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Abstract
Cells with the same genotype growing under the same conditions can show different pheno-

types, which is known as “population heterogeneity”. The heterogeneity of hematopoietic

progenitor cells has an effect on their differentiation potential and lineage choices. However,

the genetic mechanisms governing population heterogeneity remain unclear. Here, we

present a statistical model for mapping the quantitative trait locus (QTL) that affects hemato-

poietic cell heterogeneity. This strategy, termed systems mapping, integrates a system of

differential equations into the framework for systems mapping, allowing hypotheses regard-

ing the interplay between genetic actions and cell heterogeneity to be tested. A simulation

approach based on cell heterogeneity dynamics has been designed to test the statistical

properties of the model. This model not only considers the traditional QTLs, but also indi-

cates the methylated QTLs that can illustrate non-genetic individual differences. It has sig-

nificant implications for probing the molecular, genetic and epigenetic mechanisms of

hematopoietic progenitor cell heterogeneity.

Introduction
Cell fate decision is an important question during developmental processes, such as embryo-
genesis, neurogenesis, and hematopoiesis. During the hematopoiesis process, hematopoietic
stem cells (HSCs) proliferate to self-renew or differentiate to progenitor cells, which generate
mature blood cells. These progenitors, including common lymphoid progenitors (CLPs) and
common myeloid progenitors (CMPs), can differentiate into more committed progenitors that
give rise to blood cells. These progenitors can be used for bone marrow transplantation to treat
diseases such as leukemia, sickle cell anemia, and thalassaemia [1–4].

Hematopoietic multipotential progenitors have two major differentiation choices: erythroid
and myeloid lineages, which are regulated by the key transcription factors, Gata1 and PU.1.
These two transcription factors positively regulate lineage-specific genes and repress each other
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[5]. In addition to transcriptional networks, genetic and epigenetic mechanisms are critical in
determining cell fate.

Genetically identical hematopoietic progenitor cells growing under the same conditions can
show differences in phenotypic characteristics, which is known as “population heterogeneity”,
and has attracted interest for many years. However, it remains unclear whether this non-genet-
ic characteristic affects cell fate determination. A previous report published in Nature by
Chang et al. [6] showed that gene expression of noise controls the lineage choices of hemato-
poietic progenitor cells. However, the genetic mechanisms that control this process have not
been explored in that paper. Cell fate conversions are dynamic with changes in chromatin
structure regulated by DNA and histone modifications, including DNAmethylation at sym-
metrical CG dinucleotides (CpG) and histone methylation and acetylation. Epigenetic regula-
tion has been studied in hematopoietic lineage specification based on coordinated changes in
gene expression, chromatin state, and DNAmethylation [5,7,8].

Genetic mapping can provide a view of network and gene actions, as well as interactions with
quantitative trait loci (QTLs), which can demonstrate the effects of genetic variation. Functional
mapping developed byWu et al. differs from the traditional mapping strategies, and is a very use-
ful method to analyze dynamic data, as well as mapping QTLs related to development processes
including cell apoptosis, cancer stem cell proliferation [9–12], et al. Clonal population heteroge-
neity, which is known as “non-genetic cell individuality”, cannot be analyzed using traditional
QTLs. Several studies have examined the link between DNAmethylation and gene expression, as
well as mapping the methylated QTLs (meQTLs) to interpret the mechanisms underlying genetic
variants [13,14]. meQTLs may increase our understanding of population heterogeneity and line-
age choice problems, which cannot be demonstrated by alterations in the DNA sequences.

The aim of this article was to explore the genetic mechanisms regulating cell population het-
erogeneity and hematopoietic progenitor cell lineage choices. Besides the traditional QTL anal-
ysis, we mapped the effects of genetic variation on DNAmethylation, focusing on mapping
meQTLs that determine population heterogeneity and lineage choices.

Methods

Mathematical modeling of the evolution of two hematopoietic progenitor
cell subpopulations
Hematopoietic progenitor cells show heterogeneity in one clonal population. The expression level
of stem-cell-surface marker Sca-1 showed an approximately 1000-fold range within one newly de-
rived clonal cell population based on flow cytometric analysis. Cells with the highest, middle and
lowest ~15% Sca-1 expression level were isolated from one clonal population as separate subpopula-
tions using fluorescence-activated cell sorting (FACS). Within hours, all three subpopulations
showed narrow Sca-1 histograms; however, the three fractions regenerated Sca-1 histograms similar
to that of the parental (unsorted) population after 21-day culture. A two-Gaussian model that best
fitted the observed histogram evolution and restoration of the parental distribution was predomi-
nantly driven by state transitions between the subpopulations. Linear and nonlinear ordinary differ-
ential equations (ODEs) are used to describe the transition of the two subpopulations, respectively.

Based on Fig 1, Chang et al. [6] proposed a linear model of equations for the size xi of sub-
population i:

dx1
dt

¼ rx1 � k1x1 þ k2x2

dx2
dt

¼ rx2 þ k1x1 � k2x2

ð1Þ
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where x1 and x2 represent the sizes of subpopulations 1 and 2, r is the growth rate of both sub-
populations, k1 is the transition rate from x1 to x2 and vice versa for k2.

To increase our understanding of the asymptotic behavior and explain the sigmoidal in-
crease of x1 and x2, a nonlinear dynamic model of two interacting and growing progenitor cell
populations was proposed based on Fig 2. The ordinary differential equations governing the
growth of the two subpopulations will then be:

dx1
dt

¼ ½rx1 � k1x1 þ k2x2� � k3w2x1 þ k4w1x2

dx2
dt

¼ ½rx2 þ k1x1 � k2x2� þ k3w2x1 � k4w1x2

ð2Þ

where x1 and x2 represent the sizes of subpopulations 1 and 2, r is the growth rate of both sub-
populations, k1 is the transition rate from x1 to x2 and vice versa for k2, and k3 and k4 are pa-
rameters determining the feedback rate.

Statistical modeling of systems mapping
Systems mapping is a statistical model that views a complex phenotype as a dynamic system,
dissects it into its underlying components, coordinates different components in terms of biolog-
ical laws through mathematical equations, and maps specific genes that mediate each compo-
nent and its connection with other components [15]. As a bottom—top model, a systems
approach can identify specific QTLs that govern the developmental interactions between vari-
ous components, giving rise to the function and behavior of the system. By estimating and

Fig 1. Linear model of two interacting and growing progenitor cell subpopulations.

doi:10.1371/journal.pone.0126937.g001

Fig 2. Nonlinear dynamic model of two interacting and growing progenitor cell subpopulations.

doi:10.1371/journal.pone.0126937.g002
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testing mathematical parameters that specify the system, systems mapping allows us to predict
the critical genetic mechanisms governing alterations in the physiological status of a phenotype.

Sampling strategy
Suppose there is a natural population drawn at random. From a genetic perspective, we assume
the original population follows Hardy-Weinberg equilibrium. The n sampled subjects are gen-
otyped for a set of molecular markers, such as single nucleotide polymorphisms (SNPs). As-
sume that there exists a particular gene that controls the dynamics of cell interactions and
growth. This gene has three alleles; namely, Q, q, and q+, whose frequencies are q1, q2, and 1-q1-
q2 in the population, and q+ represents the methylated state of q. Let μj denote the genotypic
value of size for x1 and x2 with j = 0 to 5 for QQ, Qq, Qq+, qq, qq+, and q+q+, respectively.

The actual gene for cell dynamics, called the quantitative trait locus (QTL), cannot be ob-
served directly, but it can be inferred from associated markers. Consider a SNP with allelesM
vs.m, with respective frequencies p1 vs. 1—p1 in the population. The SNP and QTL form six
haplotypes; namely,MQ,Mq, Mq+,mQ,mq andmq+, with respective frequencies PMQ = PMPQ
+ D1,PMq = PMPq+D2, PMqþ ¼ PMPq � D1 � D2 , PmQ = PmPQ-D1, Pmq = PmPq-D2, and Pmqþ ¼
PmPqþ þ D1 þ D2 in the population, where D1 and D2 are a linkage disequilibrium between the

marker and QTL.
In the parental progeny of the population, the haplotypes unite randomly to generate 21

diplotypes and 18 genotypes, whose frequencies can be expressed in terms of haplotype fre-
quencies. We express the genotype frequencies in matrix notation, with rows representing
marker genotypes and columns representing QTL genotypes (Table 1). Thus, the conditional
probabilities of QTL genotypes, conditional upon marker genotypes, can be derived according
to Bayes’ theorem.

Likelihood. Systems mapping embeds a system of differential equations into a genetic
mapping setting constructed using a segregating population. Genetic mapping uses a mixture
model-based likelihood to estimate genotype-specific parameters by assuming j QTL geno-
types. For a progenitor cell population i, we obtain the size, x1 and x2, for the two following cell
subpopulations at a finite set of times, 1, . . ., T. A linear model for describing the phenotypic
values of population i controlled by a putative gene is expressed as:

x1iðtÞ ¼
X5
j¼0

xim
ðx1Þ
j ðtÞþeðx1Þi

x2iðtÞ ¼
X5
j¼0

xim
ðx2Þ
j ðtÞþeðx2Þi

ð3Þ

where ξi is an indicator variable defined as 1 if this population belongs to a specific genotype
and 0 otherwise; time t, mx1

j ðtÞ, and mx2
j ðtÞ are the genotypic values of type k for the cell size at

time t, respectively; and ex1i and ex2i are the residual errors of subject i for cell x1 and x2 at time
t, respectively.

Table 1. Conditional probabilities of QTL genotypes givenmarker genotypes in a natural population.

QQ Qq Qq+ qq qq+ q+q+

MM PMQ
2 2PMQPMq 2PMQPMq+ PMq

2 2PMqPMq+ PMq+
2

Mm 2PMQPmQ 2PMQPmq+2PMqPmQ 2PMQPmq++2PMq+PmQ 2PMqPmq 2PMqPmq++2PMq+PmQ 2PMq+Pmq+

mm PmQ
2 2PmQPmq 2PmQPmq+ Pmq

2 2PmqPmq+ Pmq+
2

doi:10.1371/journal.pone.0126937.t001
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For the mapping population of nmembers with marker information (M) and phenotypic
data (Yi) for the two subpopulations, we formulate the likelihood as:

LðM;YÞ ¼
Yn
i¼1

X5

j¼0

pjjifjðYi;Yj;CÞ
" #

ð4Þ

whereYi = (x1i(1),. . .,x1i(T),x2i(1),. . .,X2i(T)) represents phenotypic data for the subpopulation
weights, πj|i is the mixture proportion representing the conditional probability of QTL geno-
type k given the marker genotype of progenitor cell population i; and fj(Yi;Θj,C) is a multivar-
iate normal distribution with an expected mean vector, mj ¼ ðmx1jð1Þ ; . . .; mx1jðTÞ ; mx2jð1Þ ; . . .; mx2jðTÞ Þ,
for population i that belongs to QTL genotype j, and covariance matrix

S ¼ S1 S1�2

S2�1 S2

 !
ð5Þ

with S1and S2 being the time-dependent covariance matrix for x1 and x2, respectively, and
S1x2 = S2×1

T being the time-dependent covariance matrix between these two variables.
Modeling mean vectors. The biological merit of systems mapping is to model genotype-

specific differences in the time-dependent mean vector using a biologically meaningful mathe-
matical equation [9]. When modeling the dynamic behavior of progenitor cell transition,
Chang et al. [6] developed a set of ordinary differential equations (ODEs) as shown in (1) and
(2). The overall behavior of progenitor cell heterogeneity can be described and quantified by
ODE solution's parameters (r, k1, k2) for the linear model and parameters (r, k1, k2, k3, k4) for
the nonlinear model. Differences in any one or more of these parameters will influence cell
transition dynamics.

For a particular QTL genotype j, the dynamic behavior of ODE can be specified by a set of
parameters Θuj = (rj,k1j,k2j) (for the linear differential equation) or Θuj = (rj,k1j,k2j,K3j,k4j) (for
nonlinear differential equations). In other words, by changing any one or more parameters in
Θuj, the trajectory of cell transition dynamics may change. Thus, by incorporating ODE into
functional mapping, a statistical framework originally derived to estimate QTL genotype-spe-
cific ODE parameters, Θuj, can be used to assess the genetic effects of QTLs on progenitor cell
transition by comparing the genotypic differences of the parameters.

Modeling covariance structure. The statistical power of systems mapping is partly the re-
sult of structured modeling of the covariance matrix. There are many approaches available to
model the covariance structure, including autoregressive [9], antedependent [16], autoregres-
sive moving average [17], nonparametric [18], and semiparametric [19]. These approaches
have their own advantages and disadvantages in terms of efficiency, flexibility, and parsimony.
Of these approaches, the antedependent model shows a good balance between these properties,
and Zhao et al. [20] extended it to model the covariance structure of multiple variables. In this
article, we use a bivariate antedependence approach for modeling the structure of the covari-
ance matrix (5).

The residual errors of the linear model (3) at time t depend on the previous residuals with
the degree of dependence decaying with time lag. If the current residuals only depend on their
first preceding ones, the model is called a first-order antedependence model [SAD(1)]. The
SAD(1) model specifies time-dependent residual errors for population i as:

eð1Þi ðtÞ ¼ φ1e
ð1Þ
i ðt � 1Þ þ �1e

ð1Þ
i ðt � 1Þ þ εð1Þi ðtÞ

eð2Þi ðtÞ ¼ φ2e
ð2Þ
i ðt � 1Þ þ �2e

ð2Þ
i ðt � 1Þ þ εð2Þi ðtÞ

ð6Þ
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where ϕ1 (or φ2) and φ1 (or ϕ2) are the unrestricted antedependence parameters induced by
variable 1 (or 2) itself and by the other variable 2 (or 1), respectively; ε1i ðtÞ and ε2i ðtÞ are the ‘‘in-
novation” errors assumed to be bivariate-normally distributed with mean zero and variance
matrix:

SεðtÞ ¼
u21ðtÞ u1ðtÞu2ðtÞrðtÞ

u1ðtÞu2ðtÞrðtÞ u22ðtÞ

 !
ð7Þ

For simplicity, we assume that Sε(t) is time-independent; i.e., ν1, ν 2, and ρ are not depen-
dent on time. Based on the above assumptions, Sε becomes a block matrix with the diagonal
repeating the following unit T times,

Sε ¼
u21 u1u2r

u1u2r u22

 !
ð8Þ

All parameters modeling the covariance matrix Sε are arrayed in vectorCe = (ϕ1,φ2,φ1,ϕ2,
υ1,υ2,ρ). With model (6), closed forms for the determinant and inverse of the structured matrix,
which enhances computing efficiency, were derived [20].

Computational algorithms. Three algorithms were integrated to estimate marker-QTL
haplotype frequencies using the EM algorithm; the genotype-specific ODE parameters for pro-
genitor cell transition dynamics by the fourth-order Runge-Kutta algorithm [21,22] and the
SAD (1) parameters for the covariance structure using simplex algorithm. We derived a closed-
form solution for the EM algorithm to estimate haplotype frequencies. In the E step, we calculat-
ed the posterior probability with which population i carries QTL mating type genotype jm using:

Pjji ¼
pjjifjðYiÞX5

j¼0
pjjifjðYiÞ

ð9Þ

In the M step, the calculated posterior probability was used to estimate marker-QTL haplo-
type frequencies by:

P
^
MQ ¼ 1

2n
ð2P5j2i þP4j2i þP3j2i þP5j1i þ y1P4j1i þ y2P3j1iÞ

P
^
Mq ¼

1

2n
ð2P2j2i þP4j2i þP1j2i þP2j1i þ ð1� y1ÞP4j1i þ y3P1j1iÞ

P
^
Mqþ ¼ 1

2n
ð2P0j2i þP3j2i þP1j2i þP0j1i þ ð1� y2ÞP3j1i þ ð1� y3ÞP1j1iÞ

P
^
mQ ¼ 1

2n
ð2P5j0i þP5j1i þP4j0i þP3j0i þ ð1� y1ÞP4j1i þ ð1� y2ÞP3j1iÞ

P
^
mq ¼ 1

2n
ð2P2j0i þP2j1i þP4j0i þP1j0i þ y1P4j1i þ ð1� y3ÞP1j1iÞ

P
^
mqþ ¼ 1

2n
ð2P0j0i þP0j1i þP3j0i þP1j0i þ y2P3j1i þ y3P1j1iÞ

y1 ¼ PMQPmq=ðPMQPmq þ PMqPmQÞ
y2 ¼ PMQPmqþ=ðPMQPmqþ þ PMqþPmQÞ
y3 ¼ PMqPmqþ=ðPMqPmqþ þ PMqþPmqÞ

ð10Þ
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In each iteration of the EM step, we estimated ODE parameters,Yuj
¼ ðrj; k1j; k2jÞ(for the

linear differential equation) orYuj
¼ ðrj; k1j; k2j; k3j; k4jÞ (for nonlinear differential equations)

using the Runge-Kutta algorithm, and covariance-structuring parameters, andCe = (ϕ1,φ2,φ1,
ϕ2,υ1,υ2,ρ), using the simplex algorithm. The Runge—Kutta and simplex algorithms are inte-
grated within the EM framework to generate each iterative procedure, which is repeated until
the parameters converge to stable values.

Hypothesis tests
Whether there are specific QTLs for progenitor cell transition dynamics can be tested by for-
mulating the following hypotheses:

H0 : Cmjm
� Cmj ¼ 5; 4; 3; 2; 1; 0; m ¼ 2; 1; 0 ð11Þ

H1 : At least one of the equalities above does not hold;

where the H0 corresponds to the reduced model, in which only one single curve of transition
dynamics exists; and H1 corresponds to the full model, in which there exists six such different
curves to fit the data. We calculate this hypothesis to reduce the full model using the log-likeli-
hood ratio (LR). The critical threshold is determined empirically from permutation tests [23].

Two variables, x1 and x2, may or may not be controlled by the same gene. The pleiotropic
control of the gene over these two variables can be tested by formulating the null hypotheses:
H0:rjm � r and kijm � ki j = 5,4,3,2, 1, 0; m = 2, 1, 0; i = 1,2 for the linear model and 1,2,3,4 for
the nonlinear model

H1 : At least one of the equalities above does not hold ð12Þ

If the null hypothesis is rejected, this indicates that the gene detected exerts a pleiotropic ef-
fect on progenitor cell heterogeneity.

Results
We performed simulation experiments to examine the statistical properties of the model built
for genetic mapping of the two subpopulations of hematopoietic progenitor cell transitions. Fu
et al. provided much more detailed information regarding the test and validation of systems
mapping [24]. The transition process was described by linear and nonlinear ODEs, and the
simulation assumed different heritabilities (0.05, 0.1 and 0.2) under different human popula-
tion sizes (200 and 400) at Hardy-Weinberg equilibrium, considering a SNP marker that is as-
sociated with a putative QTL(with six genotypes QQ, Qq, Qq+, qq, qq+, and q+q+) through
linkage disequilibrium (LD). The transition parametersYuj

= (rj, k1j, k2j) andYuj
= (rj, k1j, k2j,

k3j, k4j) for the six genotypes were determined in the ranges of empirical estimates of these pa-
rameters. Note that for computational simplicity, r, k1, k2, k3 and k4 are provided as shown in
Tables 2, 3, 4 and 5. Based on allele frequencies of the marker, QTL, and their LD, joint marker
and phenotypic data were simulated. The genetic parameters (P, Q1, Q2, D1, and D2) of the
QTL can be estimated with high precision using the EM algorithm. The genotype-specific
mean vectors were modeled based on ODE's solution (3) where the covariance matrix was
structured by the first-order antedependence model [SAD(1)] with correlation and variance
parameters,Ce = (ϕ1,φ2,φ1,ϕ2,υ1,υ2,ρ), for w1 and w2.

The simulation results of cell transition parameters, genetic parameters, and covariance-
structural parameters with the linear and nonlinear model are shown in Tables 2 and 3 and Ta-
bles 4 and 5, respectively. The cell transition parameters can be estimated with high precision

SystemsMapping for Cell Heterogeneity
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in both linear and nonlinear models. The precision of estimation of marker allele frequency is
not affected by differences in heritability, but estimates of transition parameters, QTL allele fre-
quency, and marker-QTL linkage disequilibrium are more precise for a higher than a lower
heritability and for a bigger than a smaller population. The covariance-structural parameters
can also be estimated, partly because of their simple structure for covariance modeling.

The six QTL genotypes QQ, Qq, Qq+, qq, qq+, and q+q+ are each hypothesized to have differ-
ent response curves for different human populations. Figs 3 and 4 illustrate different forms of
the cell population transition for six QTL genotypes,QQ, Qq, Qq+, qq, qq+, and q+q+, under dif-
ferent heritabilities (0.05, 0.1 and 0.2) with size 400 populations, with the transitional values
given in Table 3 for the linear model and Table 5 for the nonlinear model. Pronounced differ-
ences among the genotypes suggest that the QTL may affect cell transitions, resulting in differ-
ent cellular phenotypes. Meanwhile, we considered the methylated QTL status (Qq+, qq+, and
q+q+), which could illustrate phenotypic differences among cells with the same DNA se-
quences. The cell transition values can be estimated from the model. The model displays great
power in detecting a QTL responsible for cell transitions using the associated marker. The tra-
jectories of additive and dominant effects of subpopulations x1 and x2 are shown as Figs 5 and
6 for the linear model and nonlinear model, respectively. We could observe the genetic archi-
tecture of the transition dynamics of the two subpopulation cells.

Discussion
As more investigators use stem/progenitor cells to study the mechanisms of pluripotency and
differentiation, they pay greater attention to cell heterogeneity and variability, which affects the
use of pluripotent cells in regenerative medicine, disease modeling, and studying development
processes. New methodologies, including single-cell and single-molecule analysis, as well as
mathematical and computational modeling have been developed to explore pluripotent cell
population heterogeneity. Emerging evidence has found differences in gene expression profiles
at the mRNA level and functional differences in the differentiation within a heterogeneous cell
population. However, the genetic status such as genetic backgrounds and epigenetic profiles in-
cluding methylation of CpG islands and histone modifications remain unclear. Previous re-
ports by Chang et al. [6] showed that transcriptome noise leads to clonal heterogeneity and
controls lineage choices, but the genetic mechanisms of the heterogeneity and differentiation
potential were not described.

In this article, we developed a statistical model that combined the mathematical concepts re-
garding cellular mechanisms and a general framework for mapping dynamic traits [15]. Both
linear and nonlinear ODEs use specific parameters to describe how cells transit from one state
to another during cell culture and test the magnitude and patterns of genetic effects in the pro-
cess. The estimates of response curves are more precise for the linear model (Fig 3). However,
the nonlinear model includes more parameters and information regarding complex cell prolif-
eration and transition processes, so it may be more close to the true conditions. This model
first considers methylated DNA as an allele in this “heterogeneity” based question, which indi-
cates that different methylation states affect the phenotypes of the cells with the same genotype.
Therefore, the model provides a tool to generate biologically meaningful hypotheses for under-
standing the genetic control of population cell heterogeneity.

The model proposed in this article considered only six genotypes; namely, QQ, Qq, Qq+, qq,
qq+, and q+q+, but biologically there should be more methylated states of the genotypes such as
Q+Q+, Q+q, and Q+q+. The allele frequencies of the marker, QTL and their LD, joint marker
and phenotypic data, and the statistical model will be more complex in this situation. In addi-
tion, further cellular and molecular experiments are required to confirm the exact DNA
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Fig 3. Estimated and true curves of systemsmapping for the linear progenitor cell transition dynamicsmodel. The curves show a putative QTL
having six genotypes,QQ,Qq,Qq+, qq, qq+, and q+q+, as indicated by colors in a natural population of 400 assuming heritabilityH2 = 0.05 (a),H2 = 0.1 (b),
andH2 = 0.2 (c), respectively. The broad consistency between the estimated (solid) and true curves (broken) suggests that the model provides a good
estimate of the dynamic system.

doi:10.1371/journal.pone.0126937.g003
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Fig 4. Estimated and true curves of systemsmapping for the nonlinear progenitor cell transition dynamicsmodel. The curves show a putative QTL
having six genotypes,QQ,Qq,Qq+, qq, qq+, and q+q+, as indicated by colors in a natural population of 400 assuming heritabilityH2 = 0.05 (a),H2 = 0.1 (b),
andH2 = 0.2 (c), respectively. The broad consistency between the estimated (solid) and true curves (broken) suggests that the model provides a good
estimate of the dynamic system.

doi:10.1371/journal.pone.0126937.g004
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modification states of these cells, and a model incorporating multiple QTL and their interactive
networks should be derived. However, the model will be useful in elucidating the genetic archi-
tecture, especially epigenetic mechanisms of cell heterogeneity, and could increase our under-
standing of the driving forces behind cell heterogeneity and transitions.

Fig 5. Trajectories of genetic effects on the linear progenitor cell transition dynamics model, including additive and dominant effects from x1 and
x2.

doi:10.1371/journal.pone.0126937.g005

Fig 6. Trajectories of genetic effects on nonlinear progenitor cell transition dynamicsmodel, including additive and dominant effects from x1 and
x2.

doi:10.1371/journal.pone.0126937.g006
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