARS-CoV-2, just as
many studies oppose this statement, leaving us with conflicting perspectives. According
to the Clinicaltrials.gov platform, on 18 November 2020, 35 studies were investigating the
usefulness of IVM in COVID-19, and almost a year after 30 September 2021, there were
70 studies. To discuss this point, we rely on the systematic reviews and meta-analyses
available that have been published to date.

Medical guidelines are generally based on systematic reviews conducted by experts
aiming to discern pertinent recommendations for management of the disease. What we
can observe in the examination of IVM is that, even though some studies report benefits,
when they are analyzed in systematic reviews or meta-analyses, the conclusion reached
by most studies is that the evidence is of low quality, with a low level of evidence or with
inconclusive data, or even with inconsistencies [83,102–108].

The main reason for the fact that the WHO does not recommend the use of IVM in
patients with COVID-19, except for its use in clinical trials, is that there is a high degree
of uncertainty concerning the results, with no clear benefit of its application, in addition
to the high risk of bias [30]. However, some studies have reported effects including
mortality reduction and clinical improvement [109], as well as the reduction in the length

Clinicaltrials.gov
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of the hospital stay and better viral clearance [110], while other studies have produced
inconclusive data that can neither promote nor refute the efficacy of IVM [111].

In one meta-analysis that included 15 clinical trials, it was reported that IVM reduced
the risk of death and that its early use in the clinical course could reduce the number
of patients who progressed to severe disease [112]. However, this study was disputed,
because it involved a prepress with supposed deficiencies, so that the data was re-analyzed,
excluding said study, reaching the initial conclusion once again [112]. Another study
described that, when the analysis was limited to patients with mild disease, there was no
difference in mortality, but in severely ill patients, the use of IVM significantly reduced
mortality [104]. An interesting point to keep in mind is that, in this type of clinical trial,
the products of the MDR-1/ABCB1 gene have been reported to influence the entry of IVM
into the barrier cells of the gastrointestinal system, and patients with polymorphisms of
this gene should be excluded from these studies [67]. Polymorphisms in this gene could
partially explain the suboptimal responses to IVM in some studies [113]. Another point to
consider is that of comorbidities, since they have been observed to influence the response
to IVM, as in one study where it was determined that hypertension decreased the benefits
of IVM [114].

Moreover, Elgazzar et al. conducted a study comparing 6 groups of 100 patients each,
with group I and III given an IVM + SOC treatment, applied to mild/moderate and severe
cases respectively; group II and IV were given a hydroxychloroquine + SOC treatment,
applied to mild/moderate and severe cases respectively; and healthcare workers (HCWs)
and household contacts were divided into groups V and VI, who were given IVM and
personal protective measures (PPM), including a prophylaxis vs. only PPM, respectively.
The patients from groups I and III showed statistically significant clinical improvement
and a reduction in their mortality rates compared with groups II and IV, and in group
V the incidence of infection was reduced compared with group VI, indicating that IVM
was effective not only as a coadjutant drug, but as a prophylactic as well [115]. In another
study, where the prophylactic capacity of IVM was explored, 131 HCWs were treated with
a combination of topical IVM combined with carrageenan (IVER.CAR) compared with
98 subjects without treatment. Over the span of the 28 days of the study, none of the HCWs
in the IVER.CAR group tested positive for SARS-CoV-2 according to PCR tests compared
to 11.2% of cases in the group treated without IVER.CAR [116].

On the other hand, Marcolino et al. reviewed, in a meta-analysis, 25 randomized
control trials assessing clinical outcomes in COVID-19 patients treated with ivermectin
compared to a group treated with a placebo and standard of care (SOC) treatment, con-
cluding that IVM did not reduce the risk of mortality (RR = 0.76; 95%) or risk of the need
for mechanical ventilation (RR = 0.74; 95), although no added risk or adverse effects were
reported [117]. There is evidence from one study showing that, at the standard doses,
IVM treatment did not have a significant impact on clinical or microbiological outcomes
compared with the SOC group, although less patients in the IVM group required intensive
care compared with those in the SOC group (38% vs. 69% respectively) [118]. Similar
findings were reported in other studies, which did not observe any significant differences
in the viral load, outcomes or adverse events in the IVM groups treated with a standard
dosage [119,120], although higher IVM plasma levels were correlated with a decrease in the
viral load in a dose–response manner [120]. Although the safety profile of IVM at higher
doses is comparable to that of the standard doses [121], there exists a concern that the doses
required to reach clinically effective levels are not feasibly safe (10× higher in order to reach
the IC50). It should be noted that this was an in silico study, which should be corroborated
by experimental studies [55].
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5. Ivermectin in COVID-19 Comorbidities
5.1. Nosocomial Pneumonia

Bacterial coinfections are common in respiratory viral infections [122,123], and pa-
tients with COVID-19 are no exception [124]. Of the various studies that report on this
situation, only a few representative studies are mentioned here. One study reported
that, of 340 COVID-19 patients, 12% had secondary bacterial infections, and of these,
25.59% belonged to the species Klebsiella, 20.93% to methicillin-sensitive Staphylococcus
aureus, 16.28% to Escherichia coli, 13.95% to methicillin-resistant Staphylococcus aureus,
11.63% to Enterobacter, 2.32% to Streptococcus pneumonia and 9.30% to Pseudomonas
aeruginosa. Of the Enterobacteriaceae isolates, 74% were resistant to cotrimoxazole, 67% to
piperacillin, 47.5% to ceftazidime and 42% to cefepime [123].

It should be noted that atypical bacteria (Mycoplasma pneumoniae, Chlamydia pneu-
moniae, and Legionella pneumophila) may be masked by the presentation of COVID-19,
as they have overlapping clinical and imaging features, and the timely identification of
this co-infection could be vital in critically ill patients [125]. Severely and critically ill
patients are especially susceptible to co-infections. In one study, serum fungal antigens
were observed more frequently in the critical group than in the severe group, and the
positive frequency rate of serum fungal antigens increased with a prolonged stay in the
intensive care unit (ICU) [126]. These findings were replicated in seven ICUs in England,
where an increase in the proportion of pathogens was correlated with the length of stay in
the ICU, with the identification of mainly Gram-negative bacteria, particularly Klebsiella
pneumonia and Escherichia coli. Patients with co-infections/co-colonization were more
likely to die in the ICU than those without co-infections [127].

Many factors can influence the development of co-infections in terms of the frequency
and type of pathogens, including the level of development of the country or region—such
is the case of COVID-associated Mucormycosis in India [128]. Some studies even agree
that antibiotic therapies targeting respiratory pathogens should be considered in severe
cases [129]. However, there developed a growing concern during the pandemic that the
widespread use of empirical antibiotics could contribute to the rise of multidrug-resistant
microorganisms, and antimicrobial administration programs are required to minimize and
reduce this threat [130]. Although, in theory, antibiotics do not directly affect SARS-CoV-2,
viral respiratory infections often result in bacterial pneumonia. Some patients may die from
bacterial coinfection rather than the viral infection itself; therefore, bacterial coinfections
are considered critical risk factors for COVID-19 severity and mortality [131]. Inversely, a
predictor of rapid recovery from COVID-19 is the absence of bacterial coinfections [132].

Some antibiotics are obtained from fermentation carried out by Gram-positive bac-
teria of the genus Streptomyces, as in the case of Streptomyces griseus, from which the
well-known streptomycin is derived. Therefore, it is not surprising that the fermenta-
tion products of Streptomyces avermitilis have antibiotic properties. Strategies have been
proposed that aim to search for new antimicrobials in order to combat multidrug resis-
tance, and the repurposing of IVM as an antibiotic has potential. Among the avermectins
group, IVM stands out for its antibacterial effects. In clinical isolates of multidrug-resistant
Mycobacterium tuberculosis, IVM has shown bactericidal effects [133]. Additionally, aver-
mectins such as doramectin, IVM, moxidectin and selamectin inhibit the growth of strains
of Mycobacterium Bovis BCG, Mycobacterium tuberculosis from H37Rv, CDC 1551, Erd-
man, and Mycobacterium smegmatis at concentrations ranging from 1 to 8 µg/mL [133].
It has also been observed to have an antibacterial effect against Staphylococcus aureus
at concentrations of 6.25 and 12.5 µg/mL [134]. Macrolide antibiotics have a distinctive
macrocyclic lactone ring, and their mechanism of action works through the inhibition
of bacterial protein synthesis. However, they also have modulatory effects on the host
defense responses and inflammatory responses [135]. An example of this is the activation
of the P2X4 receptors by IVM in macrophages, increasing the destruction of bacteria and
protecting against sepsis [136], which is most likely the most prominent antibacterial effect
of IVM.
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5.2. Wound Healing

Many COVID-19 patients show symptoms of acute lung injury that can eventually lead
to pulmonary fibrosis [137]. The treatment of inflammation with corticosteroids reduces
inflammation and the likelihood of developing fibrosis [138]. Regarding the effect of IVM
on wound healing, a study reported that IVM cream, at low dosages (0.03–0.1%), induced
wound healing, with minimal scarring, and decreased the macroscopic indices of wounds,
such as exudation, the edge of oedema, hyperemia and granulation tissue deposits [139].
Other works report a decrease in skin inflammation under certain conditions [140–143],
which can help to avoid scar formation. It would be interesting to explore this mechanism
of IVM directed against post-COVID-19 pulmonary fibrosis.

6. Discussion and Conclusions

The rush to obtain potential drugs for the treatment of COVID-19 patients has led
to an array of studies on IVM of varied qualities and even methodological questioning.
The efficacy of IVM in human SARS-CoV-2 infection is still under investigation. The
authors of most meta-analyses agree that controlled, randomized, placebo, double-blind
and sufficiently powered trials are required to obtain a definitive conclusion, and this
requires a large enough number of subjects and robust experimental designs. It is difficult to
believe that a single molecule can have effects as diverse as those described here. One of the
most surprising studies is the one carried out at the Pasteur Institute in France, in which the
authors conclusively proved the drug’s anti-inflammatory effect [61]. Another prominent
effect is the stimulation of the bactericidal effect on the immune cells, which is of particular
benefit in the management of bacterial coinfections in COVID-19 patients, especially in
severe and critical patients who require ICU admission or experience prolonged hospital
stays and are at risk of nosocomial bacterial infections. This is probably, in part, responsible
for the favorable effect of IVM observed in some clinical trials.

IVM could also potentially benefit pulmonary fibrosis patients with PASC. The results
observed in wound healing treated with IVM, attributed to its anti-inflammatory effects or
inhibition of the nuclear translocation of HIF-1α, make it a promising antifibrotic agent.
Therefore, we propose that future research should explore these mechanisms of IVM in
detail in experimental in vivo and in vitro models. Interestingly, the anticancer effect of
inhibiting HIFs raises the possibility of the drug’s potential use in antitumor therapies,
especially since the inhibition of the nuclear translocation of HIF-1α could mitigate drug
resistance. Evidence of all these effects is still being developed, but if they are demonstrated,
IVM could be effective for treating various diseases. Most studies performed on IVM in
COVID-19 patients have focused on the proposed antiviral effects; however, the clinical
effects of IVM in these patients could be achieved through the added participation of
multiple mechanisms of action that are not limited to its antiviral activity.

To conclude, owing to the vast assortment of possible therapeutic targets of IVM,
including the direct targeting of the antiviral machinery of SARS-CoV-2, as well as the
pro-inflammatory state it induces, including the cytokine storm, the potential of this drug
is promising to say the least. The complexity of the pathogenesis of COVID-19 has led to
divergences in the clinical application of this drug, with the possibilities for its use ranging
from the prophylactic state all the way up to the treatment of PASC. For the sake of reaching
a consensus on the therapeutic efficacy of IVM and shed light on the mechanisms of action
of this drug, further experimental and clinical studies should be considered, with greater
standardization in the treatment regimen.

Due to the immense level of public interest, the literature on the effects of IVM in
COVID-19 is of highly variable quality, with several large studies, with a good degree of
confidence [107,144] and questionable credibility, suggesting that the drug could save lives,
a claim that later turned out to be untrue, and many studies that have not been properly
peer reviewed [112]. Furthermore, pharmacologically, it is not possible to safely reach
the plasmatic levels required for the proposed mechanisms of action to prevent the SARS-
CoV-2 infection in vitro or to function as a 3CL protease inhibitor. Additionally, IVM is
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easily available to the public, and though many patients have proper medical requirements
validated through medical prescriptions, other opt to self-medicate, meaning that they
are at risk of side effects or improper dosages. Moreover, IVM is frequently used as a
veterinary drug, and it could be (and has been) misused by the public, which has been
addressed in an FDA statement. While we acknowledge the many beneficial effects of
ivermectin, which has saved countless lives as an anti-parasitic agent, even though the
proposed mechanisms directed against the COVID-19 infection are promising, they are
still largely inconclusive and require further study in order to elucidate whether the drug’s
application in the treatment of these patients will be beneficial.
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