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ABSTRACT Prediction of phenotypes from genotypes is an important objective to fulfill the promises of
genomics, precision medicine and agriculture. Although it’s now possible to account for the majority of
genetic variation through model fitting, prediction of phenotypes remains a challenge, especially across
populations that have diverged in the past. In this study, we designed simulation experiments to specifically
investigate the role of genetic interactions in failure of polygenic prediction. We found that non-additive
genetic interactions can significantly reduce the accuracy of polygenic prediction. Our study demonstrated
the importance of considering genetic interactions in genetic prediction.
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Significant progress has beenmade in our understanding of the genetic
architecture of complex quantitative traits in recent years, due largely
to large-scale genome-wide association studies (Visscher et al. 2017).
For example, human adult height is a classical quantitative trait with
a narrow sense heritability (h2) of approximately 0.8 based on twin
studies (Silventoinen et al. 2003). However, early GWAS studies
identified common variants explaining only a total of 2–4% pheno-
typic variance (Gudbjartsson et al. 2008; Lettre et al. 2008; Weedon
et al. 2008) with sample sizes in the order of 20,000. In 2010, a
landmark study increased this proportion to about 45% by fitting
�300,000 SNP markers regardless of their significance in the model

for �4,000 individuals with the covariance among individuals de-
termined by genome-wide SNP similarity (Yang et al. 2010). Ap-
plying the same idea, the most recent study using whole genome
sequences of �20,000 individuals in the TOPMed project almost
entirely captured all heritability (Wainschtein et al. 2019). These
studies suggested that complex traits are highly polygenic, with
many loci of individually small effects.

However, our ability to predict complex quantitative traits from
genotype data remains limited. A perfect genetic model with precise
effects and model specification should be able to predict unobserved
phenotypes with an accuracy (measured by r2) equal to the heritability.
However, this is rarely the case. For example, a large GWAS on human
adult height with almost 200,000 individuals identified over 180 loci,
which could only predict phenotypes with an accuracy of�10% (Lango
Allen et al. 2010). This prediction accuracy was measured based on
“leave-one-out” out-of-sample prediction (International Schizophrenia
Consortium et al. 2009), i.e., the effects of the genetic loci were esti-
mated in one subset of the sample and polygenic scores (genetic effects
summed over all significant loci) was computed to predict phenotypes
in another subset. The partition between the subsets conveniently fol-
lowed sample origin from different European countries (Lango Allen
et al. 2010). In animal and plant breeding, genomic prediction is widely
used, where effects of genetic markers across the whole genome, re-
gardless of their statistical significance, are summed to compute genetic
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prediction (Meuwissen et al. 2001; VanRaden 2008; de los Campos
et al. 2013).

Recently, there has been renewed interest in the application of
polygenic score (International Schizophrenia Consortium et al.
2009) with the advent of large public data sets such as the UK
Biobank (Khera et al. 2018). In particular, many studies have
observed poor prediction by polygenic scores across different an-
cestry groups (Martin et al. 2019) or even within an ancestry
group but with variable characteristics (Mostafavi et al. 2019).
In fact, earlier studies with smaller sample sizes observed simi-
lar patterns, but were interpreted as missing heritability (Lango
Allen et al. 2010; Makowsky et al. 2011). In animal breeding,
similar observations have also been made. Although genomic pre-
diction works exceedingly well within a breed of cattle, cross-breed
prediction generally fails (Hayes et al. 2009). The explanation is
obvious, genetic effects can be context dependent and heteroge-
neous between groups. Variable linkage disequilibrium (LD) pat-
terns, environments, and other factors can all contribute to the
variable genetic effects, manifesting as variable accuracy of poly-
genic prediction.

Genetic interactions are pervasive, and an important type of context
dependent effects (Mackay 2014; Mackay and Moore 2014). The
presence of genetic interactions does not have a strong effect on
the proportion of phenotypic variance attributable to the additive
effects of all markers (Hill et al. 2008; Huang and Mackay 2016),
therefore the magnitude of additive variance explained by all
markers offers no indication of the genetic architecture. However,
genetic interactions may influence genomic prediction accuracy.
Models explicitly taking into account the complexity can improve

prediction (Ober et al. 2015; Jiang and Reif 2015; Martini et al.
2017; Morgante et al. 2018). Moreover, non-parametric models
that do not rely on the additivity of the model can outperform
parametric additive models when the genetic architecture is non-
additive (Momen et al. 2018). These results clearly suggest that the
simplification of genetic architecture to the additive infinitesimal
model when the true model is not, although convenient and no
comparable alternatives exist, can be risky. In this study, we spe-
cifically investigate the influence of genetic interactions on poly-
genic prediction of phenotypes, with an emphasis on prediction
across diverged populations.

MATERIALS AND METHODS

Population simulation
We used the coalescent simulator MaCS (Chen et al. 2008) to simulate
genome sequences of 75,000 individuals, with 25,000 in each of the
populations, according to the demographic history in Figure 1A.
We simulated 1,000 independently inherited chromosomes of
100,000 base pairs in size and set mutation rate as 1.25 · 1028 per
bp and recombination as 1.25 · 1028 per bp (Figure 1B). Effective
population size was set to 20,000. The MaCS command for one
chromosome was “macs 150000 100000 -s “$random_seed” -i 1 -h
1000 -t 0.001 -r 0.001 -I 3 50000 50000 50000 0 -ej 0.0125 3 2 -ej
0.025 2 1”. This simulation was performed once but the partitions
between samples were repeated 20 time, which were summarized as
box plots in figures. We defined three sets of variants. 1) causal variants:
one variant was sampled from each of the 1,000 chromosomes to con-
stitute the causal variants. 2) tag variants: all variants excluding the causal
variants. 3) all variants: all variants including the causal variants.

Figure 1 Simulation of genome sequences,
population structure, and genetic architec-
ture. (A) Three populations (P1, P2, P3) were
simulated with an effective population size
of 20,000 each. P1 and P2 diverged 1,000
generations before present and P1 and P3
diverged 2,000 generations ago. (B) 1,000
independently inherited chromosomes were
simulated, each containing one QTL. Three
sets of variants were considered, including
“causal”, “tag”, and “all” as illustrated. (C)
Six different genetic architecture were sim-
ulated, each illustrated by one of the panels.
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Simulation of quantitative phenotypes
We simulated quantitative phenotypes according to the genetic archi-
tecture depicted in Figure 1C. For each of the three possible genotypes
for a biallelic locus with alleles A and a, we used the additive coding
aa = -1, Aa = 0, and AA = 1 and the dominance coding aa = 0, Aa = 1,
AA = 0 to code genotypes (Table 1). The simulation of phenotypes
consisted of two steps. In the first step, the corresponding genotype
coding for an individual or product of genotype codings (in the case of
between-loci interactions) were multiplied by a genetic effect randomly
drawn from the standard normal distribution and summed over all loci
or all pairs of loci to obtain the genetic values. In the second step, an
environmental effect was added by drawing from a normal distribu-
tion with a computed variance such that the broad sense heritability
H2 = 0.8. These steps are summarized in Table 1 with illustrative
examples for nine possible genotypes across two loci (Table 1). It’s
straightforward to extend this to all loci. We performed this simu-
lation in each of the 20 random partitions of populations and in-
dependently sampled causal variants and genetic effects.

Fitting GREML
We fitted the GREML model using GCTA (Yang et al. 2011) with
20,000 individuals from each of the P1, P2, and P3 populations
and P1 + P2 and P1 + P3. The GREML partitioned pheno-
typic variance into a genomic (s2

g) and an environmental compo-
nent (s2

e) by fitting a mixed model using REML with covariance
matrix determined by a relationship matrix calculated based on
standardized genotypes (Yang et al. 2010). Genomic heritability
was computed as h2g = s2

g/(s2
g + s2

e).

Polygenic score prediction
The BLUP estimates of SNP effects were obtained using GCTA and
provided to PLINK2 (https://www.cog-genomics.org/plink/2.0/credits)
to compute a polygenic score in 5,000 new individuals either from the
same population as the fitted model or from a different population.
Prediction accuracy of polygenic score was computed as the r2 of
correlating predicted polygenic scores and the simulated true phe-
notypes. In the case of prediction using causal variants with the
correct dominance by dominance model (Figure 5), we constructed
pseudo-variants using the relevant genotype coding (for D x D,
double heterozygotes were coded as one genotype class and all
others the other) and ran GREML and polygenic score prediction
the same way as an additive model.

Data availability
All procedures to simulate the data are described in the manuscript and
codes can be found at https://github.com/qgg-lab/epistasis-prediction.
We provide the simulated genotype data for all 75,000 individu-
als (25,000 per population) in PLINK binary format (Purcell
et al. 2007) on figshare (https://figshare.com/projects/Influence_
of_genetic_interactions_on_polygenic_prediction/70427). There
are a large number of random partitions for the replicates and
the associated phenotypes, these are not directly provided but they
are easy to recapitulate with the description of methods and
the computer codes. Supplemental material available at figshare:
https://doi.org/10.25387/g3.10031807.

RESULTS

Experimental design
Because it’s not yet possible to unambiguously know the true genetic
architecture of a quantitative trait, all experiments in this study were n
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performed using simulated data instead of real data. This allows us to
specifically ask simple questions while eliminating influence from
other factors.We simulated a sample of 75,000 diploid individuals from
three ancestry groups, where population P1 and P2 diverged 1,000
generations ago and their ancestors diverged from population P3 an
additional 1,000 generations ago (Figure 1A). This specification is qual-
itatively similar to the global human population history where the
ancestral population that went out of Africa were further split into
multiple populations.

We considered three possible variant sets (Figure 1B); 1) causal: all
and only causal variants; 2) tag: all variants except causal variants; and
3) all: all variants including causal variants. These represent three sim-
plified scenarios 1) a best case scenario where causal variants have been
identified, 2) a realistic scenario where causal variants are tagged by
genotyped variants, and 3) an achievable scenario in the near future
with whole genome sequences. We did not consider variants that were
rare (MAF , 0.01) in all three populations as they led to gross over-
estimation of genomic heritability approaching one, similar to findings
in a simulation study using real genotypes (Evans et al. 2018). The three
variant sets were used to compute genomic heritability and perform
polygenic prediction. There were a total of approximately 680,000 var-
iants in the ‘all’ variants case. When performing polygenic prediction,
we did not select variants based on association tests. This choice was
based on the consideration that selection of markers introduced an-
other variable in the experiment to complicate the design and interpre-
tation. Instead, we draw from the distinction between causal and all
variants to represent the extreme scenarios where a perfect selection or
no selection was performed.

We simulated a quantitative trait controlled by 1,000 indepen-
dently inherited QTL (Figure 1B) of broad sense heritability H2 = 0.8
but different types of genetic architecture. When the genetic architec-
ture is strictly additive, the narrow sense heritability h2 = H2 = 0.8,
whereas in other cases h2 , 0.8. Six simple models of genetic architec-
ture were simulated, including additive, dominance, overdominance,
and pairwise additive by additive (A x A), additive by dominance
(A x D), and dominance by dominance (D x D) (Figure 1C). No higher
order interaction was simulated and effects across loci or across pairs
were additive.

Genomic heritability misses little heritability
We first recapitulated a result that has been consistently shown
(Hill et al. 2008; Huang and Mackay 2016). We fitted a linear mixed
model in each of the three populations or combined samples using
GREML implemented in the GCTA (Yang et al. 2011) with 20,000
individuals. We found that hg2 were uniformly high when
the genetic architecture was additive, dominance, or additive by

additive, accounting for nearly all heritability (Figure 2, Figure S1
online). Whether or not the variant sets included casual variants
appeared to have little effects on hg2; variant sets excluding causal
variants performed as well as causal variants only and there was a
slight tendency of upward bias (Figure 2). Similar results were
obtained regardless of whether the samples were from a homoge-
neous population or a mixture of samples from two diverged pop-
ulations (Figure S1). When the genetic architecture was entirely
overdominance, additive by dominance, or dominance by domi-
nance, hg2 was lower, but still consistently explained . 50% of the
heritability (Figure 2, Figure S1). Taken together, these results
suggest that as long as a large number of genome-wide markers
were fitted, little heritability was missed, regardless of the genetic
architecture. In other words, the magnitude of genomic heritabil-
ity offers no discrimination of the underlying genetic architecture
(Huang and Mackay 2016).

Accuracy of polygenic prediction with an additive
genetic architecture
We then asked a simple question. If genome-wide variants are able to
capture the majority of heritability, are they able to predict phenotypes
accurately? This question directly addresses the distinction between the
two definitions of missing heritability. If there is no missing heritability
based on mixed model fitting, is there missing heritability in polygenic
prediction? Many illuminating results could be obtained by comparing
different scenarios of simulations (Figure S2).

We first considered the simplest and best scenario, in which the
genetic architecture was fully additive, and all and only causal
variants were known. In this case, the statistical model took the
form of the true model and only model parameters needed to be
estimated. We trained the model in one population (n = 20,000,
training data) and computed polygenic scores of new individu-
als (n = 5,000, test data) either in the same population or a different
population (Figure 3A). To test the performance of cross-population
prediction, we considered three possible relationships between the
training and test populations, representing a gradient of divergence
between training and test data (Figure 3A).

As expected, the accuracy of polygenic prediction was very high
in this best case scenario, approaching the true heritability (‘causal’
in Figure 3B). There was a small decline in accuracy when cross-
population prediction was performed and the degree of population
divergence negatively affected prediction accuracy. However, when
non-causal variants were included to make predictions, accuracy
plummeted from �0.8 to �0.4 (Figure 3B) even when training
and test samples were from the same population. This was likely
due to the inclusion of independent predictors whose number vastly

Figure 2 Genomic heritability in the simulated
populations. Box plot (median indicated on top)
showing the genomic heritability (hg2) estimated us-
ing GREML under different genetic architecture,
where Add. = additive, Dom. = dominance, Over-
dom. = overdominance, A x A = additive by addi-
tive, A x D = additive by dominance, D x D =
dominance by dominance, and random is a non-
genetic model where the phenotypic variation was
entirely due to random environmental variation. The
population in which the genomic heritability was
estimated was indicated in the top right corner. Ge-
nomic heritabilities in all other populations were
given in Figure S1.
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exceeded that of the causal variants. As populations become more di-
vergent, prediction accuracy further dropped, the rate of which was
muchmore pronounced when tag or all variants were used. These results
(in the cases of tag or all variant sets) largely agreedwith the large body of
empirical work that accuracy of polygenic prediction was substantially
lower than genomic heritability and cross-population prediction was
poor (Lango Allen et al. 2010; Makowsky et al. 2011; Martin et al. 2019).

One important lesson could be learned in this simple experiment.
The facts that simplyaddingnon-causal variants to themodel drastically
reducedprediction accuracy, and that the rateofdecay in the accuracyof
cross-population prediction was much greater in the presence of non-
causal variants indicated that the agreement between model and true
genetic architecture mattered. This is in sharp contrast to genomic
heritability estimation, where including more variants generally im-
proves model fit (compare ref (Yang et al. 2010) with ref (Wainschtein
et al. 2019)).

Accuracy of polygenic prediction in the presence of
genetic interactions
We then tested the influence of genetic interactions on the accuracy of
polygenic prediction, which fits an additive model. In a favorable
condition when all causal variants were known (but not their effects
or interactions) and prediction was performed within the same
homogenous population, polygenic prediction accuracy was highly
dependent on the genetic architecture (P1 -. P1 in Figure 4A).
The accuracy ranged from 0.78, nearly the theoretical maximum in
the case of an additive genetic architecture to less than 0.20 in the

case of a dominance by dominance genetic architecture (P1 -. P1 in
Figure 4A). In general, prediction accuracy was higher for genetic
architecture with higher hg2, such as additive, dominance, and addi-
tive by additive. In contrast, under overdominance, additive by
dominance, and dominance by dominance genetic architecture,
polygenic prediction performed substantially worse (P1 -. P1 in
Figure 4A). When all variants were used, including non-causal ones,
the prediction accuracies decreased dramatically, from 0.78 to 0.37
in the most favorable within-population additive case (additive case
in P1 -. P1 in Figure 4A and 4B). Furthermore, the dependency on
genetic architecture appeared to be stronger when non-causal var-
iants were included (P1 -. P1 in Figure 4B).

We thenaskedhowgenetic interactions influence the rate of decay in
predictionaccuracieswhenthe trainingand testpopulationsdiverge.We
set the accuracy of within-population prediction as the baseline and
compared cross-populationprediction accuracies to thisbaseline.When
all variants were used for polygenic prediction, the accuracy of cross-
population prediction dropped to about 40–60% of the accuracy of
within-population prediction, depending on genetic architecture (Fig-
ure 4B). Additive, additive by additive, and dominance genetic archi-
tecture, those with the highest hg2 and r2, retained the most prediction
accuracy while overdominance, additive by dominance, and domi-
nance by dominance lost the most (Figure 4B). The more diverged
the populations were, the more predictive ability of polygenic scores
was lost (Figure 4B).

There are many reasons why polygenic prediction failed when test
population diverged from training population. In our simple simulation

Figure 3 Polygenic prediction under additive ge-
netic architecture. (A) Polygenic prediction was
performed according to the diagram, where the
model was trained in population P1 and tested in
populations P1, P2, and P3 at increasing diver-
gence. (B) Prediction accuracy was plotted accord-
ing to the training – test population relationships.
For comparison, genomic heritability was also plot-
ted along side. Only the additive genetic architec-
ture was considered in this plot.

Figure 4 Polygenic prediction with different gen-
etic architecture. (A) Polygenic prediction was per-
formed using causal variants only for six different
genetic architecture. The median prediction accu-
racy (r2) across 20 replicates in each scenario was
listed below the graph, as well as genomic heritabil-
ity (hg2). Each point on the graph represents a nor-
malized median r2, dividing each prediction accuracy
by its counterpart in the within population (P1 -. P1)
prediction. (B) Polygenic prediction with all variants.
Data are presented the same way as in (A). Data in
these graphs were summarized from Figure S2.
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setting, genetic effects were the same across populations and were not
sensitive to any non-genetic factors. The difference in the linkage
disequilibrium structure between populations may in part explain the
drop when all variants were used (Figure 4B). Importantly, simulations
allowed us to directly use causal variants for prediction, thus eliminat-
ing the influence of LD (Figure 4A). Remarkably, while the accuracy
of cross-population prediction was lower for all genetic architecture,
the rate of decay was much greater when the genetic architecture
was over-dominance, additive by dominance, or dominance by dom-
inance (Figure 4A, compare slopes of the different lines). These results
clearly suggest that genetic interactions can not only cause cross-
population polygenic prediction to fail, but also in a more severe man-
ner compared to an additive genetic architecture.

DISCUSSION
We demonstrate in this study through simulations that genetic inter-
actions can influence the accuracy of polygenic prediction. In particular,
cross-population polygenic prediction performed worse than intra-
population prediction in all cases. For traits controlled by genetic
interactions, the cross-population decay in prediction accuracy was
far greater (Figure 4). The results make intuitive sense. For a statistical
model to predict new data accurately, two conditions must be met.
First, the model specification must be correct or at least sufficiently
accurate to capture variation in the data. Second, parameters in the
model must be precise. When genetic interactions are present, the
additive polygenic model clearly is not accurate.

Previous studies have mostly focused on improving parameter
estimation, through increasing sample size and methodological im-
provement. For example, increasing sample size substantially in-
creased accuracy of polygenic prediction of height within individuals
of European ancestry (Lello et al. 2018). Inclusion of samples of
different backgrounds in the training data also helped (Martin
et al. 2019) (Figure S2).

However, the complexity of the genetic architecture of a quantitative
traitmakes itnearly impossible tospecifyamodelprior tomodeling.Asa
consequence, thepolygenic infinitesimalmodel or variantsof it (Gianola
et al. 2009) has been used as the default model. The infinitesimal model
has been instrumental and allowed for many theoretical insights as well
as applications to be developed. In particular, prediction of breeding
values in animal and plant breeding relying on the infinitesimal model

has been very successful (García-Ruiz et al. 2016). However, its limita-
tions are also apparent. Cross-population and cross-breed polygenic
prediction was low in accuracy (Hayes et al. 2009; Lango Allen et al.
2010;Martin et al. 2019). Althoughmany factorsmay contribute to this
limitation, our simulation results clearly indicated that genetic interac-
tions unaccounted for was a major contributor. Indeed, if the correct
genetic model could be specified, cross-population prediction can
achieve very high accuracy (Figure 5). There have been attempts to
explicitly model non-additive genetic effects in the context of polygenic
prediction; some moderate improvement was observed (Martini et al.
2017; Varona et al. 2018). However, these studies modeled non-
additive effects using genome-wide markers, which added a large num-
ber of independent predictors as noise to the model andmay negatively
impact the performance.

We did not analyze existing public data sets with real genotypes
and phenotypes, some of which contained subjects from multiple
ancestries. Previous work with real data has consistently shown that
cross-population polygenic prediction generally fails (Martin et al.
2019), which agreed with results obtained by simulations in this
study. However, it is difficult to disentangle the different factors
that may contribute to effect heterogeneity and the failure of pre-
diction in real data sets. Using simulations, we can focus on spe-
cific questions and our results clearly indicated a contribution of
genetic interactions to the failure of cross-population polygenic pre-
diction. While the additive infinitesimal model is the most sensible
model when no other information is available, our study suggests
that the development in the field should be expanded to include
efforts to more explicitly model genetic interactions. Although it
is challenging, recent advances in modeling (Boyle et al. 2017; Liu
et al. 2019) and genomic assays informing regulatory networks
(Gerstein et al. 2012) may finally offer new ways to develop biolog-
ically sensible models.
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