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Cardiovascular diseases (CVDs) are the leading cause of mortality globally.

Benefiting from the advantages of early diagnosis and precision medicine, stem

cell-based therapies have emerged as promising treatment options for CVDs.

However, autologous or allogeneic stem cell transplantation imposes a

potential risk of immunological rejection, infusion toxicity, and oncogenesis.

Fortunately, exosome can override these limitations. Increasing evidence has

demonstrated that long non-coding RNAs (lncRNAs) in exosome from stem cell

paracrine factors play critical roles in stem cell therapy and participate in

numerous regulatory processes, including transcriptional silencing,

transcriptional activation, chromosome modification, and intranuclear

transport. Accordingly, lncRNAs can treat CVDs by directly acting on specific

signaling pathways. This mini review systematically summarizes the key

regulatory actions of lncRNAs from different stem cells on myocardial aging

and apoptosis, ischemia-reperfusion injury, retinopathy, atherosclerosis, and

hypertension. In addition, the current challenges and future prospects of

lncRNAs treatment for CVDs are discussed.
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Introduction

Cardiovascular diseases (CVDs), which mainly involve the heart and blood vessels

(Schmidt, 2019), are the leading cause of morbidity and mortality worldwide (Luo et al.,

2018; South et al., 2019). Cases of CVDs increased from 271million in 1990 to 523 million

in 2019, whereas related deaths increased from 12.1 million to 18.6 million (Liu et al.,

2021). Currently, surgery and drug are the standard methods for treating CVDs. However,

these choices do not enhance the regeneration of damaged myocardial tissue, increasing

the chances of recurrence (Stefanini and Holmes, 2013; Rentrop and Feit, 2015). Given
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that stem cells can differentiate into different mature cell types

and possess self-renewal characteristics, stem cell therapy is a

potential treatment for CVDs because they induce the

regeneration of myocardial cells (Shen et al., 2015; Yamanaka,

2020).

However, the survival rate of transplanted stem cells is very

low, decreasing the efficiency of transplantation and the

therapeutic efficacy and increases the risk of immune

rejection, infusion toxicity, and tumor formation (Liu W.

et al., 2020; Zhuang et al., 2020). Recently, numerous studies

have confirmed that stem cells mainly exert their effect on CVDs

by inducing the secretion of paracrine factors mainly in exosome

(Exo) (Elshaer et al., 2018; Terashvili and Bosnjak, 2019; Wu

et al., 2020). Although the proportion of long non-coding RNAs

(lncRNAs) in Exo is very low (Huang, 2020; Hui et al., 2020;

Pham and Boon, 2020), research shows that lncRNAs, especially

in stem cell-derived Exo, contribute significantly to treat CVDs

by regulating gene expression at the transcriptional level, acting

as a molecular sponge that targets miRNA, interfering with

chromatin complexes to repress or activate gene expression in

an epigenetic fashion and participating the processes of

apoptosis, pyrosis, autophagy, myocardial fibrosis, and

angiogenesis (Li et al., 2018; Deng et al., 2019; Pan et al.,

2019; Yan et al., 2020; Chen et al., 2021a, 2021a; Yuan and

Huang, 2021). For example, mesenchymal stem cells (MSCs)-

Exo-lncRNA-FENDRR can be taken up by human vascular

endothelial cells (HUV-EC-C), where they activate the TEA

domain transcription factor 1 (TEAD1) by targeting

microRNA (miR)-28 and, thus, inhibits apoptosis, oxidative

stress, and inflammatory response of HUV-EC-C, reducing

FIGURE 1
Stem cell-derived Exo-lncRNA with diverse organ sources and other sources in the CVDs occurrence and progression. lncRNA-FENDRR,
lncRNA-SNHG9, lncRNA-RNCR3, LINC00174 and lncRNA-GAS5 contribute to AS occurrence and progression; lncRNA-MALAT1 promotes nerve
repair after stroke; SIRT1 AS lncRNA, lncRNA-p21 and lncRNA GUSBP5-AS are involved in EPC repair, the former two are also promote vascular
damage repair caused by hypertension; lncRNA-SNHG7 and lncRNA-MEG3 are involved in retinopathy; lncRNA-UCA1, lncRNA-HCP5 and
lncRNA-HCG15 reduce I/R injury; lncRNA-KLF3-AS1, lncRNA Mir9-3hg, lncRNA-UCA1, lncRNA-H19, lncRNA-NEAT1, lncRNA-MALAT1, lncRNA-
ANRIL, LINC00174, lncRNA-AK139128 and lncRNA-ZRAS1 participate in MI process.
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the accumulation of oxidized low-density lipoprotein (ox-LDL),

and reduces the formation of atherosclerotic plaques (Zhang N.

et al., 2022). In addition, lncRNA-UCA1-rich Exo obtained by

hypoxia-stimulated human MSCs secretion inhibit apoptosis in

vivo and in vitro via the lncRNA-UCA1/miR-873-5p↓/X-Linked
Inhibitor of Apoptosis Protein (XIAP)↑ axis (Hu et al., 2016; Sun

L. et al., 2020). Meanwhile, compared with miRs, lncRNAs have

more tissue-specific and developmental stage-specific (Thum

and Condorelli, 2015; Zhu et al., 2016).

Adult stem cell (ASC) is more abundant, easier to obtain and

does not present ethical dilemmas compared with embryonic stem

cells (Barnabé et al., 2009; Shafei et al., 2018; Li et al., 2019; Jain et al.,

2020). Therefore, the development of therapeutic approaches to treat

CVDs applying ASC-Exo-lncRNA is of utmost importance. This

review systematically reviews the research progress and mechanism

underlying the function of different ASC-Exo-lncRNAs for CVDs

therapy. The challenges and potential clinical application of stem

cell-derived Exo-lncRNAs are also discussed.

ASCs-exo-lncRNAs with diverse
organ sources

As summarized in Figure 1, Exo-lncRNAs derived from bone

Marrow (Bone Marrow mesenchymal stem cells, BMSCs), placenta

(placental mesenchymal stem cells, PMSCs), adipocyte (adipocyte

mesenchymal stem cells, ADMSCs), umbilical cord (umbilical cord

mesenchymal stem cells, UCMSCs), gingiva (gingival mesenchymal

stem cell, GMSCs) and cardiac vessels (cardiovascular progenitor

cells, CVPCs and endothelial progenitor cells, EPCs) have the

potential to contribute to CVDs occurrence and progression

(Shafei et al., 2018; Gao and Jin, 2020; Jain et al., 2020).

Cardiovascular protective effect of
BMSCs-exo-lncRNAs

The beneficial effect of BMSCs in CVDs has been reported

(Afzal et al., 2015). Preventing or reducing cardiomyocyte

apoptosis or pyroptosis is necessary to ensure normal cardiac

contractile function. Mao et al. (Mao et al., 2019) found that

BMSCs- Exo overexpressing lncRNA-KLF3-AS1 in hypoxic

cardiomyocytes and rats could improve the morphology of

cardiomyocytes and inhibit the inflammatory response induced

by pyroptosis. Meanwhile as a competitive endogenous RNA of

sponge miR-138-5p, lncRNA-KLF3-AS1 mediates the expression

of sirtuin 1 (SIRT1) and inhibits the activation of NOD-like

receptor family pyrin domain containing 3 (NLRP3)

inflammatory bodies and, thus, regulates the pyroptosis of

cardiomyocytes and the progression of miocardial infarction (MI).

An increase of miR-497 during ischemia-reperfusion (I/R)

injury may cause cardiomyocyte apoptosis. Li et al. (Li K.-S. et al.,

2021) confirmed that Introducing Exo-lncRNA-HCP5 in

hBMSCs into cardiomyocytes can protect cardiomyocytes

from injury via the miR-497↓/insulin like growth factor-1

(IGF-1)/phosphatidylinositide 3-kinases (PI3K)/protein kinase

B (AKT)↓ signal pathway. Meanwhile, Zhang et al. (Zhang J.-K.

et al., 2022) treated HL-1 mouse cardiomyocytes and myocardial

tissue of hypoxia reperfusion (H/R) myocardial cells ferroptosis

mouse model with BMSCs-Exo-lncRNA-Mir9-3hg. The results

showed that BMSCs-Exo-lncRNA-Mir9-3hg inhibits the

upregulation of pumilio RNA binding family member 2

(Pum2), promotes glutathione content, peroxiredoxin 6

(PRDX6), the proliferation of HL-1 mouse cardiomyocytes,

and inhibits the iron concentration, production of reactive

oxygen species, and acyl CoA synthetase long chain family

member 4 expression in HL-1 cells treated with H/R injury.

In addition, high glucos initiated proliferation and migration of

retinal endothelial cells, which is a critical step of diabetic

retinopathy (DR) development. Cao et al. (Cao et al., 2021)

found that human BMSCs-Exo transduces lncRNA-SNHG7 into

human retinal microvascular endothelial cells (HRMECs) and

inhibits the endothelial mesenchymal transformation and tubule

formation of HRMECs via the miR-34a-5p↓/X-box binding

protein 1 (XBP1)↑ (a transcription factor associated with

endoplasmic reticulum stress regulation) axis. Accordingly,

this axis is a feasible target for treating pathological fibrosis

in DR.

Apart from the above,MSCs can enhance its protective effect on

myocardial function after MI following appropriate drug treatment,

such as atorvastatin (ATV) and migration inhibitory factor (MIF)

(Li et al., 2015, 4; Liu X. et al., 2020). Huang et al. (Huang P. et al.,

2020) treated BMSCs with ATV to obtain Exo overexpress lncRNA-

H19 (MSCATV-Exo). The lncRNA regulated the activation of

vascular endothelial growth factor and intercellular adhesion

molecule-1 in endothelial cells and cardiomyocytes by targeting

miR-675↑. lncRNA-H19 suppresses inflammation, promotes

healing of infarct damage, reduces cardiomyocyte apoptosis,

promotes angiogenesis, and elongates the endothelial cell survival

in rat acute MI model and, thus, improves cardiac function.

Concurrently, BMSCs-Exo overexpressed the lncRNA-NEAT1 by

MIF treatment which had anti-aging effects on Dox-induced

cardiomyopathy (DIC). On the contrary, silencing lncRNA-

NEAT1 inhibited the effect of Exo on DICMIF, and this is

because ExoMIF attenuates cardiomyocyte senescence induced by

Dox via the Exo/lncRNA-NEAT1↑/miR-221-3p↓/sirtuin 2

(SIRT2)↑ pathway (Zhuang et al., 2020). These findings provide

an important reference on how to improve the role of lncRNAs.

ADMSCs-exo-lncRNAs reverse
cardiomyocyte senescence and apoptosis
and promote nerve repair after stroke

ADMSCs are easily obtained from adipose tissue (Shafei

et al., 2018), and the Exo in supernatant enhances
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angiogenesis (Almeria et al., 2019). Xia et al. (Xia et al., 2020)

observed that hypoxia-induced ADMSCs-Exo-lncRNA-

MALAT1 improves mitochondrial metabolism by regulating

the miR-92a-3p↓/autophagy related genes 4a (ATG4a)↑ axis.

Also, miR-92A-3p plays a cardioprotective role in DIC.

ADMSCs-Exo-lncRNA-SNHG9 modulates inflammation by

inhibiting endothelial cell apoptosis via the nuclear factor

kappa-B (NF-κB)↓/TNF receptor type 1-associated death

domain protein (TRADD)↓ pathway (Song et al., 2020).

ADMSCs-Exo-lncRNA-SNHG9 is a potential therapeutic

target for CVDs related to lipid metabolism and, thus, for AS

treatment. In addition, MIF treatment induces the

overexpression of lncRNA-NEAT1 in ADMSC-Exo which

could prevent cardiomyocyte apoptosis induced by H2O2 via

the lncRNA-NEAT1↑/miR-142-3p↓/Forkhead box O1

(FOXO1)↑ pathway. Also, lncRNA-NEAT1 can regulate

oxidative stress and protect against neural injury (Chen H.

et al., 2020), providing a new signaling pathway target for

improving MI therapy.

On the other hand, given their unique self-renewal and

differentiation abilities, stem cells have been designed to treat

stroke (Chen H.-X. et al., 2020; Singh et al., 2020). Improving

neural repair and recovery in the postacute phase of stroke may

reduce the overall long-term burden of stroke (Murie-Fernández

and Marzo, 2020). El Bassit et al. (El Bassit et al., 2016) revealed

that human ADMSCs-Exo increases the expression of protein

kinase CδⅡ (PKCδⅡ) on immortalized mouse hippocampal cell

line (HT22) after injury and promotes the survival and

proliferation of neurons. lncRNA-MALAT1 promotes

alternative splicing of PKCδII, which increases the survival of

neurons by inducing the recruitment of serine-arginine-rich

splicing factor 2 (SRSF2). Meanwhile, insulin could further

enhance the effect with lncRNA-MALAT1 application. Stroke

treatment may be improved as a result of this research.

UCMSCs-exo-lncRNAs ameliorate the
H/R and myocardial aging injury

UCMSCs have been exploited for treating CVDs and depend

on paracrine effect (Chen et al., 2021b; Chang et al., 2021). For

instance, human UCMSCs (hUCMSCs)-Exo prevents the

apoptosis of cardiomyocytes and promotes tubular formation

and migration of umbilical vein endothelial cells (Zhao et al.,

2015). At the same time, hUCMSCs-Exo-lncRNA-

UCA1 enhances the proliferation, invasion, migration of

cardiac microvascular endothelial cells (CMECs) and inhibits

the apoptosis and autophagy of CMECs caused by H/R via the

miR143↓/B-cell lymphoma-2 (Bcl-2)↑/Beclin-1↓ axis (Diao and

Zhang, 2021). Furthermore, Zhu et al. (Zhu et al., 2019) reported

that among the lncRNAs that may possess anti-aging properties,

only lncRNA-MALAT1 is highly expressed in Exo. HUCMSCs-

Exo-lncRNA-MALAT1 can prevent cardiac dysfunction arising

from aging through the NF-κB/tumor necrosis factor (TNF-α)↓
pathway. Meanwhile, lncRNA-MALAT1 silencing significantly

reduces the anti-aging effect of Exo.

Exo-lncRNAs from PMSCs affect acute MI

Death of many cardiomyocytes causes strong inflammation

after MI, and studies have shown that intestinal microflora

participates in the occurrence of this kind of inflammation

(Wang et al., 2018; Zununi Vahed et al., 2018). (Yang et al.,

2022) pointed out that PMSCs-Exo shows angiogenesis and anti-

inflammatory potential in the cell therapy ofMI and regulates the

intestinal microflora. Gene ontology enrichment analysis of the

PMSCs-Exo-lncRNA target gene revealed that lncRNA performs

numerous functions at the transcriptional level, suggesting that

PMSCs-Exo-lncRNA is a potential target for MI therapy.

Exo-lncRNAs from GMSCs protect nerves
in retina I/R

GMSCs which not only show the potential for self-renewal

and multi-differentiation but also have immunomodulatory,

anti-inflammatory, and effective tissue regeneration properties

can easily be obtained from gum tissues (Liu et al., 2015; Al-

Qadhi et al., 2021). MiR-21-5p overexpressed in TNF-α-
stimulated GMSCs-Exo which reduces inflammation and

death of mouse primary retinal ganglion cells and microglia

simultaneously. Vitreous injection of GMSCs-Exo alleviated

retinal I/R injury in mice induced by high intraocular

pressure via the Exo-lncRNA-MEG3↑/miR-21-5p↑ axis (Yu

et al., 2022). This is a potential target for glaucoma treatment

and other retinal neuroinflammatory diseases.

CVPCs-exo-lncRNAs and EPCs as
theranostic strategies for CVDs

CVPCs-Exo injected into the myocardium significantly

improved the cardiac function of mice with acute MI.

Moreover, overexpression of lncRNA-MALAT1 in hypoxic

preconditioning Exo increases the viability of neonatal rat

cardiomyocytes (NRCMs) damaged by oxygen and glycogen

deprivation, and lncRNA-MALAT1 gene knockout inhibits

tubular formation of human umbilical endothelial cells

(HUVECs) promoted by CVPCs-Exo. In addition, lncRNA-

MALAT1 improved the survival of NRCMs and HUVECs’

formation by targeting miR-497 (Wu et al., 2020). Therefore,

hypoxic preconditioning CVPCs-Exo could be used for treating

MI with high lncRNA expression and promise option for cardiac

repair. However, more basic research is required to understand

their mechanism of action (Zhang et al., 2016).
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On the other hand, hypertension induces autophagy due to

the pressure on the vascular wall to maintain intracellular

stability, and the reduction in autophagy causes angiotensin Ⅱ
(AngⅡ)-induced senescence and damage to EPCs (Bianconi et al.,

2018). EPCs-Exo-lncRNA-p21 can activate the sestrin 2

(SESN2)/AMP-activated protein kinase (AMPK)/tuberous

sclerosis 2 (TSC2) pathway and enhance autophagy to prevent

AngII-induced EPCs injury by promoting the transcriptional

activity of p53 (Li C. et al., 2021). Meanwhile, stimulation of

EPCs using niacinamide phosphoribosyltransferase upregulates

the expression of SIRT1 and SIRT1 antisense long non-coding

RNA (SIRT1 AS lncRNA). This overexpression of SIRT1 AS

lncRNA in EPCs upregulates that of SIRT1, and inhibiting miR-

22 abrogated the aging of EPCs and promoted the proliferation

and migration of EPCs (Ming et al., 2016). In addition, regarding

the clinically upregulated expression of lncRNA GUSBP5-AS

(Enst00000511042) in EPCs of deep venous thrombosis patients,

Sun et al. (Sun L.-L. et al., 2020, 1) revealed that lncRNA

GUSBP5-AS regulates the expression of fibroblast growth

factor 2 and matrix metalloproteinase 2/9 through the miR-

223-3p↓/FOXO1/AKT↑ pathway and subsequently regulates

angiogenesis, as well as proliferation and homing capacity of

EPCs. Therefore, EPCs-Exo-lncRNA is a potential therapeutic

target for vascular endothelial repair.

Exo-lncRNA from other sources as
potential target lncRNAs for CVDs

Stem cell-derived Exo-lncRNA has shown excellent

potential in treating CVDs. In fact, several Exo-lncRNAs

which are contained in something else can also treat CVDs.

For instance, Exo-lncRNA-RNCR3 in HUVECs which could

regulates the dysfunction of endothelial cells and vascular

smooth muscle cells (VSMCs) by targeting the miR-185-5p↓/
kruppel-like factor (KLF)2↑ axis (Shan et al., 2016), highly

expressed Exo-LINC01005 of ox-LDL-treated HUVECs which

could regulate the miR-128-3p↓/KLF4↑ axis to promote the

proliferation and migration of VSMCs (Zhang Z. et al., 2020),

and the lncRNA-GAS5 derived from human acute monocytic

leukemic cell line (THP-1) which could reduce the apoptosis

of HUVECs via up-regulated the expressions of P53, Caspase

3, Caspase 7 and Caspase 9 (Chen et al., 2017) all participate in

the occurrence and development of AS. Otherwise, Exo-

lncRNA-ZRAS1 from human cardiomyocytes which could

promote cardiac fibrosis via the miR-4711-5p↓/Wnt4/β-
catenin↑ signaling pathway (Wang et al., 2021), hypoxia-

induced cardiac myocytes (CMs) overexpressing Exo-

lncRNA-AK139128 which could inhibit cardiac fibroblasts

(CFs) proliferation and migration, elevates CFs apoptosis

via increased level of Bcl-2 while decreased expression of

Bax (Wang and Zhang, 2020), Exo-LINC00174 with high

expression in endothelial cells which could inhibit

apoptosis, vacuole, and autophagy of CMs via the SRSF1↑/
p53↓/myocardin↓/AKT/AMPK↓ signaling pathway (Su et al.,

2021) and Exo-lncRNA-ANRIL expression increased in

CMECs treated with indoxyl sulfate which could be

absorbed by CMs to increase autophagy, whereas

recombinant autophagy-related gene 5 (ATG5) expression

can be reduced in CMs by silencing ANRIL or upregulating

miR-181b, thereby reversing the autophagy of CMs in uremic

mice (Xu et al., 2021, 5) provide reference for the intervention

of MI in order to obtain good therapeutic effect. Moreover,

under hypoxia conditions, AC16 CMs express a high level of

lncRNA-HCG15, which stimulates apoptosis, releases

inflammatory factors, inhibits cell proliferation, and

aggravates I/R injury in C57BL/6 J mice via the NF-κB/
p65↑ and p38↑ pathways (Lin et al., 2021). Together,

studies such as these could provide a new direction for

early diagnosis and targeted treatment of CVDs.

Challenges in the applications of stem
cell-derived Exo-lncRNA

Notably, there are several challenges in the applications of

stem cell-derived Exo-lncRNA (Figure 2). The serum levels of

lncRNA-LUNAR1 in patients with chronic total coronary

occlusion are closely related to the development of

coronary blood supply and collateral (Lu et al., 2020).

Nevertheless, the causal relationship and whether it can be

used as a treatment remains unclear. In addition, Further

studies are needed to evaluate the clinical efficacy and safety of

lncRNAs in CVDs, as well as their potential downstream

targets (including different cell types and pathways),

mechanisms of action and potential risks (such as off-target

effects) (Dong et al., 2019; Braga et al., 2020; Chen et al.,

2021a). At present, the standard procedure for purification of

Exo or lncRNAs needs to be optimized if these molecules are

to be applied in clinical treatment (Ma et al., 2019; Zhang W.

et al., 2020). Meanwhile, the cell factory approaches for Exo

simulations with specific miRs and lncRNAs in the self

environment may be an alternative strategy to overcome

the limitations of stability and potential immunogenicity

(Rotini et al., 2018). In recent years of membrane-based

delivery systems (such as erythrocyte, the advantage

membranes) over nanoparticle drugs have been extensively

demonstrated (Sun et al., 2019; Zhu et al., 2022).

Consequently, the foundation is laid for developing

lncRNA drug delivery systems for CVDs that are more

stable and targeted. In addition, The separation rate of

UCMSCs-Exo using tangential flow filtration (TFF) is

92.5 times more efficient than using the ultracentrifuge

(UC)-based conventional method (Kim et al., 2021). TFF

can therefore be used for mass purification of Exo-

lncRNAs. Remarkably, lncRNA sequences in the published
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studies are scarce, and not all studies provide chromosome

mapping. To minimize confusion and to facilitate the use and

replication of data, more details should be provided (i.e.

publicly public databases for lncRNA sequence data is

needed) (Uchida and Dimmeler, 2015). Significantly,

research has revealed dysregulated expression of

768 lncRNAs in the plasma of patients with MI (Lu and

Thum, 2019). RNA sequencing data of epicardial adipose

tissue collected from 6 atrial fibrillation, and 6 sinus

rhythm showed that eight lncRNAs including

LINC00694 are closely related to TNF-α signaling pathways

demonstrating their broad application potential. Aside from

biomedical functions, Exo-lncRNA delivery systems have a

greater proliferation of targets than antibodies or small

molecules, due to their proximity and tissue specificity,

resulting in fewer off-targets of lncRNAs/miRs (Huang Y.

et al., 2020, Huang et al., 2020 C.-K.; Zhao et al., 2020). Even

though lncRNA is infant in clinical applications, it appears

that it has substantial potential in this aspect, considering the

clinical cases of miRs which utilize inhibitors and are

delivered by endothelial microparticles delivery (Barwari

et al., 2016; Nakaoka et al., 2018; Täubel et al., 2021). At

present, although the specific differences of Exo-lncRNAs in

stem cells from different sources are not clear, however, given

ADMSC has extremely abundant yield, inhibits the growth of

cancer in vivo and is less affected by aging, doubling quantity,

and other negative factors, and ADMSC-Exo with exogenous

factors has great therapeutic effects (Maguire, 2019; Shin et al.,

2021). So going forward, ADMSCs-Exo-lncRNA will stand

out in the clinical translation of CVDs treatment. In

conclusion, these results are sufficient evidence that

lncRNA can be applieed for a broad range of clinical

diagnoses and applications.

Conclusion

Exo-lncRNA-based therapeutic strategies is novel but still in

infancy. Nevertheless, the recent developments of Exo-lncRNA

in CVDs have demonstrated their superior properties for early

diagnosis and targeted therapy, thereby promoting the potential

transition from bench to bedside. Presently, stem cell-derived

FIGURE 2
Challenges in the CVDs treatment with stem cell-derived Exo-lncRNA and the corresponding improvement strategies. A. The following three
methods provide guidance for overcoming the deficiencies in studies related to the function, mechanism, stability, safety, and effectiveness of stem
cell-derived Exo-lncRNA; B. TFF technology is efficient for large-scale production of lncRNA; C. Eatablishing and improving public databases will
assist in solving the limitations of scarce lncRNA sequences, reducing confusion and improving convenience.
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Exo-lncRNAs are gradually reducing their application

limitations as technology advances, bioinformatics improves,

and drug delivery strategies are continuously improved.

Hence, these advantages ushered in a new dawn for the

clinical application of stem cell-derived Exo-lncRNA.

Determining the therapeutic efficacy and safety of Exo-

lncRNA can accelerate their use for treating CVDs.
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Glossary

ADMSCs Adipocyte mesenchymal stem cells

AKT Protein kinase B

AngⅡ Angiotensin Ⅱ

AMPK AMP-activated protein kinase

ATG5 autophagy-related gene 5

ASCs Adult stem cells

ATG4a Autophagy related genes 4a

ATV Atorvastatin

Bcl-2 B-cell lymphoma-2

BMSCs Bone marrow mesenchymal stem cells

CMs Cardiac myocytes

CFs Cardiac fibroblasts

CMECs Cardiac microvascular endothelial cells

CVDs Cardiovascular diseases

CVPCs Cardiovascular progenitor cells

DR Diabetic retinopathy

DIC Dox-induced cardiomyopathy

EPCs Endothelial progenitor cells

Exo Exosome

EAT Epicardial adipose tissue

FOXO1 Forkhead box O1

GMSCs Gingival mesenchymal stem cells

HUV-EC-C Human vascular endothelial cells

H/R Hypoxia reperfusion

HRMECs Human retinal microvascular endothelial cells

hUCMSCs Human UCMSCs

KLF Kruppel-like factor

NRCMs Neonatal rat cardiomyocytes

HUVECs Human umbilical endothelial cells

I/R Ischemia-reperfusion

IGF-1 Insulin like growth factor-1

lncRNAs Long non-coding RNAs

MSCs Mesenchymal stem cells

MI Myocardial infarction

MIF Migration inhibitory factor

miR MicroRNA

NF-κB Nuclear factor kappa-B

PMSCs Placental mesenchymal stem cells

Pum2 Pumilio RNA binding family member 2

PI3K phosphatidylinositide 3-kinases

PRDX6 Peroxiredoxin 6

PKCδⅡ Protein kinase CδⅡ
ox-LDL Oxidized low-density lipoprotein

SESN2 Sestrin 2

SIRT1 Sirtuin 1

SIRT2 Sirtuin 2

SRSF2 Serine-arginine-rich splicing factor 2

SIRT1 AS lncRNA SIRT1 antisense long non-coding RNA

TEAD1 TEA domain transcription factor 1

TFF Tangential flow filtration

TNF-α Tumor necrosis factor-α
TSC2 Tuberous sclerosis 2

UC Ultracentrifuge

UCMSCs Umbilical cord mesenchymal stem cells

VSMCs Vascular smooth muscle cells

XIAP X-Linked Inhibitor of Apoptosis Protein

XBP1 X-box binding protein 1
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