Supplementary Information

Hexafluorophosphate additive enables durable seawater oxidation at ampere-level current density

Xun He^{1,2,3,#}, Yongchao Yao^{1,4,#}, Limei Zhang^{2,4}, Hefeng Wang³, Hong Tang², Wenlong Jiang², Yuchun Ren², Jue Nan², Yongsong Luo¹, Tongwei Wu^{2*}, Fengming Luo^{1*}, Bo Tang^{3,5*} & Xuping Sun^{1,3*}

¹Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. ²Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. ³College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China. ⁴Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. ⁵Laoshan Laboratory, Qingdao 266237, Shandong, China. [#]Both authors contributed equally to this work.

*Correspondence and requests for materials should be addressed to T.W. (email: twwu77@uestc.edu.cn) or F.L. (email: luofengming@wchscu.edu.cn) or B.T. (email: tangb@sdnu.edu.cn) or X.S. (email: xpsun@uestc.edu.cn).

Supplementary Note 1: Chloride corrosion mechanism on electrode materials.

Chloride corrosion occurs in a sequence of three main steps: polarization, dissolution, and hydrolysis.

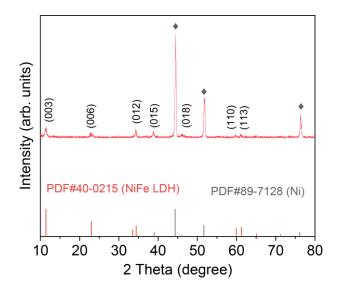
1. Adsorption of Cl⁻ through surface polarization.

The process begins with the adsorption of Cl⁻ onto the electrode surface, leading to the following reaction:

$$M + Cl^- \rightarrow MCl_{ads}^{x-1} + xe^-$$

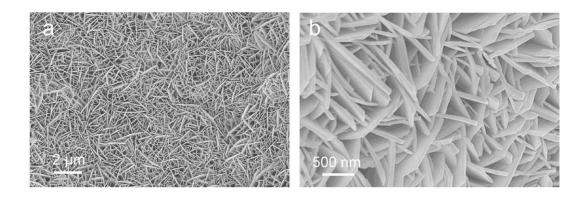
2. Dissolution through further coordination.

Following adsorption, the chloride complex undergoes further coordination, where the adsorbed chloride interacts with additional Cl⁻, leading to dissolution of the metal: $MCl_{ads}^{x-1} + (x-1) Cl^- \rightarrow MCl_x^-$:

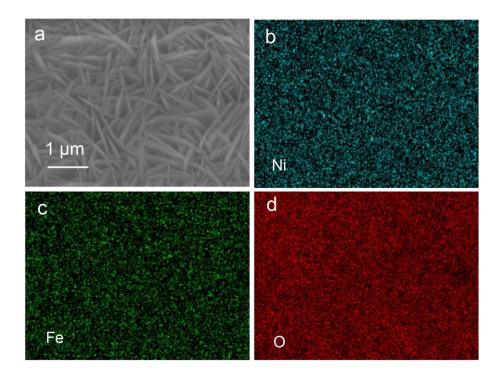

3. Conversion from chloride to hydroxide.

Finally, the chloride species reacts with OH⁻ in an aqueous environment, leading to the conversion of the metal chloride to metal hydroxide:

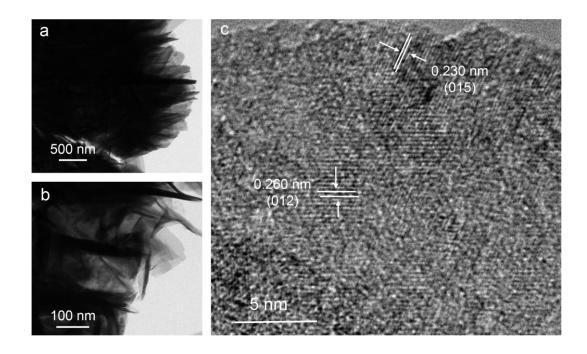
$$MCl_x^- + xOH^- \rightarrow M(OH)_x + xCl^-$$
.


Supplementary Note 2: Estimation of the energy consumption and hydrogen production cost of the NiFe LDH/NF||Pt/C/NF flow-type electrolyzer.

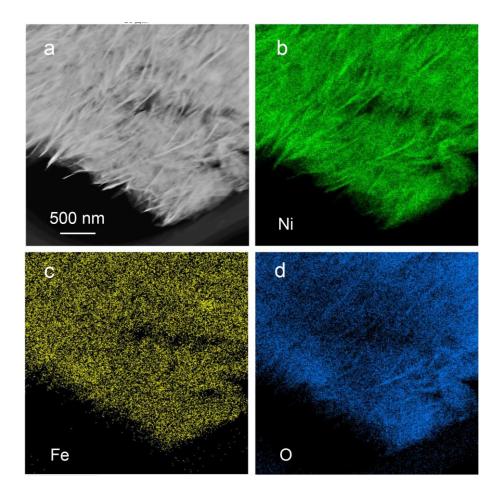
The NiFe LDH/NF||Pt/C/NF flow-type electrolyzer operated under a dual-feed configuration using 6 M KOH + seawater as both the anolyte and catholyte, with PF₆⁻ introduced into the anolyte. The energy consumption was evaluated under electrolysis conditions of 1.0 A cm⁻², 2.02 V, 60 °C, and an electrode area of 1×1 cm². Under these conditions, the power input was calculated to be 2.02 W cm⁻². The hydrogen production rate was determined to be 5.18×10^{-6} mol cm⁻² s⁻¹. Taking the lower heating value (LHV) of H₂ as 120 MJ kg⁻¹ (equivalent to 241.9 kJ mol⁻¹), the output power density associated with H₂ generation was estimated to be 1.253 W cm⁻². Accordingly, the energy efficiency (based on LHV) was calculated to be 62.0%. The electricity consumption per kilogram of hydrogen was further estimated as 53.7 kWh kg⁻¹ H₂ (4.49 kWh m⁻³), corresponding to a production cost of US\$1.07 kg⁻¹ H₂, when utilizing offshore renewable electricity at US\$0.02 kWh⁻¹.


Supplementary Fig. 1 | XRD pattern. XRD pattern of NiFe LDH/NF. Source data are provided as a Source Data file.

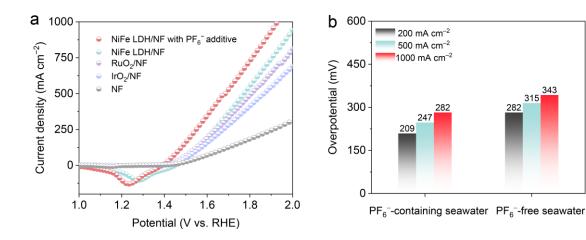
XRD pattern analysis verifies the NiFe LDH on Ni, with diffraction peaks matching the lattice planes of NiFe LDH (JCPDS#40-0215) and metallic Ni (JCPDS#89-7128).


Supplementary Fig. 2 | SEM images. (a) Low- and **(b)** high-magnification SEM images of NiFe LDH/NF.

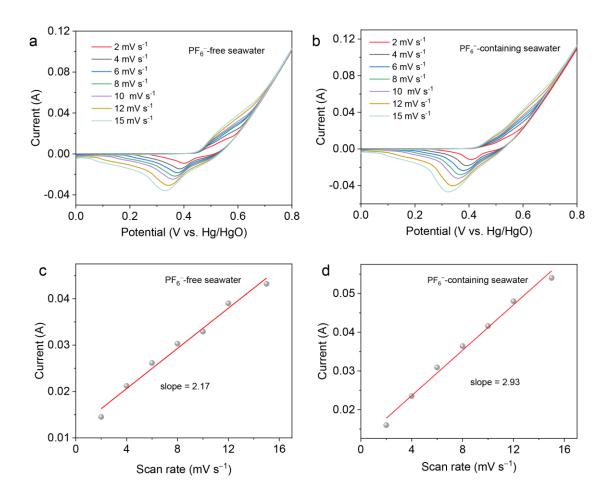
SEM analysis displays the 2D nanosheet array structure of the prepared NiFe LDH. Such structures have been extensively reported to possess strong hydrophilicity, thus promoting efficient mass transfer of O₂ during electrolysis and offering a certain degree of mechanical buffering against external forces (*Adv. Mater.* **36**, 2311322 (2024); *Acc. Chem. Res.* **51**, 1590 (2019); *Adv. Mater.* **27**, 2361 (2015); *Nat. Commun.* **15**, 4712 (2024); *ACS Catal.* **11**, 13140 (2021)).


Supplementary Fig. 3 | Elemental distributions. (a) SEM image and its corresponding energy-dispersive X-ray spectroscopy (EDS) images **(b–d)** of NiFe LDH/NF.

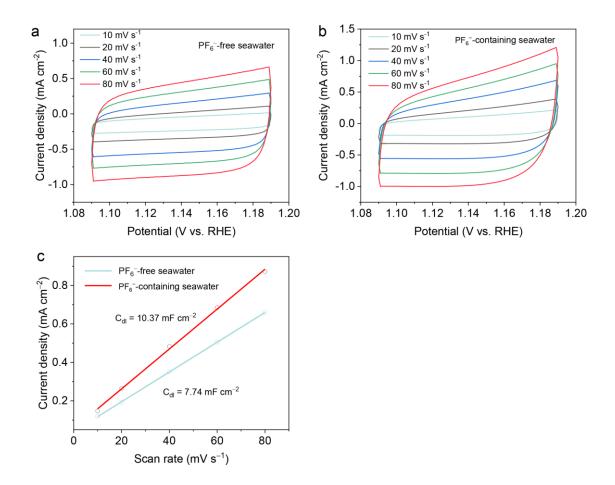
SEM and EDS analyses reveal the uniform distribution of Ni, Fe, and O on NiFe LDH/NF.


Supplementary Fig. 4 | TEM images and HRTEM image. (a) Low- and **(b)** high-magnification TEM images of NiFe LDH. **(c)** HRTEM image of NiFe LDH.

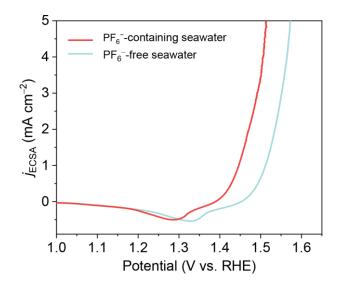
As depicted in Supplementary Fig. 4a, b, the sample further demonstrates the characteristic 2D nanosheet structure of LDH. HRTEM analysis (Supplementary Fig. 4c) confirms lattice spacings of 0.230 nm and 0.260 nm, corresponding to the (015) and (012) crystallographic planes of NiFe LDH, respectively.



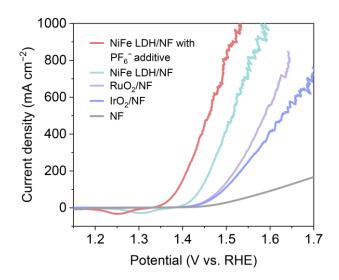
Supplementary Fig. 5 | Elemental distributions. (a) High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and **(b-d)** its corresponding EDS elemental mapping images of NiFe LDH.


The use of HAADF-STEM and EDS elemental mapping confirms that Ni, Fe, and O elements are uniformly dispersed throughout the 2D LDH nanosheets.

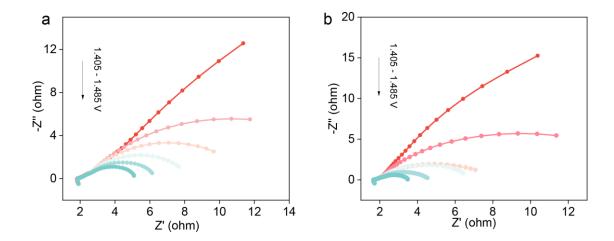
Supplementary Fig. 6 | Evaluation of activities. (a) Polarization curves of NiFe LDH/NF in PF₆⁻-free and PF₆⁻-containing seawater, alongside RuO₂/NF, IrO₂/NF and NF in PF₆⁻-free seawater without *iR* compensation. The corresponding solution resistances are $1.700\pm0.03~\Omega$ and $1.544\pm0.01~\Omega$ for NiFe LDH/NF, and $1.767\pm0.02~\Omega$, $1.762\pm0.02~\Omega$, and $1.757\pm0.05~\Omega$ for RuO₂/NF, IrO₂/NF, and NF, respectively. The area of all electrodes is $0.25~cm^{-2}$. (b) Comparison of overpotentials for NiFe LDH/NF in PF₆⁻-free and PF₆⁻-containing seawater with 100% *iR* correction. Source data are provided as a Source Data file.

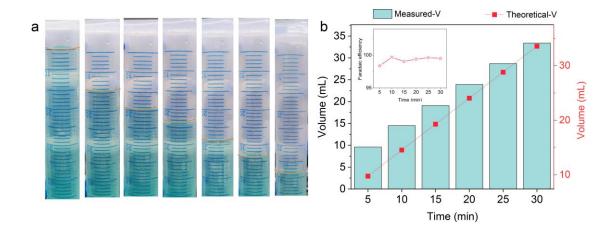


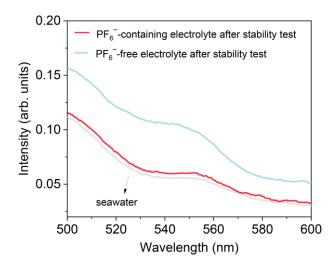
Supplementary Fig. 7 | Evaluation of activities. CV curves of NiFe LDH/NF in **(a)** PF $_6$ -free and **(b)** PF $_6$ -containing seawater and corresponding relationships between oxidation peak currents and scan rates of NiFe LDH/NF in **(c)** PF $_6$ -free and **(d)** PF $_6$ -containing seawater, respectively. Slopes of 2.17 \pm 0.01 and 2.93 \pm 0.03 were obtained from triplicate tests in PF $_6$ -free and PF $_6$ -containing seawater, respectively. Only representative data are shown. Source data are provided as a Source Data file.



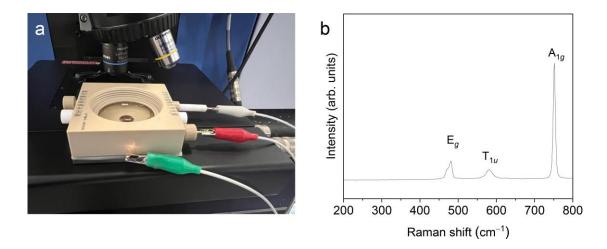
Supplementary Fig. 8 | Electrochemical double-layer capacities (C_{dl}) measurements.


CV curves in the non-Faradaic zone at various scan rates for NiFe LDH/NF in (a) PF_6^- -free and (b) PF_6^- -containing seawater without iR correction. (c) Comparison of the C_{dl} values for NiFe LDH/NF in PF_6^- -free and PF_6^- -containing seawater. Source data are provided as a Source Data file.

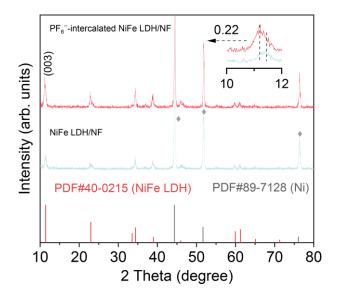

Supplementary Fig. 9 | Evaluation of activities. Polarization curves of NiFe LDH/NF in PF_6 --free and PF_6 --containing seawater with ECSA fitting with 100% *iR* correction. Source data are provided as a Source Data file.


Supplementary Fig. 10 | Evaluation of activities. Polarization curves of NiFe LDH/NF in PF₆⁻-free and PF₆⁻-containing seawater, along with RuO₂/NF, IrO₂/NF, and NF in PF₆⁻-free seawater with 100% iR correction, measured at a slow scan rate of 1 mV s⁻¹. This slow scan rate was employed to avoid interference from non-OER chemical processes to ensure reliable determination of the Tafel slope. Source data are provided as a Source Data file.

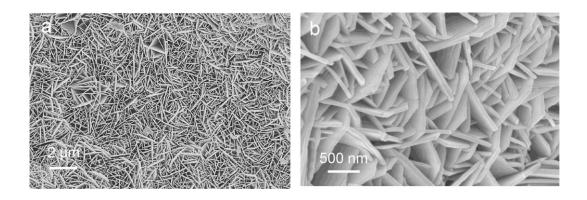
Supplementary Fig. 11 | Evaluation of kinetics. Electrochemical impedance spectroscopy (EIS) Nyquist plots collected from 1.405 to 1.485 V (1.405, 1.415, 1.435, 1.455, 1.475, 1.485 V) over a frequency range of 10^{-2} to 10^{5} Hz for NiFe LDH/NF in **(a)** PF₆⁻-free and **(b)** PF₆⁻-containing seawater. Source data are provided as a Source Data file.



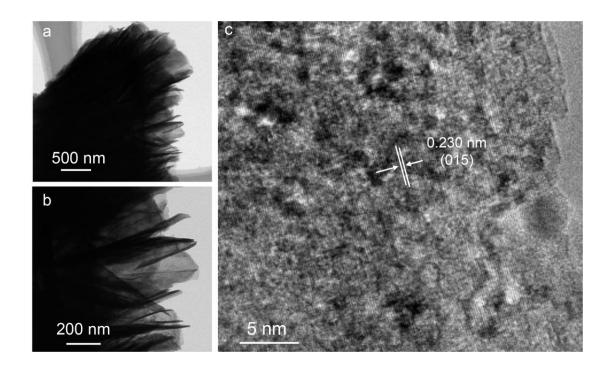
Supplementary Fig. 12 | O_2 Faradaic efficiency measurements in PF_6 --containing seawater. (a) Digital photographs of the collected O_2 during ASO. (b) Comparison of collected O_2 with theoretical values for NiFe LDH/NF in PF_6 --containing seawater at 1 A cm⁻². Source data are provided as a Source Data file.


Supplementary Fig. 13 | Chlorine precipitation tests. Ultraviolet–visible (UV–vis) spectra of the ClO⁻ concentrations for the blank electrolyte and PF₆⁻-free and PF₆⁻-containing electrolyte for NiFe LDH/NF after the stability test at 1 A cm⁻². Source data are provided as a Source Data file.

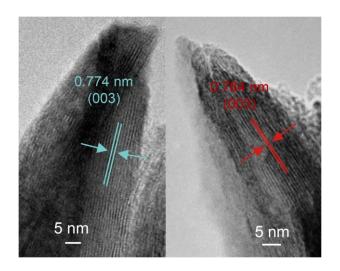
We determined active chlorine concentrations by employing the DPD colorimetric method (*J. Electroanal. Chem.* **819**, 260–268 (2018); *Nano Today* **58**, 102454 (2024)) in conjunction with UV–vis spectroscopy. After operating the stability tests at 1 A cm⁻², 100 μ L of the electrolyte was combined with 50 μ L of both 1.0 M H₂SO₄ and 2.0 M NaOH, followed by 4.8 mL of deionized water. Subsequently, 250 μ L of DPD reagent and phosphate-buffered saline (pH=6.5) were introduced. This mixture developed a pink hue, indicative of chlorine, which was then detected at 550 nm.

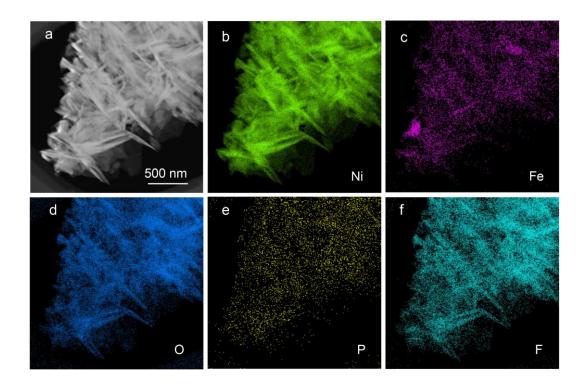

Supplementary Fig. 14 | Raman spectrum. (a) The photo of electrochemical cell for in situ Raman test. **(b)** Raman spectrum of KPF₆. Source data are provided as a Source Data file.

The Raman peaks at 480, 581, and 752 cm⁻¹ are assigned to the E_g , T_{1u} , and A_{1g} vibrational modes of PF_6^- , respectively. The A_{1g} vibration of PF_6^- represents a fully symmetric stretching vibration in which all P-F bonds simultaneously lengthen or shorten. The E_g vibration is a doubly degenerate bending vibration, typically described as a combination of bond stretching and contraction across opposing P-F bonds (*J. Fluorine Chem.* **101**, 173–179 (2000); *J. Mol. Struct.* **1026**, 145–149 (2012); *Spectrochim. Acta A* **153**, 651–654 (2016)). Under intercalation conditions, the E_g bending mode becomes discernible due to confinement of PF_6^- within the interlayers, where the local coordination environment partially breaks the octahedral symmetry and modifies the polarizability change associated with bending vibrations. The A_{1g} symmetric stretching mode is weak or nearly absent in this intercalated state, presumably because PF_6^- is dispersed and partially disordered between the layers. As the applied potential increases, PF_6^- gradually accumulates on the electrode surface driven by a higher applied electric field, thereby enhancing the A_{1g} response.

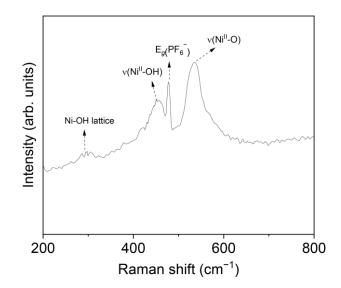


Supplementary Fig. 15 | XRD patterns. Comparison of the XRD patterns of NiFe LDH/NF before and after being held at 1.15 V for 10 min in PF_6^- -containing seawater. Source data are provided as a Source Data file.

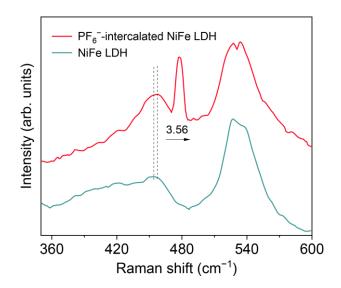

The (003) diffraction peak shifts to lower 2θ values after the treatment, signifying an increase in interlayer spacing of NiFe LDH.


Supplementary Fig. 16 | SEM images. **(a)** Low- and **(b)** high-magnification SEM images of NiFe LDH/NF after being held at 1.15 V for 10 min in PF_6^- -containing seawater.

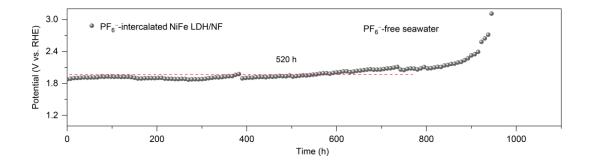
Supplementary Fig. 17 | TEM images and HRTEM image. (a) Low- and (a) high-magnification TEM images of NiFe LDH after being held at 1.15 V for 10 min in PF_6^- -containing seawater. (c) HRTEM image of NiFe LDH after being held at 1.15 V for 10 min in PF_6^- -containing seawater.

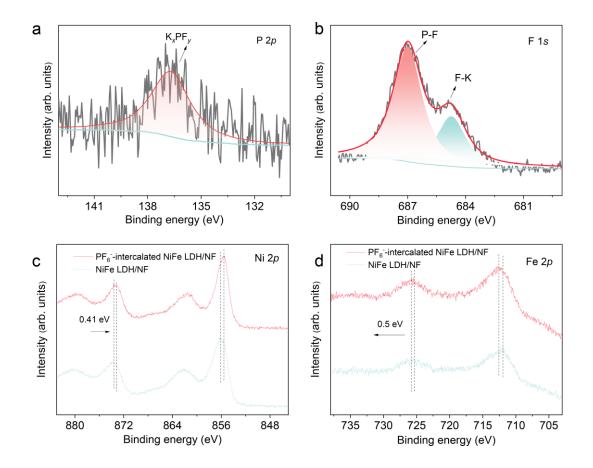


Supplementary Fig. 18 | HRTEM images. HRTEM images of NiFe LDH before (left) and after (right) being held at 1.15 V for 10 min in PF_6^- -containing seawater.

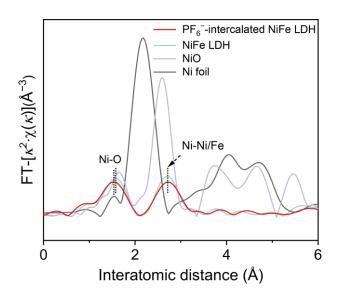


Supplementary Fig. 19 | Elemental distributions. (a) HAADF-STEM image and **(b–f)** corresponding elemental mapping images of NiFe LDH after being held at 1.15 V for 10 min in PF₆⁻-containing seawater.

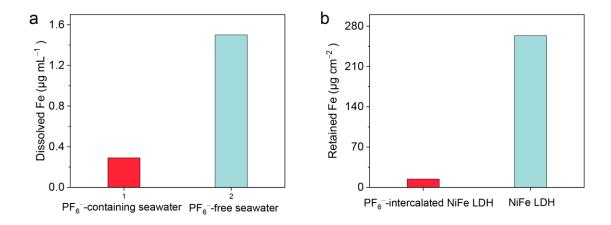

As shown in Supplementary Figs. 16, 17a, b, and 19a, the NiFe LDH after being held at $1.15~V~for~10~min~in~PF_6^-$ -containing seawater retains the characteristic two-dimensional nanosheet morphology of pristine NiFe LDH. High-resolution TEM analysis further reveals a lattice spacing of 0.230 nm, corresponding to the (015) crystal planes of NiFe LDH (Supplementary Fig. 17c). Notably, NiFe LDH after being held at $1.15~V~for~10~min~in~PF_6^-$ -containing seawater results in an increase in the interlayer distance from 0.774 nm to 0.784 nm, as evidenced by HRTEM images (Supplementary Fig. 18). Moreover, HAADF-STEM image and its corresponding EDS elemental mapping images confirm the uniform distribution of P and F elements throughout the NiFe LDH nanosheets (Supplementary Fig. 19). These results collectively demonstrate the successful electrochemical intercalation of PF_6^- into the interlayer galleries of NiFe LDH under applied potential.


Supplementary Fig. 20 | Raman spectrum. Raman spectrum of PF₆⁻-intercalated NiFe LDH. Source data are provided as a Source Data file.

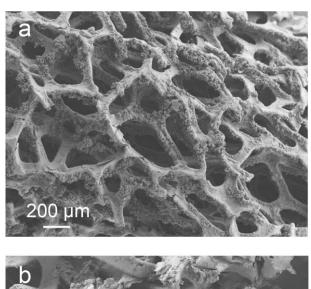
Supplementary Fig. 21 | Raman spectra. Comparison of Raman spectra of PF_6 -intercalated NiFe LDH and NiFe LDH at OCP. Source data are provided as a Source Data file.

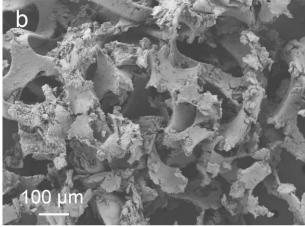


Supplementary Fig. 22 | Chronopotentiometry test. Chronopotentiometry curve operated at 2 A cm⁻² for PF_6^- -intercalated NiFe LDH/NF in PF_6^- -free seawater without *iR* correction. Source data are provided as a Source Data file.

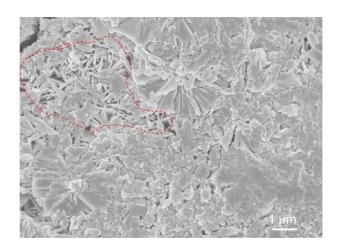


Supplementary Fig. 23 | **XPS spectra.** XPS spectra of PF $_6$ ⁻-intercalated NiFe LDH in the **(a)** P 2p and **(b)** F 1s regions. Comparison of XPS spectra of PF $_6$ ⁻-intercalated NiFe LDH and NiFe LDH in the **(c)** Ni 2 p and **(d)** Fe 2p regions. Source data are provided as a Source Data file.


The P 2*p* spectrum (Supplementary Fig. 23a) displays a peak at 136.7 eV, which is associated with the presence of K_xPF_y. Upon deconvolution, the F 1*s* XPS spectrum (Supplementary Fig. 23b) reveals two distinct peaks at 686.9 and 684.7 eV, corresponding to P–F and F–K, respectively (*ACS Appl. Mater. Interfaces* 11, 22449–22456 (2019); *ACS Appl. Mater. Interfaces* 12, 34873–34881 (2020)).

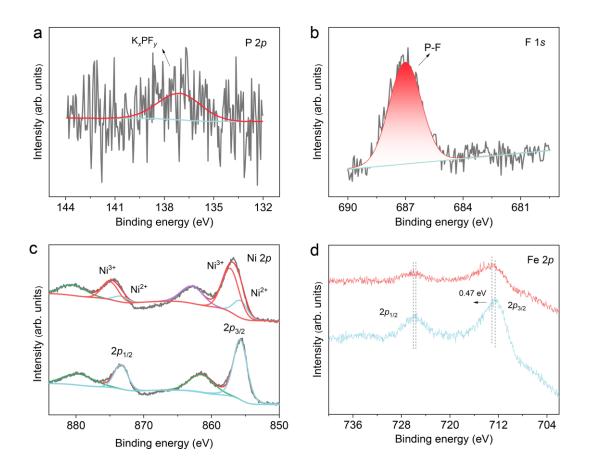


Supplementary Fig. 24 | First derivative Ni K-edge spectra of PF₆⁻-intercalated NiFe LDH and NiFe LDH, NiO, and Ni foil. Source data are provided as a Source Data file.

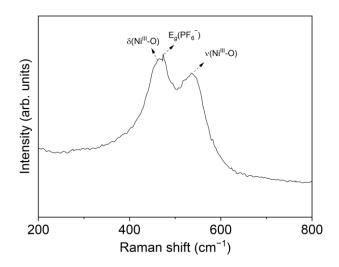


Supplementary Fig. 25 | (a) Evaluation of Fe ion leaching into electrolytes from NiFe LDH/NF electrodes in PF₆⁻-free and PF₆⁻-containing seawater after 120 hours of chronoamperometry tests at 1 A cm⁻². **(b)** Evaluation of retained Fe in PF₆⁻-intercalated NiFe LDH and NiFe LDH after 120 hours of chronoamperometry tests at 1 A cm⁻².

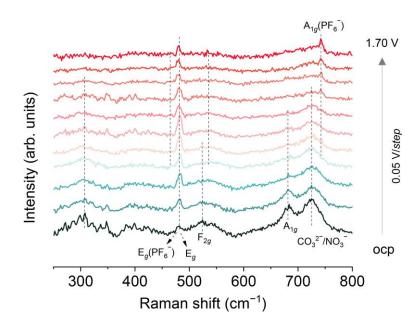
Supplementary Fig. 26 | SEM images. SEM images of NiFe LDH/NF after 120 h chronoamperometry tests at 1 A cm $^{-2}$ in **(a)** PF $_6$ -containing and **(b)** PF $_6$ -free seawater.



Supplementary Fig. 27 | SEM image of NiFe LDH/NF after stability test at 1 A cm $^{-2}$ in PF $_6$ --containing seawater.

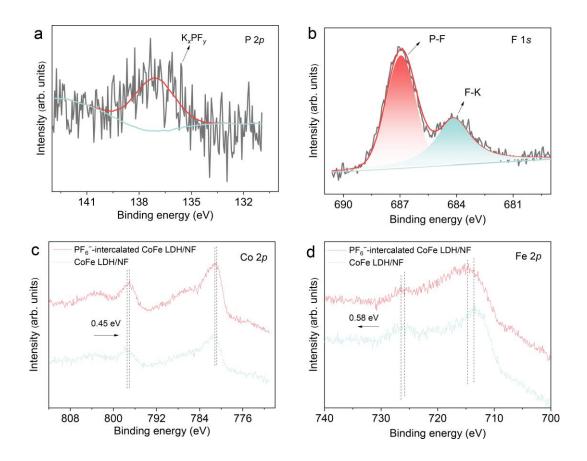

Supplementary Fig. 28 | Elemental distributions. (a) HAADF-STEM image and **(b–f)** corresponding elemental mapping images of NiFe LDH after stability test in PF₆⁻-containing seawater.

EDS analyses show the presence of P, F, Ni, Fe and O across the nanosheets, further demonstrating that PF₆⁻ incorporation stabilizes Fe and mitigates its leaching.

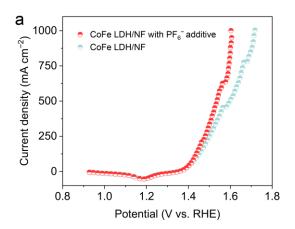


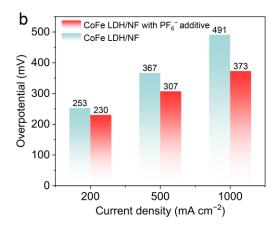
Supplementary Fig. 29 | **XPS spectra.** XPS spectra of NiFe LDH/NF in the **(a)** P 2p and **(b)** F 1s regions after stability test in PF₆⁻-containing seawater. XPS spectra of NiFe LDH/NF in the **(c)** Ni 2 p and **(d)** Fe 2p regions before and after stability test in PF₆⁻-containing seawater. Source data are provided as a Source Data file.

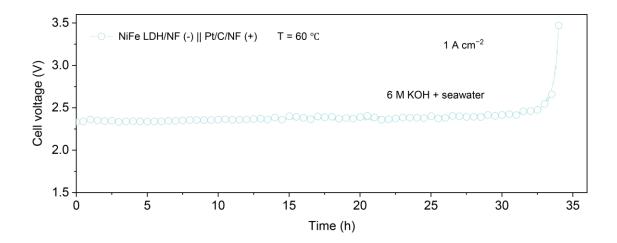
XPS analyses reveal that the P 2p and F 1s signals (Supplementary Fig. 29a, b) are relatively weak but consistent with those observed prior to electrolysis (Supplementary Fig. 23a, b), possibly due to partial deintercalation of PF_6^- from the interlayers under high potential. After long-term operation, the Ni 2p peak shifts to higher binding energy, indicating extensive surface oxidation from PF_6^- to PF_6^- (Supplementary Fig. 29c). Meanwhile, the Fe PF_6^- spectrum shows only a minor shift without notable intensity loss (Supplementary Fig. 29d), also supporting effective stabilization of Fe by PF_6^- incorporation.


Supplementary Fig. 30 | Raman spectrum. Raman spectrum of NiFe LDH/NF after stability test in PF_6^- -containing seawater. Source data are provided as a Source Data file.

Supplementary Fig. 31 | Operando Raman spectra. Operando Raman spectra of CoFe LDH in PF₆⁻-containing seawater during ASO. Source data are provided as a Source Data file.


Operando Raman spectra of CoFe LDH in PF₆⁻-containing seawater were collected from OCP to 1.70 V vs. RHE (step: 0.05 V) to investigate PF₆⁻ intercalation and surface adsorption behaviors. The spectrum displays signals at 482, 523, and 698 cm⁻¹, corresponding to the E_g, F_{2g}, and A_{1g} vibrations of the symmetric stretching mode of Co–O and the bending mode of O–Co–O (*CrystEngComm* **24**, 6018–6030 (2022); *Chem. Mater.* **32**, 4303 (2020); *ACS Catal.* **8**, 1238–1247 (2018); *Chem. Eng. J.* **472**, 145076 (2023)). As the potential increases, the A_{1g} and F_{2g} bands and the Co–OH lattice signal at 300 cm⁻¹ gradually vanish, and the shoulder for E_g and F_{2g} modes at 464 and 536 cm⁻¹ appears (partially masked by PF₆⁻ signals), indicating the formation of CoOOH. Interestingly, the 482 cm⁻¹ E_g mode (overlapping with PF₆⁻ vibrational modes) initially increases in intensity (which was expected to decrease monotonically), along with the fading of the 727 cm⁻¹ CO₃²⁻/NO₃⁻ peak, suggesting PF₆⁻ intercalation. At higher potentials, the 482 cm⁻¹ mode weakens, indicating partial anion deintercalation, and the 727 cm⁻¹ A_{1g} vibration of PF₆⁻ emerges and intensifies, implying surface adsorption and accumulation of PF₆⁻ under an applied electric field. These results support that


PF₆⁻ follows a potential-driven intercalation and adsorption for CoFe LDH, consistent with the observations for NiFe LDH.


Supplementary Fig. 32 | **XPS spectra.** XPS spectra of PF_6^- -intercalated CoFe LDH in the **(a)** P 2p and **(b)** F 1s regions. Comparison of XPS spectra of PF_6^- -intercalated CoFe LDH and CoFe LDH in the **(c)** Co 2 p and **(d)** Fe 2p regions. Source data are provided as a Source Data file.

The P 2p and F 1s spectra of PF₆⁻-intercalated CoFe LDH (Supplementary Fig. 32a, b) exhibit similar spectral features to those observed for PF₆⁻-intercalated NiFe LDH, further confirming the successful incorporation of PF₆⁻ into the CoFe LDH. Additionally, the Co 2p and Fe 2p peaks shift toward lower and higher binding energies, respectively (Supplementary Fig. 32c, d), consistent with the electronic modulation observed in NiFe LDH.

Supplementary Fig. 33 | **Evaluation of activities**. **(a)** Polarization curves with 100% iR correction and **(b)** comparison of overpotential for CoFe LDH/NF measured in PF₆⁻-free *versus* PF₆⁻-containing seawater. Source data are provided as a Source Data file.

Supplementary Fig. 34 | Chronopotentiometric stability test. Chronopotentiometry curve of the NiFe LDH/NF $\|$ Pt/C/NF electrolyzer conducted in PF $_6$ -free seawater at 1.0 A cm $^{-2}$ without iR correction. Source data are provided as a Source Data file.

Supplementary Table 1. Elements contents of NiFe LDH determined by ICP-MS.

Element	Wt.%	Atomic%
Ni	57.84	34.71
Fe	17.52	11.05
0	24.64	54.24

Supplementary Table 2. Comparison of the overpotential of NiFe LDH/NF in PF_6 -containing seawater with reported anodic systems.

Anode	Electrolyte	j (mA cm ⁻²)	Overpotenti al@j (mV)	Ref.
Nico I DI I /NC /with VDC ac	1 M KOLL Language	1000	282	
NiFe LDH/NF (with KPF ₆ as	1 M KOH + seawater + 20 mM PF ₆ ⁻	500	247	This work
electrolyte additive)	+ 20 IIIIVI PF6	200	209	
NiFe LDH/NF (with Na ₃ PO ₄ as electrolyte additive)	1 M KOH + 0.5 M NaCl+ 0.5 M Na ₃ PO ₄	500	327	J. Energy Chem. 72 , 361–369 (2022)
P ₃ O ₁₀ ⁵⁻ -Ni(OH) ₂ /NF	1 M KOH + seawater	400	340	Adv. Energy Mater. 15 , 2402883 (2025)
Ir/CoFe LDH/CP	6 M NaOH + 2.8 M NaCl	10	202	Nat. Commun. 15 , 1973 (2024)
PO ₄ ³⁻ -NiFe LDH/TM	6 M KOH + Seawater	1000	330	Nat. Commun. 15 , 10351 (2024)
Ni ₃ FeN@PO ₄ ³⁻ /NF	1 M KOH + seawater	1000	344	Adv. Mater. 37 , 2415421 (2024)
CoFePBA/Co₂P/NF	20 wt % NaOH + saturated NaCl	200	310	Angew. Chem. Int. Ed. 62 , e202309882 (2023)
NiFe/NiS _x /NF	6 M KOH + 1.5 M NaCl	400	396	Proc. Natl. Acad. Sci. U. S. A. 116 , 6624 (2019)
NiFe LDH/NF (with Na ₂ SO ₄ as electrolyte additive)	$1 \text{ M NaOH} + 0.5 \text{ M}$ $\text{NaCl} + 0.05 \text{ M}$ Na_2SO_4	400	340	Angew. Chem. Int. Ed. 60 , 22740–22744 (2021)
C /N: F-\OOLI/NE	1.14.1/011	100	300	Francis Francisco Cai 12 2420 (2020)
S-(Ni,Fe)OOH/NF	1 M KOH + seawater	500	398	Energy Environ. Sci. 13 , 3439 (2020)
NiFeBa LDH/Ni mesh	1 M NaOH + seawater + 0.05 M Na ₂ SO ₄	400	298	Adv. Mater. 36 , 2411302 (2024)
RuMoNi/NF	1 M KOH + seawater	500	397	Nat. Commun. 14 , 3607 (2023)
Ni-Fe-Ce-B/MS	1 M KOH + seawater	100	271	Appl. Catal. B Environ. 343 , 123560 (2024)
CrO ₄ ²⁻ -NiFe LDH/Cr ₂ O ₃ /NF	1 M KOH + seawater	1000	323	Nat. Commun. 15 , 6624 (2024)
NiFe LDH/NF (with CrO ₄ ²⁻ as electrolyte additive)	1 M KOH + seawater + 0.1 M CrO ₄ ²⁻	100	253	J. Colloid Interf. Sci. 665 , 240–250 (2024)
CoFe-C _i @GQDs/NF	1 M KOH with 0.5 M NaCl	100	254	Nat. Sustain. 7 , 158–167 (2024)
NiFePBA/Ni(OH) ₂ /NF	1 M KOH + seawater	1000	349	Nano Today 58 , 102454 (2024)
WO ₄ ^{2–} -NiFe LDH/NF	1 M KOH + seawater	1000	412	Small 20 , 2311431 (2024)
(NiFe)C ₂ O ₄ /NF	1 M KOH + seawater	1000	349	Angew. Chem. Int. Ed. 63, e202316522 (2024)

Supplementary Table 3. Comparison of our research with key researches on anions for chloride repulsion and extended electrolysis stability.

Key anion	Anode	Durability@j	Electrolyte	Ref.
PF ₆ ⁻ (with KPF ₆ as electrolyte additive)	NiFe LDH/NF	5000 h@1000 mA cm ⁻² 2300 h@2000 mA cm ⁻² (three-electrode system)	1 M KOH + seawater + 20 mM PF ₆ ⁻	This work
PO ₄ ³⁻ (with Na ₃ PO ₄ as electrolyte additive)	NiFe LDH/NF	500 h@500 mA cm ⁻² (two-electrode system)	1 M KOH + 0.5 M NaCl+ 0.5 M Na ₃ PO ₄	J. Energy Chem. 72 , 361–369 (2022).
$P_3O_{10}^{5-}$ ($P_3O_{10}^{5-}$ polyoxyanion passivation layer on Ni(OH) ₂ surface)	P ₃ O ₁₀ ⁵⁻ -Ni(OH) ₂ /NF	240 h@1400 mA cm ⁻² (two-electrode system)	1 M KOH + seawater	Adv. Energy Mater. 15 , 2402883 (2025)
PO ₄ ³⁻ (PO ₄ ³⁻ - intercalated NiFe LDH)	PO ₄ ³⁻ -intercalated NiFe LDH/TM	1000 h@1000 mA cm ⁻² (two-electrode system)	6 M KOH + Seawater	Nat. Commun. 15 , 10351 (2024)
(PO ₄ ³⁻) Ni ₃ FeN@PO ₄ ³⁻	Ni ₃ FeN@PO ₄ ³⁻ /NF	2500 h@1000 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Adv. Mater. 37 , 2415421 (2024)
PO ₄ ³⁻ & Fe(CN) ₆ ³⁻ (CoFePBA/Co ₂ P)	CoFePBA/Co₂P/NF	1000 h@200 mA cm ⁻² (three-electrode system)	20 wt % NaOH + saturated NaCl	Angew. Chem. Int. Ed. 62 , e202309882 (2023)
SO ₄ ²⁻ (NiS _x layer)	NiFe/NiS _x /NF	1000 h@400 mA cm ⁻² (three-electrode system)	6 M KOH + 1.5 M NaCl	Proc. Natl. Acad. Sci. U. S. A. 116, 6624 (2019)
SO ₄ ²⁻ (with Na ₂ SO ₄ as electrolyte additive)	NiFe LDH/NF	1000 h@400 mA cm ⁻² (three-electrode system)	1 M NaOH + 0.5 M NaCl + 0.05 M Na ₂ SO ₄	Angew. Chem. Int. Ed. 60 , 22740–22744 (2021)
SO ₄ ²⁻ (with SO ₄ ²⁻ fixation layer on NiFeBa LDH)	NiFeBa LDH/Ni mesh	10000 h@400 mA cm ⁻² (three-electrode system)	(1 M NaOH + seawater + 0.05 M Na ₂ SO ₄	Adv. Mater. 36 , 2411302 (2024)
CO ₃ ²⁻ & GQDs (CO ₃ ²⁻ - intercalated CoFe LDH with GQDs anchoring)	CoFe-C _i @GQDs/NF	2800 h@1250 mA cm ⁻² (three-electrode system)	1 M KOH with 0.5 M NaCl	Nat. Sustain. 7 , 158–167 (2024)
C ₂ O ₄ ²⁻ & CO ₃ ²⁻ ((NiFe)C ₂ O ₄)	(NiFe)C₂O₄/NF	600 h@1000 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Angew. Chem. Int. Ed. 63 , e202316522 (2024)
MoO ₄ ²⁻ & O _s -Cl (Os- Ni ₄ Mo/MoO ₂)	Os- Ni ₄ Mo/MoO ₂ /NF	2500 h@500 mA cm ⁻² (two-electrode system)	1 M KOH + seawater	Adv. Mater. 36 , 2408982 (2024)

MoO ₄ ²⁻ (Mo leaching from RuMoNi)	RuMoNi/NF	3000 h@500 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Nat. Commun. 14 , 3607 (2023)
B(OH) ₄ ⁻ (Ni-Fe-Ce-B)	Ni-Fe-Ce-B/MS	100 h@500 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Appl. Catal. B Environ. 343 , 123560 (2024)
CrO_4^{2-} (CrO_4^{2-} intercalated NiFe LDH/ Cr_2O_3)	CrO ₄ ^{2–} -NiFe LDH/Cr ₂ O ₃ /NF	1000 h@1000 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Nat. Commun. 15 , 6624 (2024)
CrO ₄ ²⁻ (with CrO ₄ ²⁻ as electrolyte additive)	NiFe LDH/NF	60 h@200 mA cm ⁻² (three-electrode system)	1 M KOH + seawater + 0.1 M CrO ₄ ²⁻	J. Colloid Interf. Sci. 665 , 240– 250 (2024)
SeO ₄ ²⁻ (Co-NiSe ₂)	Co-NiSe₂/GC	1500 h@500 mA cm ⁻² (two-electrode system)	1 M KOH + seawater	Appl. Catal. B Environ. 344 , 123658 (2024)
SeO_x^- (SeO_3^- & SeO_4^{2-}) (NiS_x layer)	Se_NiFe LDH/NF	50 h@10 mA cm ⁻² (two-electrode system)	1 M KOH + 0.5 M NaCl	Mater. Today Energy 19 , 100575 (2021)
Al(OH) _n - (CoFeAl LDH)	CoFeAl LDH/NF	500 h@1000 mA cm ⁻² (three-electrode system)	20wt.% NaOH + satu. NaCl	Nat. Commun. 15 , 4712 (2024)
Fe(CN) ₆ ³⁻ (NiFePBA)	NiFePBA/Ni(OH)₂/ NF	1000 h@1000 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Nano Today 58 , 102454 (2024)
WO ₄ ^{2–} (WO ₄ ^{2–} - intercalated NiFe LDH)	WO ₄ ^{2–} -NiFe LDH/NF	350 h@1000 mA cm ⁻² (three-electrode system)	1 M KOH + seawater	Small 20 , 2311431 (2024)

Supplementary Table 4. Elements contents of PF₆⁻-intercalated NiFe LDH determined by ICP-MS.

Element	wt.%	Atomic%
Ni	56.73	34.65
Fe	17.93	11.51
0	19.40	43.46
F	4.81	9.08
P	1.12	1.3

Supplementary Table 5. Comparison of the overpotentials of CoFe LDH/NF anode in PF₆⁻-containing seawater with recently reported CoFe-based anodes.

Anodes	Electrolyte	<i>j</i> (mA cm ⁻²)	Overpotential (mV)	Reference
CoFo I DI I /NE / with I/DE oo	1 N4 KOLL	200	230	
CoFe LDH/NF (with KPF ₆ as electrolyte additive)	1 M KOH + seawater + 20 mM PF ₆ ⁻	500	307	This work
electrolyte additive)	20 IIIIVI PF6	1000	373	
CF@CF-phy/NF	1 M KOH +seawater	500	330	ACS Nano 19 , 1530–1546 (2025)
CoFoALLDU/NE	20wt.% NaOH + satu.	10	256	Not Commun 15 4712 (2024)
CoFeAl LDH/NF	NaCl	200	~320	Nat. Commun. 15 , 4712 (2024)
CoFe-Ci@GQD	1 M KOH + 0.5 M NaCl	100	255	Nat. Sustain. 7 , 158–167 (2024)
Ir/CoFe LDH	6 M NaOH + 2.8 M NaCl	10	202	Nat. Commun. 15 1973 (2024)
Cr-CoFe LDH/NF	1 M KOH + seawater	500	334	Small 20 , 2307294 (2024)
P. Co. Fol DH/NE	1 M KOH i saawatar	100	310	Nano Energy 93 , 105939 (2021)
B-Co₂Fe LDH/NF	1 M KOH + seawater	500	376	Nano Energy 83 , 105838 (2021)
CoCO ₃ /CoFe LDH/NF	1 M KOH + seawater	500	316	Small 21 , 2409627 (2025)
RuCo-CoFe ₂ O ₄ @IF	1 M KOH + seawater	1000	425	Chem. Eng. J. 503 , 158346 (2025)

Supplementary Table 6. Comparison of the stability of CoFe LDH/NF anode in PF₆⁻-containing seawater with recently reported CoFe-based anodes.

Anodes	Electrolyte	j (mA cm ⁻²)	Stabilit y (h)	Reference
CoFe LDH/NF (with KPF ₆ as electrolyte additive)	1 M KOH + seawater + 20 mM PF ₆ ⁻	2000	1200	This work
CF@CF-phy/NF	1 M KOH +seawater	1000	1000	ACS Nano 19 , 1530–1546 (2025)
CoFoALIDII/NE	20wt.% NaOH + satu. NaCl	1000	500	Not Commun 15 4712 (2024)
CoFeAl LDH/NF	ZUWI.% NAOH + SAIU. NACI	2000	350	Nat. Commun. 15 , 4712 (2024)
CoFe-Ci@GQD	1 M KOH + 0.5 M NaCl	1250	2800	Nat. Sustain. 7 , 158–167 (2024)
Ir/CoFe LDH	6 M NaOH + 2.8 M NaCl	800	1000	Nat. Commun. 15 1973 (2024)
Cr-CoFe LDH/NF	1 M KOH + seawater	500	100	Small 20 , 2307294 (2024)
B-Co₂Fe LDH/NF	1 M KOH + seawater	500	100	Nano Energy 83 , 105838 (2021)
CeO _{2-x} @CoFe LDH/NF	1 M KOH + 0.5 M NaCl	50	35	Inorg. Chem. Front. 7 , 4461–4468 (2020)
CoCO ₃ /CoFe LDH/NF	1 M KOH + seawater	1000	1000	Small 21 , 2409627 (2025)
CoFoDDA/Co D	20wt.% NaOH + satu. NaCl	1000	1000	Angew. Chem. Int. Ed. 62, e202309882
CoFePBA/Co₂P	ZUWI.% NdOH + Sdlu. NdCl	2000	100	(2023)
CoFe-Ni ₂ P/NF	1 M KOH + seawater	500	500	Adv. Energy Mater. 13 , 2301475 (2023)
FCDs/FeCoSe-VSe/NF	1 M KOH + seawater	200	200	Appl. Surf. Sci. 680 , 161456 (2025)
RuCo-CoFe ₂ O ₄ @IF	1 M KOH + seawater	1000	150	Chem. Eng. J. 503 , 158346 (2025)

Supplementary Table 7. Comparison of the extended electrolysis stability achieved by the PF₆⁻-boosted ASO strategy with existing Cl⁻-repelling strategy (surface chloride immobilization/electrostatic repulsion/physical shielding).

Strategy	Anode	Durability@j	Electrolyte	Ref.
electrostatic repulsion	NiFe LDH/NF	5000 h@1000 mA cm ⁻² 2300 h@2000 mA cm ⁻²	1 M KOH + seawater + 20 mM PF ₆ ⁻	This work
surface chloride immobilization (AgCl)	NiFe LDH@Ag/NF	5000 h@400 mA cm ⁻²	6 M KOH + Seawater	Adv. Mater. 36 , 2306062 (2024)
surface chloride immobilization (IrCl)	Ir/CoFe LDH	1000 h@800 mA cm ⁻²	6 M NaOH + 2.8 M NaCl	Nat. Commun. 15 , 1973 (2024)
surface chloride immobilization & electrostatic repulsion $(MoO_4^{2-} \& O_s-CI)$	Os- Ni₄Mo/MoO₂ /NF	2500 h@500 mA cm ⁻²	1 M KOH + seawater	Adv. Mater. 36 , 2408982 (2024)
electrostatic repulsion (PO ₄ ³⁻)	PO ₄ ³⁻ - intercalated NiFe LDH/NF	1000 h@1000 mA cm ⁻²	6 M KOH + Seawater	Nat. Commun. 15 , 10351 (2024)
electrostatic repulsion (SO ₄ ²⁻)	NiFe/NiS _x /NF	1000 h@400 mA cm ⁻²	6 M KOH + 1.5 M NaCl	Proc. Natl. Acad. Sci. U. S. A. 116 , 6624 (2019)
electrostatic repulsion (SO ₄ ²⁻)	Pt/NiFe LDH/NF	1000 h@400 mA cm ⁻²	1 M NaOH + 0.5 M NaCl + 0.05 M Na ₂ SO ₄	Angew. Chem. Int. Ed. 60 , 22740–22744 (2021)
electrostatic repulsion (SO ₄ ²⁻ immobilization through Ba ²⁺)	NiFeBa LDH/Ni mesh	10000 h@400 mA cm ⁻²	(1 M NaOH + seawater + 0.05 M Na ₂ SO ₄	Adv. Mater. 36 , 2411302 (2024)
electrostatic repulsion (CO ₃ ²⁻ & GQDs)	CoFe- C _i @GQDs/NF	2800 h@1250 mA cm ⁻²	1 M KOH + 0.5 M NaCl	Nat. Sustain. 7 , 158–167 (2024)
physical shielding (MnO _x)	MnO _x /NiFe LDH/NF	72 h@50 mA cm ⁻²	1 M KOH + seawater	Inorg. Chem. 61 , 15256 (2021)
physical shielding (CeO ₂)	CeO₂-NiFe LDH/NF	500 h@1000 mA cm ⁻²	1 M KOH + seawater	J. Energy. Chem. 91 , 306 (2024)
physical shielding (MoO₃)	MoO₃@CoO/ CC	350 h@1000 mA cm ⁻²	1 M KOH + seawater	Small 20 , 2311431 (2024)

Supplementary Table 8. Comparison of cell voltage and tolerance of NiFe LDH/NF||Pt/C/NF with reported two-electrode electrolyzers.

Anode cathode	Tolerance@ <i>j</i>	Tolerance@cell voltage	Electrolyte	Ref.
NiFe LDH/NF Pt/C/NF	1000 h@1000 mA	1000 h@2.02 V	6 M KOH + seawater +	This work
- , 3 -7	cm ⁻²		20 mM PF ₆ ⁻	
NiFe LDH/NF Pt/NF	1000 h@400 mA	1000 h@~2.2 V	6 M NaOH + seawater	Angew. Chem. Int. Ed. 133,
	cm ⁻²		+ 0.23 M Na ₂ SO ₄	22922 (2021)
Ce-NiFe	120 h@300 mA	120 h@~2.24 V	1 M KOH + seawater	J. Energy. Chem. 91 , 306
LDH/NF Pt/C/NF	cm ⁻²			(2024)
NiFeBa LDH/Ni	100 h@400 mA	100 h@~1.98 V	6 M NaOH + seawater	Adv. Mater. 36 , 2411302
mesh Raney Ni	cm ⁻²		+ 0.23 M Na ₂ SO ₄	(2024)
(NiFe)C ₂ O ₄ /NF Pt/C/NF	150 h@500 mA	150 h@~2.4 V	1 M KOH + seawater	Angew. Chem. Int. Ed. 63,
	cm ⁻²			e202316522 (2024)
CoFeAl LDH/NF NF	500 h@1000 mA cm ⁻²	500 h@~2.06 V	20wt.% NaOH + satu. NaCl	Nat. Commun. 15 , 4712 (2024)
NiFePBA/Ni(OH) ₂ /NF P	500 h@500 mA	500 h@~2.23 V	500 000 20 1	Nano Today 58 , 102454
t/C/NF	cm ⁻²	300 H@ 2.23 V	1 M KOH + seawater	(2024)
Os-Ni ₄ Mo/MoO ₂ /NF (+,	200 h@200 mA	200 h@~2.3 V	1 M KOH + seawater	Adv. Mater. 36 , 2408982
-)	cm ⁻²	200 H@ 2.5 V	1 W KOH + Seawater	(2024)
PO ₄ ³⁻ -intercalated NiFe	200 h@500 mA	200 h@~2 09 V	6 M KOH + seawater	Nat. Commun. 15 , 10351
LDH/NF Raney Ni	cm ⁻²	200 h@~2.08 V	6 M KOH + Seawater	(2024)
CoFe-Ci@GQDs/NF (+,	200 h@442 mA	200 h @ ~2 71 V	1 M KOH with 0.5 M	Nat. Sustain. 7 , 158–167
-)	cm ⁻²	200 h@~2.71 V	NaCl	(2024)
NiFe	1200 h@400 mA	300 k @ ~1 00 V	1.04.1/011	Adv. Mater. 36 , 2306062
LDH@Ag/NF∥Cu ₂ S@Ni	cm ⁻²	200 h@~1.98 V	1 M KOH + seawater	(2024)
MoO₃@CoO/CC (+, -)	500 h@1000 mA	500 h@~1.93 V	1.93 V 1 M KOH + seawater	Nat. Commun. 15 , 2481 (2024)
141003@C00/CC (+, -)	cm ⁻²	300 HW 1.93 V		Nat. Commun. 13, 2401 (2024)
Ni ₃ FeN@PO ₄ ³⁻ /NF Pt-	140 h@1000 mA	140 h@~2.07 V	1 M KOH + seawater	Adv. Mater. 37 , 2415421
Ni@NiMoN/NF	cm ⁻²	170 HW 2.07 V	T IVI NOTI + Seawater	(2024)
P ₃ O ₁₀ ⁵⁻ -	240 h@1400 mA	240 h~2.2V	1 M KOH + seawater	Adv. Energy Mater. 15 ,
Ni(OH)₂/NF∥Pt/C/NF	cm ⁻²	270 II 2.2 V	1 WI KOTT - Scawatel	2402883 (2025)