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Abstract: Uncertainty about linkage phases of multiple single nucleotide polymorphisms (SNPs) in heterozygous diploids 

challenges the identification of specific DNA sequence variants that encode a complex trait. A statistical technique im-

plemented with the EM algorithm has been developed to infer the effects of SNP haplotypes from genotypic data by as-

suming that one haplotype (called the risk haplotype) performs differently from the rest (called the non-risk haplotype). 

This assumption simplifies the definition and estimation of genotypic values of diplotypes for a complex trait, but will re-

duce the power to detect the risk haplotype when non-risk haplotypes contain substantial diversity. In this article, we in-

corporate general quantitative genetic theory to specify the differentiation of different haplotypes in terms of their genetic 

control of a complex trait. A model selection procedure is deployed to test the best number and combination of risk haplo-

types, thus providing a precise and powerful test of genetic determination in association studies. Our method is derived on 

the maximum likelihood theory and has been shown through simulation studies to be powerful for the characterization of 

the genetic architecture of complex quantitative traits.  
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INTRODUCTION  

 The high-throughout technology of single nucleotide 

polymorphisms (SNPs) provides a powerful tool for studying 

the detailed genetic and developmental architecture of com-

plex traits, such as human diseases, because SNPs residing 

within a coding sequence can alter the biological function of 

a protein that forms a phenotype [1-2]. However, current 

experimental techniques have still not achieved a point at 

which multiple SNPs can be easily observed at their diplo-

type level [3]. Such a technological limitation makes it diffi-

cult to associate the phenotypes of a trait with specific DNA 

sequence variants (known as haplotypes) constructed by a set 

of SNPs, although recent genetic studies suggest that a gene 

may determine a complex trait through its haplotype rather 

than genotype [4-8]. More recently, a statistical model has 

been derived to estimate and test haplotype effects on trait 

variation with a random sample drawn from a natural popu-

lation [9-11]. This model implements the population genetic 

properties of gene segregation into a unifying mixture-model 

framework for haplotype discovery. It assumes that one 

haplotype composed of alleles at multiple SNPs is different 

from the remaining haplotypes in terms of genetic effects on 

a trait. The former is called the reference or risk haplotype 

[9], whereas the latter is collectively called the non-reference 

or non-risk haplotype. This simplified assumption allows the 

direct use of a traditional biallelic quantitative genetic model 

[12] and facilitates the definition and estimation of genetic 

effects triggered by different haplotypes, but it is limited in  
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practical use when there is substantial variation among the 

non-risk haplotypes.  

 The motivation of this work is to expand Liu et al.’s [9] 

original idea to model all possible effects of individual 

haplotypes by constructing a multi-allelic quantitative ge-

netic model within the mixture model framework. The multi-

allelic model deals with genetic effects triggered by multiple 

alleles at a single gene and is thought to be important for 

explaining genetic variation in a natural population. We use 

the multi-allelic model to define various additive and domi-

nance effects due to multiple risk haplotypes. Conventional 

model selection criteria are incorporated to choose the opti-

mal number and combination of risk haplotypes responsible 

for quantitative variation of a trait. We derived closed forms 

for the EM algorithm to estimate a variety of genetic pa-

rameters including haplotype frequencies and haplotype ef-

fects. Simulation studies are used to test the statistical behav-

ior of the model and validate its usefulness and utilization.  

METHOD  

Population and Quantitative Genetic Models  

 Suppose there are genetically associated SNPs each with 

two alleles designated as 1 and 0. Let p and q be the 1-allele 

frequencies for the first and second SNP, respectively. Thus, 

the 0-allele frequencies at different SNPs will be 1-p and  

1-q. These two SNPs segregating in a natural population 

form four haplotypes, 11, 10, 01 and 00, whose frequencies 

are constructed by allele frequencies and linkage disequilib-

rium (D) between the two SNPs, i.e., p11 = pq + D, p10 = p(1 

– q) – D, p01 = (1 – p)q – D, and p00 = (1 – p)(1 – q) – D. We 

use p = (p11, p10, p01, p00) to denote the haplotype frequency 
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vector. These haplotypes unite randomly to generate 10 dis-

tinct diplotypes and 9 distinct genotypes. If the population is 

at Hardy-Weinberg equilibrium, the frequency of a diplotype 

is expressed as the product of the frequencies of the two 

haplotypes that constitute the diplotype (Table 1). The fre-

quency of the double zygotic genotype is the summation of 

the frequencies of its two possible diplotypes.  

 We are interested in the detection of risk haplotype(s) 

constructed by the alleles of the two SNPs which encodes a 

quantitative trait. Below given are different genetic models 

used to identify risk haplotypes.  

Biallelic Model 

 Liu et al. [9] assumed that all haplotypes are sorted into 

two groups, risk and non-risk, and defined the combination 

of risk and non-risk haplotypes as a composite diplotype. Let  

A1 and A0 be the risk and non-risk haplotypes, respectively, 

which are equivalent to two alternative alleles if the two as-

sociated SNPs considered are viewed as a “locus”. Thus, for 

such a “biallelic locus”, we have three possible composite 

diplotypes whose genotypic values are specified as  

 

Composite Diplotype Genotypic Value 

A1 A1 μ1 = μ + a 

A1 A0 μ2 = μ + d 

  A0 A0 μ3 = μ - a 

       (1) 

 

where  μ is the overall mean, a is the additive effect due to 

the substitution of the risk haplotype by the non-risk haplo-

type, and d is the dominance effect due to the interaction 

between the risk and non-risk haplotypes. These parameters 

are arrayed in qB = (μ, a, d).  

 There are a total of seven options to choose the risk 

haplotype. First, because any one haplotype from 11, 10, 01 

and 00 can be risk, there are four choices for determining the 

risk haplotype. Second, any two haplotypes can be different 

from the rest, which includes three possibilities for combin-

ing the risk vs. non-risk haplotypes. All these options can be 

tabulated as follows:  
 

No. Risk Haplotype Non-risk Haplotype 

B1 11 10,01,00 

B2 10 11,01,00 

B3 01 11,10,00 

B4 00 11,10,01 

B5 11,10 01,00 

B6 11,01 10,00 

B7 11,00 10,01 

          (2) 

 

 The optimal choice of a risk haplotype for the biallelic 

model is based on the maximum of the likelihoods calculated 

for each of the seven options described above.  

Triallelic Model 

 It is possible that there are two distinct risk haplotypes 
which are each different from non-risk haplotypes. This case 

Table 1. Diplotypes and their Frequencies for each of Nine Genotypes at Two SNPs, Haplotype Composition Frequencies for Each 

Genotype, and Composite Diplotypes under Biallelic, Triallelic and Quadriallelic Models 

Diplotype Composite Diplotype 

Genotype 

Configuration Frequency 

Relative Diplotype  

Frequency Biallelic Triallelic Quadriallelic 

11/11  [11][11] p
2

11
 1 A1A1   A1A1   A1A1 

11/10  [11][10] 2p11p10 1 A1A0   A1A2   A1A2 

11/00  [10][10] p
2

10
 1 A0A0   A2A2   A2A2 

10/11  [11][01] 2p11p01 1 A1A0   A1A0   A1A3 

10/10 
 [11][00] 

 [10][01] 

2p11p00 

2p10p01 

 

1 –   

A1A0 

A0A0 

  A1A0 

A2A0 

  A1A0 

A2A3 

10/00  [10][00] 2p10p00 1 A0A0   A2A0   A2A0 

00/11  [01][01] p
2

01
 1 A0A0   A0A0   A3A3 

00/10  [01][00] 2p01p00 1 A0A0   A0A0   A3A0 

00/00  [00][00] p
2

00
 1 A0A0   A0A0   A0A0 

Two alleles for each of the two SNPs are denoted as 1 and 0, respectively. Genotypes at different SNPs are separated by a slash. Diplotypes are the combination of two bracketed 
maternally and paternally derived haplotypes. Risk haplotype(s) is assumed as [11] for the biallelic model, [11] and [10] for the triallelic model, and [11], [10] and [01] for the 
quadriallelic model.  
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is regarded as a “triallelic locus". Let A1 and A2 be the first 
and second risk haplotypes, and A0 be the non-risk haplo-
type, which form six composite diplotypes with genotypic 
values expressed as  

 

Composite Diplotype Genotypic Value 

A1 A1 μ1 = μ + a1 

A2 A2 μ2 = μ + a2 

A0 A0 μ3 = μ – a1 – a2 

A1 A2  μ4 = μ + 
 
1

2
 (a1 + a2) + d12 

A1 A0 μ5 = μ – 
 
1

2
 a1 + d10 

A2 A0 μ6 = μ – 
 
1

2
 a1 + d20 

     (3) 

 

where μ is the overall mean, a1 and  a2 are the additive ef-

fects due to the substitution of the first and second risk 

haplotype by the non-risk haplotype, and d12, d10 and d20 are 

the dominance effects due to the interaction between the first 

and second risk haplotype, between the first risk haplotype 

and the non-risk haplotype and between the second risk 

haplotype and non-risk haplotype, respectively. These pa-

rameters are arrayed in qT = (μ, a2, a2, d12, d10, d20). 

 The triallelic model may include a total of six haplotype 
combinations, which are  

 

Risk Haplotype 
No. 

1 2 
Non-risk Haplotype 

T1 11 10 01,00 

T2 11 01 10,00 

T3 11 00 10,01 

T4 10 01 11,00 

T5 10 00 11,01 

T6 01 00 11,10 

          (4) 

 

 The optimal combination of risk haplotypes for the trial-
lelic model corresponds to the maximum of the likelihoods 
calculated for each of the six possibilities.  

Quadriallelic Model 

 If there are three distinct risk haplotypes, we need a 

quadriallelic genetic model to specify haplotype effects. Let 

A1, A2 and A3 be the first, second and third risk haplotypes, 

and A0 be the non-risk haplotype, which form 10 composite 

diplotypes with genotypic values expressed as  

 

Composite Diplotype Genotypic Value 

A1A1 μ1 = μ + a1 

A2A2 μ2 = μ + a2 

A3A3 μ3 = μ + a3 

A0A0 μ4 = μ – (a1 + a2 + a3) 

A1A2 μ5 = μ + 
 
1

2
 (a1 + a2) + d12 

A1A3 μ6 = μ + 
 
1

2
 (a1 + a2) + d13 

A2A3 μ7 = μ + 
 
1

2
 (a2 + a3) + d23 

A1A0 μ8 = μ – 
 
1

2
 (a2 + a3) + d10 

A2A0 μ9 = μ – 
 
1

2
 (a1 + a3) + d20 

A3A0 μ10 = μ – 
 
1

2
 (a1 + a2) + d30 

      (5) 

 

where μ is the overall mean, a1, a2 and a3 are the additive 

effects due to the substitution of the first, second and third 

risk haplotype by the non-risk haplotype, and d12, d13, d23, 
d10, d20, and d30 are the dominance effects due to the interac-

tion between the first and second risk haplotype, between the 

first and third risk haplotype, between the second and third 

risk haplotype, between the first risk and non-risk haplotype, 

between the second risk and non-risk haplotype, and be-

tween the third risk and non-risk haplotype, respectively. 

These parameters are arrayed in  qQ = (μ, a1, a2, a3 d12, d13, 

d23, d10, d20, d30). 

LIKELIHOOD  

 Assume that a total of n subjects are sampled from a 

Hardy-Weinberg equilibrium population and that each sub-

ject is genotyped for many SNPs and phenotyped for a quan-

titative trait. Consider two of the SNPs that form nine geno-

types with observed numbers generally expressed as  nr1r'1/r2 r'2
 

(r1, r'1, r2, r'2 = 1,0). The phenotypic value of the trait for 

subject i  is expressed in terms of the two-SNP haplotypes as  

 

1

J

i i J i

j

y eμ
=

= + ,           (6) 

where i is the indicator variable defined as 1 if subject i has 

a composite diplotype j and 0 otherwise, ei is the residual 

error, normally distributed as N(0, 
2
), and  J is the number 

of composite diplotypes expressed as  

 3 for the biallelic model 

J =  6 for the triallelic model   (7) 

 10 for the quadriallelic model. 
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 The genotypic values of composite diplotypes and vari-

ance are arrayed by a quantitative genetic parameter vector  

q = ( qB, 
2
) for the biallelic model, ( qT, 

2
) for the trial-

lelic model, and  ( qQ, 
2
) for the quadriallelic model.  

 The log-likelihood of haplotype frequencies, genotypic 

values of the diplotypes and residual variance given the phe-

notypic (y) and SNP data (S) is factorized into two parts, 

expressed as  

log L( p, q | y, S) = log L( p | S) + log L( q | y, S, p)

              (8) 

where  

 log L( p | S) = constant 

 +2n11/11 ln p11 + n11/10 ln(2 p11p10) + 2n11/00 ln p10 

+n10/11 ln(2 p11p01) + n10/10 ln(2 p11p00 + 2 p10p01) + n10/00 ln(2 

p10p00) + 2n00/11 ln p01 + n00/10 ln(2 p01p00) + 2n00/00 ln p00,   (9) 

 log L( qB | y, S, p) 

11 11 11 10 11 00

1 2 3

1 1 1

log ( ) log ( ) log ( )
n n n

i i i

i i i

f y f y f y
/ / /

= = =

= + +  

  

+
i=1

n
10/11

log f
2
( y

i
) +

i=1

n
10/10

log[ f
2
( y

i
) + (1 ) f

3
( y

i
)]+

i=1

n
10/00

log f
3
( y

i
)

00 11 00 10 00 00

3 3 3

1 1 1

log ( ) log ( ) log ( )
n n n

i i i

i i i

f y f y f y
/ / /

= = =

+ + +   (10) 

for the biallelic model assuming that haplotype 11 is a risk 

haplotype,  

 log L( qT | y, S, p) 

11 11 11 10 11 00

1 4 2

1 1 1

log ( ) log ( ) log ( )
n n n

i i i

i i i

f y f y f y
/ / /

= = =

= + +  

  

+
i=1

n
10/11

log f
5
( y

i
) +

i=1

n
10/10

log[ f
5
( y

i
) + (1 ) f

6
( y

i
)]+

i=1

n
10/00

log f
6
( y

i
)

00 11 00 10 00 00

3 3 3

1 1 1

log ( ) log ( ) log ( )
n n n

i i i

i i i

f y f y f y
/ / /

= = =

+ + + (11) 

for the triallelic model assuming that haplotypes 11 and 10 

are the first and second risk haplotypes, respectively,  

 log L( qQ | y, S, p) 

11 11 11 10 11 00

1 5 2

1 1 1

log ( ) log ( ) log ( )
n n n

i i i

i i i

f y f y f y
/ / /

= = =

= + +  

  

+
i=1

n
10/11

log f
6
( y

i
) +

i=1

n
10/10

log[ f
8
( y

i
) + (1 ) f

7
( y

i
)]+

i=1

n
10/00

log f
9
( y

i
)

00 11 00 10 00 00

3 10 4

1 1 1

log ( ) log ( ) log ( )
n n n

i i i

i i i

f y f y f y
/ / /

= = =

+ + +  (12) 

for the quadriallelic model assuming that haplotypes 11, 10 

and 01 are the first, second and third risk haplotypes, respec-

tively, with fi (yi) being a normal distribution density func-

tion of composite diplotype j with mean μj and variance 
2
.  

 We have shown that maximizing L( p, q | y, S) in equa-

tion (8) is equivalent to individually maximizing log L( p | 

S) in equation (9) and log L( q | y, S, p) in equation (10), 

(11) or (12) (unpublished results).  

THE EM ALGORITHM  

 A closed-form solution for the EM algorithm has been 

derived to estimate the unknown parameters that maximize 

the likelihoods. The estimates of haplotype frequencies are 

based on the log-likelihood function L( p | S), whereas the 

estimates of genotypic values of composite diplotypes and 

the residual variance are based on the log-likelihood function 

L( q | y, S, p). These two different types of parameters can 

be estimated using a two-stage hierarchical EM algorithm 

(see [9] for a detailed implementation).  

MODEL SELECTION  

 The formulation of likelihoods (10), (11) and (12) is 

based on the assumption that one or more haplotypes are risk 

haplotypes for the biallelic, triallelic and quadriallelic model. 

However, a real risk haplotype under each of these models is 

unknown from raw data (y, S). Also, we are uncertain about 

the optimal number of risk haplotypes. An additional step for 

the choice of the most likely risk haplotypes and their num-

ber should be implemented. The simplest way to do so is to 

calculate and compare the likelihood values within the model 

by assuming that any one or more of the four haplotypes can 

be a risk haplotype, and AIC or BIC among the models by 

assuming different numbers of risk haplotypes [13]. Thus, 

we obtain possible likelihood values and AIC/BIC as fol-

lows:  

 

Model No. Likelihood AIC/BIC 

Biallelic lB  log ( )
lB p qB

L , | ,y S  
lBC  

Triallelic lT  log ( )
lT p qT

L , | ,y S  
lTC  

Quadriallelic Q  log ( )Q p qQ
L , | ,y S  

QC  

(13) 
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 The largest likelihood and the smallest AIC/BIC value 

calculated is thought to correspond to the most likely risk 

haplotypes and their optimal number.  

HYPOTHESIS TESTS  

 The genetic architecture of a quantitative trait is charac-

terized by quantitative genetic parameters (including haplo-

type effects and the mode of their inheritance). The model 

proposed provides a meaningful way for estimating the ge-

netic architecture of a trait. The estimated genotypic values 

for the composite diplotypes can be used to estimate additive 

and dominance genetic effects of haplotypes by  

 

 Additive Dominace 

Biallelic a = (μ1 – μ3)/2  d = μ2 – (μ1 + μ3)/2  

Triallelic a1 = [2μ2 – (μ1 + μ3)]/3 d12 = μ4 – (μ1 + μ2)/2 

 a2 = [2μ1 – (μ2 + μ3)]/3 d10 = μ5 – (μ1 + μ3)/2 

  d20 = μ6 – (μ2 + μ3)/2 

Quadri-

allelic 
a1 = [3μ1 – (μ2 + μ3 + μ4)]/4 d12 = μ5 – (μ1 + μ2)/2 

 a2 = [3μ2 – (μ1 + μ3 + μ4)]/4 d13 = μ6 – (μ1 + μ3)/2 

 a3 = [3μ3 – (μ1 + μ2 + μ4)]/4 d23 = μ7 – (μ2 + μ3)/2 

  d10 = μ8 – (μ1 + μ4)/2 

  d20 = μ9 – (μ2 + μ4)/2 

  d30 = μ10 – (μ3 + μ4)/2 

(14) 

 

 The additive and dominance effects under different mod-

els can be tested by formulating the null hypothesis that the 

effect being tested is equal. The estimates of the parameters 

under the null hypotheses can be obtained with the same EM 

algorithm derived for the alternative hypotheses but with a 

constraint of the tested effect equal to zero. The log-

likelihood ratio test statistics for each hypothesis is thought 

to asymptotically follow a x2
-distributed with the degree of 

freedom equal to the difference of the numbers of the pa-

rameters being tested under the null and alternative hypothe-

ses.  

HAPLOTYPING WITH THREE SNPS  

 Li et al. [11] constructed a conceptual framework and 

statistical algorithm for haplotyping a quantitative trait with 

three SNPs. For a set of three SNPs, there are eight different 

haplotypes, among which it is possible to have one to seven 

risk haplotypes. The biallelic model specifies one risk haplo-

type which may be composed of one (8 cases), two (24 

cases), three (56) or four haplotypes (170). The triallelic, 

quadrialleli, pentaallelic, hexaallelic, septemallelic and oc-

toallelic models contains 28, 56, 170, 56, 24 and 8 cases, 

respectively. It can be seen that the model selection proce-

dure to determine the optimal number and combination of 

risk haplotypes will become exponentially more complicated 

when the number of SNPs increases.  

MONTE CARLO SIMULATION  

 The statistical properties of the model are investigated 

through simulation studies. Given a certain sample size of 

subjects (n = 100, 400 or 1000), two SNPs (each with two 

alleles 1 and 0) were simulated by assuming that 10 diplo-

types follow a multinomial distribution with the frequencies 

determined by allele frequencies  p = 0.6 and q = 0.6  and 

linkage disequilibrium D = 0.05. By hypothesizing risk 

haplotypes under biallelic, triallelic and quadriallelic models, 

composite diplotypes can be determined for each double-

SNP genotype. The phenotypic values of a quantitative trait 

were simulated as a normal distribution with mean depend-

ing on composite diplotypes and variance determined under 

different heritability levels (H
2
 = 0.1, 0.2 and 0.4).  

 For a practical data set, the number and combination of 

risk haplotypes that govern a phenotypic trait is unknown. 

Thus, the simulation performed here will elucidate the pro-

cedure and power to determine risk haplotypes by the new 

model. The data sets simulated with given risk haplotypes 

under each quantitative genetic model were analyzed by bial-

lelic, triallelic and quadriallelic models, respectively. For 

each analysis, the likelihood and model selection criteria, 

AIC and BIC, are calculated with display (13). The power to 

correctly identify risk haplotypes was calculated from 1000 

simulation replicates. Fig. (1) illustrates such power under 

different heritabilities, sample sizes and genetic models. For 

the data simulated under the biallelic model, a correct risk 

haplotype can well be determined with a sample size of 200 

even when the heritability of the trait is modest (0.1). In this 

case in which a small number of genetic parameters are in-

cluded, the BIC performs better than the AIC. For a data set 

simulated under the triallelic model, the power of haplotype 

detection reduces considerably, compared with the data set 

simulated by the biallelic model. If the heritability of a trait 

is as low as 0.1, about 1000 subjects are needed to achieve 

the power of 0.8. With the heritability increasing to 0.2 or 

0.4, the same power needs about 600 or 300 subjects, respec-

tively. It is interesting to note that the AIC performs better 

than the BIC when the heritability is low (0.1 or 0.2), 

whereas the two criteria perform similarly when the herita-

bility is high (0.4).  

 The data set simulated under the quadriallelic model con-

tains a very large number of genetic parameters to be esti-

mated. As expected, the power of haplotype detection in this 

case will be reduced (Fig. 1). When the heritability is as low 

as 0.1, a sample size of 1000 can only achieve a power of 

0.2. But with an increasing heritability, the power will in-

crease dramatically. For example, a power of >  0.9 can be 

achieved with 600 subjects when the heritability is 0.4. For 

the quadriallelic model-simulated data, the AIC always per-

forms better than the BIC because the latter poses too heavy 

penalty in this case.  

 The estimates of population (including allele frequencies 

and linkage disequilibrium) and quantitative genetic parame-

ters (including additive and dominance effects) for each 

simulated data set were evaluated by calculating their sam-

pling errors. Previous work suggested that the estimates of 
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population genetic parameters display great precision even 

for a sample size of 100 [9]. Here, our simulation studies 

will focus on the assessment of the precision of quantitative 

genetic parameter estimates under different heritabilities and 

sample sizes. For the data set simulated with the biallelic 

model, the additive and dominance effects can be precisely 

estimated even with a heritability of 0.1 and a sample size of 

100 (Table 2). Increasing heritabilities and sample sizes in-

crease estimation precision dramatically.  

 The data set simulated under the triallelic model contains 

two additive effects and three dominance effects. A sample 

size of 100 is adequate for precise estimates of the additive 

effects even for a low heritability (0.1), but the reasonable 

estimates of the dominance effects need increasing sample 

size (400 or more) if the heritability is 0.1 (Table 3). For a 

high heritability (0.4), a small sample size (100) can provide 

relatively precise estimates of the dominance effects. For the 

data set simulated with the quadriallelic model, three addi-

tive effects and six dominance effects are included. Still, a 

low sample size (100) can provide very good estimates of the 

additive effects even for a low heritability. To reasonably 

estimate the dominance effects, we need a large sample size 

(1000) for the heritability of 0.1 or a moderately large sam-

ple size (400) for the heritability of 0.4 (Table 4).  

DISCUSSION  

 Single nucleotide polymorphisms (SNPs) are powerful 

markers that can explain interindividual differences in dis-

ease risk and drug responsiveness in humans. For genes con-

taining multiple SNPs, haplotype structure (i.e., the linear 

arrangement of different SNP alleles on each of the two ho-

mologous chromosomes) is thought to be the principal de-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Power to detect correct risk haplotypes from the data simulated by a biallelic, triallelic and quadriallelic model, respectively, under 
different heritabilities and sample sizes. Model selection criteria are based on AIC and BIC.  

Table 2. The MLEs of the Additive and Dominance Effects Triggered by a Risk Haplotype and the Square Roots of the Mean 

Square Errors of the Estimates (in Parentheses) by a Biallelic Model Under Different Heritabilities and Sample Sizes 

H
2
 = 0.1 H

2
 = 0.4 

Genetic Parameter True Value 

n = 100 n = 400 n = 1000 n = 100 n = 400 n = 1000 

a 10 10.04(0.175) 9.86(0.091) 10.04(0.055) 10.05(0.07) 10.05(0.036) 9.94(0.022) 

d 3 2.63(0.244) 3.06(0.123) 3.11(0.08) 2.96(0.102) 2.95(0.051) 3.02(0.031) 

 22.42 21.9(0.084) 22.27(0.039) 22.39(0.026)    

 9.15    9.02(0.034) 9.08(0.017) 9.13(0.011) 
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terminant of phenotypic traits. While traditional analyses 

associate phenotypic variability with genotypes, growing 

evidence shows the important contribution of haplotype di-

versity to quantitative traits [4-8]. More recently, Liu et al. 

[9] proposed a statistical method for detecting functional (or 

risk) haplotypes for quantitative traits with a random sample 

drawn from a natural population. The method allows the 

characterization of DNA sequence variants that encode the 

phenotypic value of a trait, thus open a gateway for precisely 

studying the genetic architecture of quantitativevariation. In 

this article, we extends Liu et al.’s model to estimate the 

number and combination of multiple functional haplotypes 

in terms of their genetic effects.  

 Similar to Liu et al.’s work [9], our model was founded 

on the mixture model-based framework in which the fre-

quencies of haplotype distribution and haplotype effects are 

estimated with the closed form of the EM algorithm. But our 

model was incorporated by two important theories from dif-

ferent fields, one regarding the segregation and inheritance 

of multiple alleles at a single locus in quantitative genetics 

and the second regarding model selection procedures in sta-

tistics. Liu et al.’s [9] model was framed on a biallelic model 

in which one haplotype constructed by a set of associated 

SNPs was assumed to perform differently from the rest of 

the haplotypes. Traditional quantitative genetic theory 

mostly based on biallelic inheritance provide a basis for es-

Table 3. The MLEs of the Additive and Dominance Effects Triggered by Two Risk Haplotypes and the Square Roots of the Mean 

Square Errors of the Estimates (in Parentheses) by a Triallelic Model Under Different Heritabilities and Sample Sizes 

H
2
 = 0.1 H

2
 = 0.4 

Genetic Parameter True Value 

n = 100 n = 400 n = 1000 n = 100 n = 400 n = 1000 

a1 4.0 4.15(0.188) 4.15(0.086) 3.89(0.059) 4.04(0.076) 3.95(0.039) 4.05(0.023) 

a2 -1.0 -1.24(0.192) -1.11(0.092) -0.84(0.057) -0.99(0.078) -0.95(0.039) -1.03(0.024) 

d12 -7.5 -6.91(0.582) -7.03(0.286) -7.52(0.169) -7.05(0.239) -7.67(0.114) -7.57(0.072) 

d10 -10.5 -11.26(0.409) -10.22(0.176) -10.55(0.121) -10.31(0.146) -10.47(0.075) -10.51(0.044) 

d20 -14.0 -14.25(0.288) -13.72(0.144) -14.1(0.091) -13.87(0.121) -14.06(0.058) -14.03(0.036) 

 19.11 18.43(0.07) 18.98(0.034) 19.04(0.021)    

 7.80    7.54(0.031) 7.73(0.014) 7.77(0.01) 

 

Table 4. The MLEs of the Additive and Dominance Effects Triggered by Three Risk Haplotypes and the Square Roots of the 

Mean Square Errors of the Estimates (in Parentheses) by a Quadriallelic Model Under Different Heritabilities and Sam-

ple Sizes 

H
2
 = 0.1 H

2
 = 0.4 

Genetic Parameter True Value 

n = 100 n = 400 n = 1000 n = 100 n = 400 n = 1000 

a1 -19.75 -20.91(0.815) -19.8(0.405) -19.88(0.266) -20(0.346) -19.73(0.164) -19.76(0.105) 

a2 -5.75 -2.83(0.784) -4.48(0.393) -5.29(0.275) -6.35(0.344) -6.18(0.178) -5.93(0.117) 

a3 -38.25 -37.71(0.819) -37.97(0.354) -38.38(0.228) -37.94(0.307) -38.31(0.142) -38.21(0.093) 

d12 30.00 32.99(0.47) 30.82(0.262) 29.99(0.193) 29.97(0.197) 29.97(0.118) 29.78(0.078) 

d13 18.00 11.9(0.801) 15.84(0.525) 17.03(0.403) 18.55(0.358) 18.39(0.232) 18.56(0.159) 

d23 23.00 23.38(0.617) 22.73(0.276) 23.09(0.174) 23.15(0.236) 23.09(0.116) 22.96(0.072) 

d10 20.00 19.98(0.98) 19.9(0.433) 20.43(0.261) 19.17(0.387) 20.04(0.17) 20.11(0.113) 

d20 16.00 15.91(0.625) 15.84(0.268) 15.98(0.17) 16.04(0.249) 16.03(0.116) 15.96(0.076) 

d30 10.00 9.73(0.831) 9.93(0.397) 9.94(0.238) 10.06(0.363) 10.09(0.167) 9.98(0.098) 

 31.50 29.48(0.12) 30.84(0.057) 31.19(0.039)    

 12.86    12.05(0.052) 12.65(0.026) 12.79(0.016) 
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timating the additive and dominance effects due to two alter-

native alleles at a functional gene, but fails to characterize 

the genetic effects due to all possible combinations between 

multiple alleles. We have for the first time implemented mul-

tiallelic quantitative genetic theory into the estimation proc-

ess of haplotype effects, in which multiple additive effects 

and multiple dominance effects due to multiple functional 

haplotypes can be estimated and tested separately or jointly. 

The new model expands the idea of haplotyping a complex 

trait to study the detailed genetic control of the trait in a pre-

cise way.  

 To deal with multiple risk haplotypes, an issue arises 

naturally about the selection of most likely risk haplotypes 

from a pool of haplotypes. This will include the optimal 

number of risk haplotypes and their combination that provide 

a best fit to the given data. We implemented model selection 

procedures into the test process of haplotype diversity and 

effects with two commonly used criteria, AIC and BIC. Ex-

tensive simulation studies were performed to investigate the 

statistical properties of the model and its utilization. Given a 

real data set, we do not know about the type and number of 

risk haplotypes. But these can be estimated with model se-

lection by assuming different types of genetic models, bialle-

lic (one risk haplotype), triallelic (two risk haplotypes) and 

quadriallelic (three risk haplotypes). Simulation studies with 

two-SNP haplotypes provide a table of model selection ap-

proaches (Tables 2–4) to detect most likely risk haplotypes 

hidden in a genetic association data set based on a range of 

sample size and heritability as well as the types of genetic 

models.  

 The human genome contains millions of SNPs distributed 

over 23 pairs of chromosomes [14]. However, these SNPs 

were observed to locate in different haplotype blocks of the 

human genome [15-16]. For a given block, there are a par-

ticular number of representative SNPs or htSNPs that 

uniquely identify the common haplotypes in this block or 

QTN. Several algorithms have been developed to identify a 

minimal subset of htSNPs that can characterize the most 

common haplotypes [2, 17-18]. The idea given in this article 

can be used to find risk haplotypes of these htSNPs by mod-

eling an arbitrary number of SNPs [11], and extended to de-

tect haplotype-haplotype interactions [10], haplotype-

environment interactions, parent-of-origin effects of haplo-

types in genetic association studies and haplotypes regulat-

ing pharmacodynamic reactions of drugs [19]. Although 

these works will be computationally expensive, it should not 

be computationally prohibitive if combinatorial mathematics, 

graphical models, and machine learning are incorporated into 

closed forms of parameter estimation. With detailed exten-

sions that take account into more realistic biological and 

genetic problems, our model may provide an efficient solu-

tion to the growing need for haplotype data collection and 

association studies.  
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