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Editorial on the Research Topic

Microbial siderophores: Biosynthesis, Regulation, and Physiological and Ecological Impacts

Iron is essential for virtually all living organisms because iron-dependent proteins are employed to
perform a myriad of functions in diverse biological processes (Wandersman and Delepelaire, 2004;
Andrews et al., 2013). Siderophore-dependent iron acquisition is the most efficient strategy for
microorganisms to obtain iron from the low-iron environments (Wilson et al., 2016). Siderophores
are small molecules specifically chelating ferric ions and are categorized into several groups based
on the iron-binding moiety. Siderophores are generally inducibly synthesized and secreted in
response to iron starvation (Andrews et al., 2013; Chareyre and Mandin, 2018). While the diversity
of the siderophore biosynthetic pathways is enormous, they either employ non-ribosomal peptide
synthetases (NRPSs) or NRPS-independent enzymes (Barry and Challis, 2009). Microorganisms
usually producemultiple different siderophores, with one primarily responsible for iron acquisition
and others implicated in a variety of physiological processes (Rütschlin et al., 2018). Many
siderophores possess beneficial and antimicrobial properties, playing an important role in directly
shaping microbial community by mediating cooperative, exploitative and competitive interactions
(Kramer et al., 2020). Moreover, recently they show potential in medical and environmental
applications (Kurth et al., 2016; Ribeiro and Simões, 2019).

This Research Topic contains four original research and one review articles. Two articles
discuss the physiological function of siderophores produced by Yersinia pseudotuberculosis and
Salmonella enteritidis. It has been well known that an iucABCD-iutA operon encodes a biosynthesis
system for aerobactin in many bacteria. But this may not be the case in iucABCD-iutA-carrying
pathogenic Yersinia spp. as aerobactin had never been detected before the study of Li et al. In
their article, multiple lines of evidence were presented to show that Y. pseudotuberculosis YPIII
is able to produce aerobactin, which is fully dependent on the operon. The operon appears
to be under the direct repression of the ferric uptake regulator (Fur) in response to changes
in iron concentrations. This aerobactin-mediated iron acquisition system not only plays an
important role in supporting growth under low-iron conditions, but also is involved in biofilm
formation, resistance to oxidative stress, removal of reactive oxygen species, and virulence. The
work emphasizes the importance of aerobactin in the general physiology and the pathogenesis
of Y. pseudotuberculosis. The investigations carried out by Wellawa et al. focus on the role of
the siderophore-mediated (enterobactin and salmochelin) Fe3+ and the FeoABC-mediated Fe2+

uptake systems in colonization of Salmonella enteritidis in chicken. The results clearly show that
both systems contribute in cecal colonization, rapid systemic spread, and survival in extraintestinal
sites in chickens. By using a bioluminescent reporter, the authors were able to visualize the changes

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.892485
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.892485&domain=pdf&date_stamp=2022-04-18
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:haichung@zju.edu.cn
https://doi.org/10.3389/fmicb.2022.892485
https://www.frontiersin.org/articles/10.3389/fmicb.2022.892485/full
https://www.frontiersin.org/research-topics/21160/microbial-siderophores-biosynthesis-regulation-and-physiological-and-ecological-impacts
https://doi.org/10.3389/fmicb.2021.699913
https://doi.org/10.3389/fmicb.2022.824052


Gao and Bian Editorial: Microbial Siderophores

in iron availability during gastrointestinal colonization of
Salmonella via ex vivo imaging. They found that in the cecal
compartment iron shortage becomes apparent to the bacterial
cells even at early colonization stages. To overcome this,
both iron acquisition systems are required although there is a
redundancy. Overall, the work provides an invaluable insight
into the impacts of iron acquisition on Salmonella colonization
in chickens and stresses the need for an understanding of
Salmonella iron homeostasis and its regulation.

A research article by Zhang et al. aims at siderophore
biosynthesis in fungi, in which these small molecular iron
chelators participate in the multiple cellular processes. They
discovered the siderophores and identified their biosynthetic
pathway from Metarhizium robertsii ARSEF2575. This study
highlights the method using differentially transcriptional
expressions of biosynthetic genes under different iron
concentration conditions. It was found that three genes
from different NRPS gene clusters were upregulated under
iron-deficient conditions, which leads to the identification of
new coprogen metachelin C that was connected to a gene cluster
by deletion of mrsidA and mrsidD. This work lays a foundation
for further finding for new siderophores and studying the
functions of siderophores. Apart from this, a research article
by Khan et al. discusses activity of catecholate siderophores
released by E. coli against fungus Aspergillus nidulans. The
study found that catecholate siderophore purified from an E.
coli strain, presumably enterobactin, impacts the physiology of
A. nidulans profoundly, evidenced by decreased colony size,
increased filament length, and altered hyphal branching pattern.
Interestingly, siderophore-treated cells show a reduction in
the overall antioxidative enzyme activity but catalase appears
to be different. Further analyses reveal that upon siderophore
exposure, the fungal cells suffer from the membrane damage
judged by changed malondialdehyde contents. Authors proposed
that the oxidative stress caused by siderophore-mediated iron
influx largely accounts for the inhibition and killing.

The only review article by Liu et al. consider recent
advances in the siderophore biology of Shewanella, a group
of ubiquitously distributed γ-proteobacteria that include

animal/human pathogens and ones well-recognized for their

potential in bioenergy. These bacteria encode and produce
a large number of iron-containing proteins, cytochromes c
in particular, and therefore, have a high demand for iron.
To meet this, an array of novel features have been evolved,
including a siderophore system that is able to synthesize a
variety of siderophores, many siderophore receptors that
recognize siderophores released by other bacteria, regulatory
systems that coordinate iron uptake, storage, and assumption
for maintaining homeostasis. They also review physiological
impacts of siderophore in these bacteria, some of which
are unusual, especially those on cytochrome c biosynthesis.
Although to support growth the siderophore-mediated Fe3+

uptake system is still secondary to the feo-mediated Fe2+

uptake system, the former is closely linked to cytochrome c
biosynthesis. Given cytochromes c endow Shewanella respiratory
versatility and great potential for biotechnological applications,
the biology of siderophore in these bacteria appears to be
particularly important and needs to be explored further as
the current understanding of the subject in Shewanlle is
rather limited.

The articles in this Research Topic shed light on
the diverse roles of siderophores for physiological
adaptation to intra/extracellular environmental
change. We hope that the findings presented in
these topic articles will pave the way for future
studies on the biochemistry, physiology, ecology,
and medical and environmental applications of
microbial siderophores.
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