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Abstract: Multistability, i.e., the coexistence of several attractors for a given set of system parameters,
is one of the most important phenomena occurring in dynamical systems. We consider it in the
velocity dynamics of a Brownian particle, driven by thermal fluctuations and moving in a biased
periodic potential. In doing so, we focus on the impact of ergodicity—A concept which lies at the core
of statistical mechanics. The latter implies that a single trajectory of the system is representative for
the whole ensemble and, as a consequence, the initial conditions of the dynamics are fully forgotten.
The ergodicity of the deterministic counterpart is strongly broken, and we discuss how the velocity
multistability depends on the starting position and velocity of the particle. While for non-zero
temperatures the ergodicity is, in principle, restored, in the low temperature regime the velocity
dynamics is still affected by initial conditions due to weak ergodicity breaking. For moderate and
high temperatures, the multistability is robust with respect to the choice of the starting position and
velocity of the particle.

Keywords: multistability; ergodicity; Brownian motion; tilted periodic potential

1. Introduction

Research in nonequilibrium statistical physics provides a wealth of intriguing dynam-
ics in which phenomena that are forbidden in equilibrium states may emerge. Prominent
examples include anomalous diffusion [1–4], Brownian yet non-Gaussian diffusion [5–9],
noise-assisted transport [10,11], and negative mobility [12–15], to name only a few. While
the behaviour of low dimensional systems, where usually only one or two attractors rule
the dynamics, has been studied intensively, much less is known for systems where several
attractors coexist for a given set of the system parameters. This feature, called multista-
bility is commonly found in different areas of science such as physics, chemistry, biology,
economy, and in nature [16].

In this paper, we reinvestigate in this context the paradigmatic model of nonequi-
librium statistical physics, namely, underdamped Brownian motion in a biased periodic
potential. This nonlinear system enjoys never ending interest as its different aspects have
already been studied for several decades [17–32]. The latter are mostly focused on the
diffusive properties of the system. For instance, it may exhibit unusual phenomena such
as the giant diffusion [19,20,25,32] or the non-monotonic temperature dependence of a
diffusion coefficient [25,30,32,33]. Both these effects are related to a bistability observed
in the velocity dynamics of the system. The later effect is well known due to the work by
Risken et al. [34] who found that at low friction and appropriate bias values the velocity
can be stable in a locked solution (the particle is trapped in a potential minimum) but also
in a running solution (the motion is unbounded in space).

Here, we focus on multistability of the Brownian velocity dynamics in a tilted periodic
potential. Despite so many years of intensive research on various aspects of this setup, the
latter peculiar effect has been addressed only very recently [30] and later it was explained by
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recoursing to the arcsine law [35], which is a cornerstone of extreme-value statistics. Specif-
ically, we investigate the role of ergodicity breaking and its consequences on the velocity
multistability. Ergodicity lies at the basis of statistical mechanics and implies that, over long
enough observation times, the time averages of observables correspond to the equilibrium
ensemble averages [1,36,37]. Equivalently, it states that a single trajectory is representative
for the ensemble. An increasing number of systems exhibit nonergodic properties [1,36,37],
in particular due to the ultra slow dynamics and non-exponential relaxation.

The paper is organized as follows. In Section 2, we recall the formulation of the
model and introduce the dimensionless quantities. In Section 3, we discuss the results, in
particular the effect of ergodicity breaking on the velocity multistability occurring in this
paradigmatic system. Finally, Section 4 provides a discussion and concluding remarks.

2. Methods

In this work, we study dynamics of a classical inertial Brownian particle of mass M
moving in a spatially periodic and symmetric potential U(x) = U(x + L) of period L and
subjected to a static bias F. This system can be described by the following Langevin equation

Mẍ + Γẋ = −U′(x) + F +
√

2ΓkBT ξ(t), (1)

where the dot and prime denote differentiation with respect to the time t and the particle
coordinate x, respectively. The parameter Γ is the friction coefficient, T is temperature, and
kB denotes the Boltzmann constant. We consider the potential U(x) in the form

U(x) = −∆U sin
(

2π

L
x
)

, (2)

where ∆U denotes half of the potential barrier height. Thermal equilibrium fluctuations
are modeled by the δ-correlated Gaussian white noise whose statistical characteristics read

〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t− s). (3)

The noise prefactor 2ΓkBT satisfies the fluctuation–dissipation theorem that ensures the
canonical Gibbs statistics when the system is at the equilibrium state.

The above Langevin Equation (1) can be transformed into the dimensionless form

¨̂x + γ ˙̂x = −U ′(x̂) +
√

2γθ ξ̂(t̂) (4)

by introducing the rescaled coordinate x̂ and time t̂,

x̂ =
2π

L
x, t̂ =

t
τ0

, τ0 =
L

2π

√
M

∆U
, (5)

where the characteristic time τ0 is proportional to the inverse of frequency ω0 of small
oscillations in the potential well of U(x). The effective dimensionless potential is

U (x̂) = − sin x̂− f x̂. (6)

The dimensionless friction coefficient γ and bias f read

γ =
1

2π

L√
M∆U

Γ, f =
1

2π

L
∆U

F. (7)

The rescaled temperature θ is the ratio of thermal energy kBT to half of the barrier height
the particle needs to overcome the original potential well, namely,

θ =
kBT
∆U

. (8)
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The dimensionless thermal noise ξ̂(t̂) is statistically equivalent to ξ(t), meaning that it
is a stationary Gaussian stochastic process with vanishing mean. Later, we use only the
rescaled quantities, and therefore in order to improve the readability of notation from now
on we omit the hat appearing in Equation (4).

The model of a Brownian particle moving in a washboard potential formulated in terms
of the Langevin Equation (4) served for decades as a tool for the investigation of transport
effects occurring in both classical and quantum systems. For instance, it has been employed
for understanding the dynamics of phase across the Josephson junction [38], rotating
dipoles in external fields [39], superionic conductors [40], charge density waves [41], and
cold atoms dwelling in optical lattices [42–44]. Further systems are mentioned in Ref. [17].

The analytical methods of solution for the Fokker–Planck equation corresponding
to Equation (4) are not yet elaborated, therefore in doing so, we rely solely on precise
numerical simulations. All calculations have been completed using a Compute Unified
Device Architecture (CUDA) environment implemented on a modern desktop graphics
processing unit (GPU). This method allowed to speed up necessary calculations by a factor
of the order 103 as compared to the traditional methods. We refer interested reader to
Refs. [45,46] where more details on this scheme can be found. Here, we only mention that all
quantities of interest were averaged over the ensemble of 219 = 524,288 system trajectories.

3. Results

In this paper, we investigate various aspects of multistability in the velocity dynamics
of a Brownian particle dwelling in a tilted periodic potential. This interesting phenomenon
has been addressed for this setup only very recently [35], however, it has been also reported
in systems driven by other types of noise. Examples include fractional Gaussian noise [29],
Ornstein–Uhlenbeck, and harmonic Levy noise [47,48], to name but a few.

In Figure 1 we exemplify the velocity multistability phenomenon occurring in this
system. The probability distribution p(v) for the instantaneous long time velocity v ob-
tained from the histogram of the latter quantity is depicted for fixed time t = 104 (but is
time-invariant) and for different dimensionless temperatures θ. The issue of measurement
of the instantaneous velocity of a Brownian particle is presented in Ref. [49]. In Figure 1,
one can observe three well pronounced maxima. One of them corresponds to the velocity
v = 0 (the locked state) and the other two with v 6= 0 are related to running solutions. This
means that these values occur significantly more frequently than the others and therefore
are more stable. This observation matches the common definition of multistability for
stochastic systems [50]. We note that, as temperature θ increases, the difference between
each maximum becomes less pronounced and eventually disappears.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

−1−0.5 0 0.5 1 1.5 2 2.5
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)
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θ=0.03

θ=0.05

Figure 1. The probability distribution p(v) for the instantaneous long time velocity v = v(t) of the
Brownian particle is illustrated for t = 104 and selected values of temperatures θ of the system. The
used parameters read γ = 0.66 and f = 0.91.
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In Ref. [35], the origin of the multistability effect is explained in terms of the arcsine
law for the velocity dynamics at the zero temperature limit θ = 0, i.e., as the trace of
deterministic dynamics perturbed by thermal noise. In such a case in the long time regime,
the velocity v(t) of the particle is a time-periodic function. Moreover, the ergodicity of
the setup is strongly broken, which means that its phase space can be divided into two
non-intersecting invariant sets corresponding to the locked and running state [51]. We
visualize this in Figure 2, where the time averaged particle velocity

v = lim
t→∞

1
t

∫ t

0
ds ẋ(s) (9)

is depicted as a function of the initial conditions for the coordinate x(0) = x0 and velocity
v(0) = v0. The black region corresponds to the locked state with v = 0 whereas the grey
one indicates the regime of a running solution for which v 6= 0. Therefore, different initial
conditions {x0, v0} can lead to a distinct average velocity v. It is a disturbing situation, as
typically in experiments the initial conditions are not known a priori or can be settled only
with a finite resolution. To get rid of the dependence of the obtained results on the initial
conditions, one needs to average over them. In Ref. [35], the authors distributed x0 and
v0 uniformly over the intervals [0, 2π] and [−2, 2], respectively. Moreover, they found that
in such a case the initial conditions induce an almost uniformly distributed phase shift ϕ
in the time-periodic dependence of the velocity v(t) in the long time regime. This in turn
results in the arcsine law for the velocity probability density p(v) which constitutes the
backbone of multistability in this system.

Figure 2. The basins of attraction for the time averaged velocity v of the particle. The black colour
codes the locked state v = 0 whereas the grey part indicates the regime with running solutions v 6= 0.
Parameters read γ = 0.66, f = 0.91 and θ = 0.

In this work, we present a complementary study. Namely, we investigate in detail the
influence of various distributions of initial conditions {x0, v0} on the velocity multistability
phenomenon. In Figure 3, we show the probability distribution p(v) for the instantaneous
long time velocity v of the Brownian particle for the deterministic system θ = 0 and different
choice of the initial conditions. In simulations, the moment of time is fixed ti = 104. In
the inset we depict the corresponding probability distribution P(v) for the time averaged
velocity v. In panel (a) the initial position and velocity are fixed, x0 = 0, v0 = 0. The
corresponding probability densities are represented by the Dirac-delta px0(x) = δ(x) and
pv0(v) = δ(v), respectively. Consequently, as the system is noiseless θ = 0, the resulting
probability distributions p(v) and P(v) for the instantaneous long time v and time averaged
velocity v, respectively, take the Dirac-delta forms. All phase space trajectories follow the
same route, and the multistability effect is absent. The situation changes drastically already
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if the initial position of the particle is distributed uniformly over the period L = 2π
of the potential U(x), i.e., px0(x) = U(0, 2π) (see panel (b)). Here, U(a, b) indicates the
uniform distribution over the interval [a, b]. The starting velocity of the particle can be fixed
pv0(v) = δ(v) but still the systems display multimodality in the probability density p(v).
In fact, in such a case, even four distinct maxima are visible there. In the inset, we note
that both locked v = 0 and running v = 0 states are represented in the ensemble of system
trajectories. If we permute the initial conditions, i.e., the starting coordinate px0(x) = δ(x)
but pv0(v) = U(−2, 2) (see panel (c)), the multistability emerges but the locked state is
not sampled at all. This situation can be modified depending on the choice of the initial
coordinate as it is demonstrated in panel (d) where, in contrast, px0(x) = δ(x− π).
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Figure 3. The probability distribution p(v) for the instantaneous long time velocity v of the Brow-
nian particle is depicted in the deterministic regime θ = 0 for t = 104 and different choice of the
initial conditions for the system. Panel (a): px0 (x) = δ(x), pv0 (v) = δ(v); (b): px0 (x) = U(0, 2π),
pv0 (v) = δ(v); (c): px0 (x) = δ(x), pv0 (v) = U(−2, 2); (d): px0 (x) = δ(x − π), pv0 (v) = U(−2, 2);
(e): px0 (x) = U(0, 2π), pv0 (v) = U(−2, 2); and (f): px0 (x) = N(0, 1), pv0 (v) = N(0, 1), where U(a, b)
indicates the uniform distribution over the interval [a, b]. Likewise, N(µ, σ2) is the Gaussian distribu-
tion with the mean µ and the variance σ2. In the inset, the corresponding probability distribution
P(v) for the time averaged velocity v is shown. Parameters read γ = 0.66, f = 0.91, and θ = 0.

Overall, if the ergodicity of the system is broken, the initial conditions are never for-
gotten and therefore crucially impact the results. Depending on the circumstances, this
behaviour may be seen as a feature, not a bug. Nevertheless, the only way to cure it is to
properly average over the initial conditions. In doing so, each of them must be taken into
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account equally; none can be preferred. This requirement translates to the fact that initial
conditions must be equally probable and therefore uniformly distributed over the whole
phase space. As the system under consideration is spatially periodic U(x) = U(x + L), the
periodic boundary condition can be employed to yield px0(x) = U(0, 2π). It is not the case
for the starting velocity v0 of the particle which in principle is unbounded. However, natu-
rally such a situation cannot be implemented in numerical simulations, and therefore one
needs to carefully check the impact of the initial velocity subspace volume on the obtained
results. As we demonstrated, if this is not performed thoroughly one can significantly spoil
the outcomes and, e.g., break the inherent symmetries of the system [52]. We checked that,
in the considered regime, the condition pv0(v) = U(−2, 2) is sufficient and that further
increase in the initially chosen velocity subspace volume would not alter the outcomes.
In Figure 3e, we reproduce the result from Ref. [35] obtained for px0(x) = U(0, 2π) and
pv0(v) = U(−2, 2). The characteristic U-shape part which portrays the arcsine law corre-
sponding to the running state is visible in the probability density p(v). Consequently, the
velocity dynamics is multistable.

One can claim that the initial conditions, especially the velocity, should be distributed
according to the Gaussian probability density, as then it obeys the canonical Gibbs statistics
(Maxwell–Boltzmann distribution) valid for equilibrium systems. Obviously, such a choice
does not satisfy the above discussed condition of equal probability. In panel (f), we show
that, as a consequence of the non-uniformity for px0(x) = N(0, 1) and pv0(v) = N(0, 1),
where N(µ, σ2) is the Gaussian distribution with the mean µ and the variance σ2, the results
are deformed and the arcsine law is not properly recovered. There is one more argument
that the condition of equal probability is the only one to be correct and consistent with
the case of non-zero temperature. In the running state, the long time velocity trajectory
v(t) is a periodic function of time and can be well approximated by the simple periodic
function [35]

V(t) = A sin (ωt + φ) + c. (10)

For a fixed set of the system parameters, the constants (A, ω, c) are the same for all initial
conditions {x0, v0}. However, the distribution of the phase shift φ depends on the distri-
bution of initial conditions {x0, v0}. This fact is reflected in different probability densities
p(v) for the instantaneous velocity depicted in Figure 3. As the ergodicity of the system
is broken, the distributions p(v) generally depend on the measurement time t = ti. The
exception is the uniform distribution for the phase φ corresponding to the panel (e) in
Figure 3 for which p(v) is time-invariant [35]. The latter feature is characteristic for ergodic
systems and is crucial from the experimental point of view.

As we just reported, the ergodicity of the deterministic system with θ = 0 is broken for
the parameter regimes in which it exhibits the multistability phenomenon [32]. One may
argue that the case θ = 0 is only an idealization and, in practice, there exists no realistic
situation with zero temperature. However, the ergodicity breaking in a deterministic system
often also carries prominent consequences for non-zero temperature. In particular, for any
positive temperature θ > 0 the system described by Equation (4) is always ergodic, although
it is not a trivial fact, as it is driven by noise [53]. At non-zero temperatures, the whole
phase space is accessible due to thermally activated escape events connecting the coexisting
deterministic disjoint attractors. However, if the temperature tends to zero θ → 0, the time
τ after it is fully sampled becomes extremely long and goes to infinity as τ → ∞. From an
experimental point of view, due to finite observation time, the system seemingly behaves
as being non-ergodic although in fact it is ergodic. Such a situation is often termed as weak
ergodicity breaking [36,37,51] and can be identified with an unusually slow relaxation of
the system towards its steady state which manifests itself as the nonequivalence of time
and ensemble averages. In the latter case, the initial conditions do not fade, but in fact
modify the results. We exemplify this feature in Figure 4a, where we depict the probability
distribution p(v) for the instantaneous long time velocity v of the Brownian particle for
different initial conditions and low temperature θ = 0.0001. Clearly, when the particle starts
from x0 = 0 and v0 = 0 (see the red solid line), even in the long time limit, there are only
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running solutions. On the other hand, if the initial position x0 and velocity v0 are either
uniformly or normal distributed (see the blue or green line, respectively), the multistability
emerges, but one can still note quantitative difference between these two initial conditions.
In contrast, in panel (b) we depict the same characteristics but for higher temperature
θ = 0.05. Then, thermal fluctuations are strong enough to recover the ergodicity of the
system and there are no longer differences between different initial conditions. Even when
the particle trajectories start from the same point in the phase space x0 = 0, v0 = 0 (see the
red solid line), the whole density is obtained.
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Figure 4. The probability distribution p(v) for the instantaneous long time velocity v of the Brownian
particle is depicted for t = 104 and different initial conditions of the system. The red solid line
indicates px0 (x) = δ(x), pv0 (v) = δ(v). The blue dotted line corresponds to px0 (x) = U(0, 2π),
pv0 (v) = U(−2, 2). The green dashed line denotes px0 (x) = N(0, 1), pv0 (v) = N(0, 1). In panel
(a) temperature is θ = 0.0001 while in (b) θ = 0.05. Other parameters read γ = 0.66, f = 0.91.

4. Discussion

In conclusion, we thoroughly investigated the influence of initial conditions distribu-
tion on the multistability of velocity dynamics for the Brownian particle in a tilted periodic
potential. The ergodicity of the deterministic system is strongly broken, and therefore the
initial conditions are never forgotten and crucially impact the obtained results. The only
way to correctly sample the whole state space of the system is to average over them in such
a way that no single one is preferred. The latter condition translates to a uniform distri-
bution in the initial phase space of the system. We demonstrated that, while for non-zero
temperatures the ergodicity is in principle restored, in a low temperature regime the results
are still significantly affected by the initial conditions due to the weak ergodicity breaking.
This means that the time needed for the ergodicity reinstatement tends to infinity when
temperature goes down to zero. For moderate and high temperature regimes, the detected
multistability is robust with respect to the choice of initial conditions. It is valid even when
the whole ensemble starts from a given point in the phase space of the system. A remaining
question is how the time needed for the ergodicity restoration depends on temperature.
This constitutes a challengeable objective which we hope to address in the future.
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