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Abstract
Although expanding the availability of buprenorphine—a first-line pharmacotherapy for opioid-use disorder (OUD)—has 
increased the capacity of healthcare systems to offer treatment, starting this medication is fraught with significant barriers. 
Standard induction regimens require persons with OUD to taper and discontinue full opioid agonists and experience opioid 
withdrawal prior to the first dose of buprenorphine. Further, emerging evidence indicates that precipitated withdrawal during 
induction may impact long-term treatment outcomes. Microinduction is a novel approach that, by harnessing buprenorphine’s 
unique pharmacological profile, may allow circumventing the needed for prolonged opioid tapers, and reduce the risk of 
precipitated withdrawal—holding promise to enhance treatment access. In this review, we examine the pharmacological basis 
for microinduction and appraise the evidence of this approach to improve clinical outcomes among persons with OUD. First, 
we highlight the potential dose-dependent effects of buprenorphine on two key neuroadaptations at the mu-opioid receptor 
(MOR)—resensitization and upregulation. We then focus on how microinduction may reverse these chronic MOR neuroad-
aptations, allowing the maintenance of an adequate opioid tone, and thereby potentially circumventing opioid withdrawal. 
Second, we describe the clinical evidence available, derived from observational reports and open-label studies, examining the 
potential efficacy of microinduction. Despite significant heterogeneity—exemplified by variable buprenorphine formulations, 
daily doses, and schedules of administration—these data provide preliminary support for the feasibility of microinduction. 
Finally, we provide new mechanistic, methodological, and clinical insights to guide future translational research, as well as 
randomized, placebo-controlled clinical trials in this compelling agenda of pharmacotherapy development.
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Key Points 

The induction onto buprenorphine for opioid-use dis-
order remains fraught with barriers, such as the need to 
experience opioid withdrawal.

Buprenorphine microinduction is a novel approach that 
may enhance treatment access, by harnessing buprenor-
phine’s dose-dependent effects of mu-opioid receptor 
resensitization and upregulation, allowing the mainte-
nance of an adequate opioid tone during the induction.

We integrate multiple lines of evidence to provide new 
mechanistic, methodological, and clinical insights, 
thereby guiding future studies investigating the therapeu-
tic potential of buprenorphine microinduction.

1  Introduction

As the toll of opioid-use disorder (OUD) has reached an 
epidemic scale, its full global impact is beginning to emerge. 
OUD causes mortality rates 15–20 times higher than those 
seen in the general population—the greatest burden of dis-
ease among all substance-use disorders [1, 2]. According to 
the World Health Organization, approximately 27 million 
persons globally suffer from OUD and are in need of treat-
ment [3]. The treatment for OUD consists of primarily of 
pharmacotherapy, which includes: methadone, a full a mu-
opioid receptor (MOR) agonist; injectable extended-release 
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(IM XR) naltrexone, a MOR antagonist; and buprenorphine 
(BUP), a partial MOR agonist that is typically prescribed 
in combination with an orally inactive formulation of 
naloxone for OUD [4, 5]. As further described in Sect. 2.1, 
BUP has a unique pharmacological profile, characterized 
by its high affinity, partial agonism, and high potency at 
the MOR, as well as its ability to bind to the kappa-opioid 
receptors (KOR), where BUP acts as an antagonist. Despite 
the existence of three distinct pharmacotherapies for OUD, 
currently less than 10% of persons with OUD receive the 
much-needed treatment [6].

In recent years, an increase in the availability of BUP has 
extended the capacity of healthcare systems to treat persons 
with OUD [7]. Conveniently, unlike methadone—which 
can only be dispensed to treat OUD in Opioid Treatment 
Programs (OTPs), in countries like the USA—BUP can be 
provided by trained clinicians in office settings, and is typi-
cally subjected to less restrictive regulations. Further, in sev-
eral European countries, BUP may be prescribed by general 
practitioners to treat OUD. The initiation—or induction—of 
pharmacotherapy with BUP, however, still presents a con-
siderable challenge: due to its low intrinsic activity at the 
MOR, combined with its capacity to displace agonists from 
the MOR, BUP has the potential to acutely precipitate opioid 
withdrawal. Multiple studies have demonstrated that precipi-
tated withdrawal during induction onto BUP occurs com-
monly, especially when it is preceded by recent exposure to 
full opioid agonists—such as methadone or heroin—which 
is very often the case among persons with OUD. Emerging 
evidence indicates that in addition to the immediate physical 
and psychological discomfort, precipitated withdrawal dur-
ing induction onto BUP may also impact long-term OUD 
treatment outcomes, such as treatment retention, as well as 
abstinence from non-medical opioid use [8, 9].

To minimize the risk of precipitated withdrawal, there-
fore, patients who are exposed to full opioid agonists 
chronically are recommended to already be experiencing 
moderate withdrawal symptoms at the time of induction. 
A critical disadvantage of this approach is the requirement 
of patients who receive treatment with full opioid agonists 
to slowly taper and discontinue these medications—which 
may increase the risk of relapse and overdose. Further, by 
reducing the clinic visits that are needed to conduct the rec-
ommended full opioid agonist taper, major disruptions in 
the treatment of OUD caused by the SARS-CoV-2 pandemic 
have accentuated this challenge [10].

To circumvent this clinical dilemma and facilitate the 
transition from full opioid agonists—either prescribed or 
illicit—to BUP, an alternative approach is gaining popu-
larity: microinduction. This approach entails administering 
very small doses of BUP, with gradual dose increases; mean-
while, the patient may continue to receive regular or faster-
tapering doses of a full opioid agonist, or may be exposed 

to illicit opioid agonists. Once a therapeutic dose of BUP is 
reached, the full opioid agonist is then promptly discontin-
ued. This innovative method, thus, may have the compelling 
advantage of eliminating the need for a long taper or dis-
continuation of the full opioid agonist prior to the induction 
onto BUP—providing timely access to a first-line treatment 
for OUD. Further, as the risk of overdose is greater during 
the start and cessation of opioid pharmacotherapies, this 
approach may offer a safer way to transition from full opi-
oid agonists to BUP, reducing the mortality associated with 
OUD [11]. Still, before microinduction can be implemented 
in clinical practice, the evidence supporting its feasibility 
and therapeutic potential warrants careful scrutiny.

The objective of this review is to critically appraise the 
pharmacological basis and the evidence of BUP microin-
duction strategies to enhance treatment outcomes among 
persons with OUD. First, we describe the pharmacol-
ogy of BUP—focusing on its unique interaction with the 
MOR. Second, we analyze the challenges surrounding the 
traditional induction onto BUP, elaborating on the mecha-
nistic and clinical rationale for microinduction. Third, we 
summarize the published studies and reports that used 
BUP microinduction methods. Lastly, we discuss gaps in 
knowledge and lay out directions for future research. Nota-
bly, this pharmacologically oriented review complements 
recent reviews on the clinical aspects of microinduction [12, 
13]. We draw on our experience in Phase 1 human behav-
ioral pharmacology studies and Phase 2 clinical trials to 
timely articulate the pharmacological principles underlying 
microinduction; rigorously appraise the available reports; 
and provide conceptual and methodological insights to 
advance this novel area of pharmacotherapy development.

2 � The Unique Pharmacology 
of Buprenorphine

A semisynthetic opioid developed in the 1970s, BUP is a 
complex lipophilic molecule composed of multiple chiral 
centers, a morphine skeleton, and a unique cyclopropylme-
thyl group [14–16]. It binds to all four types of opioid recep-
tors: mu-, delta- (DOR), KOR, and the opioid receptor-like 
1 (ORL1) receptor. While MOR and ORL-1 mediate the 
rewarding and analgesic effects of opioids [17], DOR partic-
ipate in mood-regulation [18] and KOR mediate analgesic, 
dysphoric, and psychotomimetic effects [14, 19].

BUP is an antagonist with a high binding affinity at the 
DOR and KOR, and an agonist with lower binding affinity at 
the ORL-1 [20]. The unique actions of BUP on multiple opi-
oid receptors might explain its analgesic efficacy, antidepres-
sant actions, and low sedative and psychotomimetic potential 
[21]. For the purposes of this review, we primarily focus on 
the pharmacological actions of BUP on the MOR, which are 
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the primary mechanistic mediators of opioid dependence 
and withdrawal.

2.1 � Buprenorphine Interactions with Mu‑Opioid 
Receptors

Aside from BUP’s actions on multiple opioid receptors, 
its unique pharmacological effects of result from: (1) high 
affinity to—and slow dissociation from—MOR; (2) partial 
agonism and low efficacy at MOR; and (3) high potency at 
MOR.

First, compared to full opioid agonists, BUP has a high 
binding affinity—or low Ki—for MOR [22]. For instance, 
the binding affinity of BUP for MOR is 5.4 and 6.2 times 
greater than that of morphine and fentanyl, respectively 
[23]. Further, BUP exhibits a slow dissociation from MOR 
in comparison with other opioids. This slow dissociation 
contributes to the prolonged effects of BUP, allowing once-
a-day—or even less frequent—dosing, with minimal inter-
dose withdrawal [20].

Second, as a partial agonist with low intrinsic efficacy 
at MOR, the maximal effects produced by BUP are lower 
than those produced by a full—or high efficacy—MOR ago-
nist [24]. While in the presence of full opioid agonists, such 
as heroin or methadone, BUP acts like an opioid antago-
nist—competitively binding MOR, and thereby precipitat-
ing opioid withdrawal. Conversely, in the absence of MOR 
agonists, buprenorphine activates MOR partially—hence 
alleviating opioid withdrawal. Another clinical translation 
of the partial agonism of BUP is the ceiling effect for its 
MOR-mediated actions—such as euphoria, physiological 
dependence, and respiratory depression [25]. The relative 
infrequency of overdose deaths attributed to BUP, compared 
with those attributed to full opioid agonists, underscores its 
clinical safety [25].

Third, compared to other opioids, BUP has a high 
potency: The dose required to produce an effect of a given 
intensity—for instance, analgesia—is lower than that 
required from full opioid agonists. Specifically, converg-
ing preclinical and human studies have shown that BUP is 
20–50 times more potent than morphine [26]. Importantly, 
the potency of a pharmacological agent depends on both its 
affinity and efficacy. When compared to morphine, relatively 
lower doses of BUP may elicit some degree of respiratory 
depression; however, higher doses of BUP, such as those 
used in clinical settings, do not lead to greater respiratory 
depression, given its lower MOR efficacy [26]. Further, as 
this example demonstrates, a simple conversion of BUP 
dose to morphine milligram equivalents (MME) may not 
adequately inform a transition from full opioid agonists to 
buprenorphine, or the assessment of overdose risk, solely 
based on the correspondent opioid dose.

In addition to the unique pharmacological profile of BUP, 
the structure and activity of the MOR itself may also influ-
ence their interactions. MOR are G-coupled protein recep-
tors (GCPRs)—they are attached to inhibitory G-proteins 
(Gαi), a family of proteins that act as molecular switches 
inside cells, transmitting signals from ligands outside the 
cell to its interior. G-proteins suppress neuronal activity by 
inhibiting adenylyl cyclase, reducing intracellular cyclic 
adenosine monophosphate (cAMP) levels, and regulating 
ion channels [27, 28]. The ensuing cascade of signaling 
events limits neurotransmitter release and hyperpolarizes 
the cell membrane. Consistent with this, the rewarding and 
addictive effects of opioids are thought to be mediated by 
the hyperpolarization of GABAergic internerurons in the 
ventral tegmental area (VTA), which ultimately releases 
dopamine in the nucleus accumbens [27, 28]. Furthermore, 
opioids may cause the phosphorylation of specific amino 
acid residues on the cytoplasmic domain of MOR, recruit-
ing a signaling cascade known as beta-arrestin pathway. 
Beta-arrestin is an adaptor protein that regulates receptor 
function and signal transduction activity. Recruitment of the 
beta-arrestin pathway causes MOR internalization through 
endocytosis, downregulation of MOR signaling [29–32], 
and, as a consequence, higher risk of opioid misuse, physi-
ological dependence, and respiratory depression [27]. For a 
given opioid drug, the balance between G-protein and beta-
arrestin signaling (i.e., biased agonism) may determine the 
tradeoff between therapeutic efficacy and adverse effects 
[27]. BUP stimulates sufficient G-protein signaling, with 
limited recruitment of the beta-arrestin pathway—resulting 
in desirable bias toward MOR signaling and a better safety 
profile [27, 32].

In summary, the unique pharmacology of BUP gener-
ates an important therapeutic tradeoff: favorably, in the 
absence of full opioid agonists, BUP activates MOR enough 
to produce typical opioid effects—including analgesia and 
alleviation of opioid withdrawal—with a relatively wide 
therapeutic window. Unfavorably, when in the presence of 
full opioid agonists, however, BUP may displace them from 
MOR acutely, leading to an abrupt reduction of the opioid 
tone, manifested as precipitated withdrawal [33–36] (Fig. 1).

3 � Challenges Surrounding Induction 
onto Buprenorphine

The induction onto BUP treatment still poses many clini-
cal challenges. First, growing observational data has shown 
that induction onto BUP may precipitate withdrawal, poten-
tially interfering with treatment retention and abstinence 
from non-medical opioid use [8, 9]. Hence, ahead of the 
induction, patients are expected to already be experiencing 
moderate withdrawal symptoms. Yet, if patients are using a 
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long-acting full opioid agonist, moderate withdrawal may 
not start until up to 48 h or longer after the last opioid dose 
[37]. The longer the time to start BUP, the higher the vulner-
ability for relapse and overdose [38].

Second, emerging evidence also suggests that high 
potency synthetic opioids (HSPOs), which have contami-
nated the illicit drug supply, especially in North America, 
may particularly impact induction onto BUP. HSPOs are 
a class of full opioid agonists—including fentanyl and its 
analogues—that are characterized by very high potency 
and lipophilicity, with intense and prolonged opioid effects 
[39–41]. In the USA, both clinicians and persons with 
OUD have reported that, with the widespread use of HSPO, 

precipitated withdrawals during inductions onto BUP have 
become more frequent [42].

Third, against the backdrop of the SARS-CoV-2 pan-
demic, major disruptions in the treatment of OUD have 
occurred, encouraging clinicians to attempt more inductions 
onto BUP at OTPs. Treatment facilities where dispensation 
of methadone for OUD is limited by frequent in-person mon-
itoring, such as OTPs in the USA, have been disproportion-
ally affected by the pandemic. Social distancing measures 
have inadvertently jeopardized the continuation of metha-
done treatment, thereby encouraging physicians to transition 
patients to BUP. Still, the current treatment guidelines rec-
ommend methadone to be tapered to 30–40 mg/day, ahead 

Fig. 1   Regular interaction between buprenorphine (BUP) and full 
mu-opioid receptor (MOR) agonists in opioid-dependent persons. 
Left: chronic opioid use leads to a host of neuroadaptations at the 
MORs, including MOR desensitization and downregulation. These 
neuroadaptations are manifested clinically as a reduced opioid tone, 
leading to persistent opioid withdrawal, and a pervasive negative 
affective state. Center: full MOR agonists may temporarily increase 
the opioid tone, reducing opioid withdrawal and negative affect. How-
ever, the chronic MOR neuroadaptations persist, such that MORs 

remain desensitized and downregulated. Right: BUP is a partial 
agonist at the MOR, with low intrinsic efficacy but very high affin-
ity. Since the affinity of BUP for the MOR is greater than that of full 
MOR agonists, and given its slow dissociation half-life, BUP may 
continue to displace full opioid agonists from MOR for up to 24–48 
h after its dosing. Importantly, as BUP displaces full opioid ago-
nists from MOR that are already downregulated and desensitized by 
chronic opioid use, this results in a profound reduction of MOR activ-
ity, thereby increasing the likelihood of precipitated withdrawal
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of discontinuation. Notably, approximately 70% of persons 
who receive methadone for OUD do so at doses of 60 mg/
day or higher [43]. Therefore, patients are often obliged to 
remain on subtherapeutic doses for weeks, increasing the 
risk of negative outcomes [38].

Collectively, these three layers of complexity highlight 
the need for novel methods to induct patients onto BUP—in 
a safer, faster, and patient-centered manner.

4 � The Microinduction Approach

4.1 � Definition

In essence, microinduction involves administering small 
doses of BUP—typically less than 2 mg, the starting dose 
in standard induction strategies—such as 0.25–2 mg/day of 
sublingual or 5–20 µg/h of transdermal BUP, with gradual 
increases of both the dose and frequency of administration. 
In contrast to the traditional induction, patients may continue 
their use of full opioid agonists (e.g., methadone or oxyco-
done), until a therapeutic dose of BUP has been achieved. At 
that point, the full opioid agonist is discontinued, without the 
need for a slow taper [44–52]. Overall, this process may take 
place over a 3- to 10-day period, depending on the clinical 
setting and level of monitoring needed; BUP microinduc-
tions in the inpatient setting may be carried out faster than 
in the outpatient environment [44–52].

4.2 � Pharmacological Mechanisms

An important question is how microinduction—a slow 
titration of small doses of BUP that overlaps with a full 
opioid agonist—may allow circumventing the need for opi-
oid-dependent persons to experience opioid withdrawal. It 
is believed that opioid withdrawal occurs due to a sudden 
decrease in opioid tone in key brain regions, including the 
mesolimbic area and locus coeruleus [53]. Both the reduc-
tion of MOR occupancy by full opioid agonists, as well as 
chronic neuroadaptations in MOR signaling as a result of 
prolonged opioid exposure, contribute to opioid withdrawal 
[54]. It is likely that microinduction reduces the risk of opi-
oid withdrawal by affecting these mechanisms (Fig. 2).

It is conceivable that small doses of BUP administered 
during microinduction may stay below the threshold to dis-
place full opioid agonists enough to induce withdrawal. For 
instance, sublingual maintenance doses of BUP for OUD 
of 2, 16, and 32 mg/day reduced whole-brain MOR bind-
ing availability by 41%, 80%, and 84%, respectively [55]. 
Extrapolating from this study, the initial doses of BUP used 
during microinduction—as low as 0.25–1 mg/day—are 
expected to displace only a small percentage of MOR. Still, 
with a gradual increase in BUP dose, higher quantities of 

full opioid agonists are expected to be displaced, resulting 
in withdrawal. Therefore, other mechanisms may account for 
the potential ability of BUP microinduction to circumvent 
precipitated withdrawal.

As with other GCPRs, MOR undergo several neuroadap-
tations in response to agonist treatment. The most notable 
is receptor desensitization, which results in downregula-
tion of surface MOR, and an increase in second messenger 
levels [56]. Altogether, these neuroadaptations contribute 
to the development of opioid tolerance, dependence, and 
withdrawal.

Desensitization can be operationally defined as the rapid 
loss of MOR-effector coupling that occurs after exposure 
to exogenous opioids. The molecular processes underly-
ing desensitization include rapid uncoupling of the recep-
tor from its G proteins, by phosphorylation of the recep-
tor; internalization of receptors from the cell surface; and 
recruitment of the beta-arrestin pathway [57]. After pro-
longed exposure to full opioid agonists, an eventual loss of 
receptor protein may occur, through changes in either the 
receptor degradation or synthesis.

Converging evidence indicates that the desensitization of 
MOR may be ligand-specific. Whereas full opioid agonists 
consistently desensitize the MOR [58–60], BUP does not 
induce desensitization—likely due to its G-protein pathway 
bias, with less recruitment of beta-arrestin pathway [61, 62]. 
Further, in contrast to MOR agonists, BUP up-regulates the 
number of surface MOR—an effect similar to that induced 
by the opioid antagonist naloxone [62]. Following long-term 
treatment with full opioid agonists, MOR-coupled G pro-
teins shift from the inhibitory Gi to stimulatory Gs type, 
contributing to development of hyperalgesia, tolerance, and 
dependence [63]. Interestingly, this shift can be prevented 
by co-administration of with BUP along with MOR agonists 
[62]. Furthermore, pre-treatment with BUP has been found 
to block the desensitization and internalization induced by 
full opioid agonists [61, 64]. Collectively, these data suggest 
that BUP may reverse some of the neuroadaptations induced 
by full opioid agonists—thereby leading to resensitization. 
Taken together, these hypothesized mechanisms may allow 
maintaining an adequate opioid tone with small doses of 
BUP, hence preventing precipitated withdrawal—even with 
the co-administration of therapeutic doses of full opioid ago-
nists (Fig. 2).

5 � Review of Microdoinduction Reports

5.1 � Methods

The search aimed to identify reports using the following 
electronic search databases: Scopus, Cochrane Database 
of Systematic Reviews, and Medline. The search terms 
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included ([buprenorphine/naloxone, buprenorphine, sub-
oxone] and [microdosing; induction; micro-induction, 
microinduction; rapid induction; Bernese method; overlap]). 
No date limits were included. Searches were independently 
conducted by J.P.D and S.P., between June and October of 
2020. Reference lists from identified studies and review arti-
cles were examined to find additional studies that were not 
identified by the main search. Finally, we searched Clini-
caltrials.gov, to ascertain whether there are ongoing rand-
omized controlled trials investigating the efficacy of BUP 
microinduction.

Eligible reports included: (1) human participants under-
going BUP microinduction, and (2) the reported outcomes 
included opioid withdrawal. Reports were excluded if they 
were: (1) review papers, rather than primary literature, or 
(2) not peer‐reviewed.

5.2 � Results

A total of 20 reports provided data relevant to our research 
question (Table 1) [44–52, 65–78]. One was an open-label 
study, ten were case series, and nine were individual case 
reports. Although no published randomized controlled tri-
als were identified, one ongoing randomized, controlled 
open-label superiority trial is listed in Clinicaltrials.gov; 
this unpublished study was designed to compare safety 
and effectiveness of buprenorphine microinduction versus 
standard induction among persons with OUD, and its results 
remain unavailable.

The available reports differed with regards to: (1) BUP 
formulations (e.g., transdermal system, sublingual tablets/
films) were used; (2) the starting point of the microinduc-
tion—the full opioid agonist dose, expressed in morphine 
milligram equivalency (MME); (3) the speed of BUP 

Fig. 2   Buprenorphine (BUP) microinduction in opioid-dependent 
persons. Left: low doses of BUP allow binding to mu-opioid recep-
tors (MORs) below the threshold to precipitate withdrawal, maintain-
ing the opioid tone and bypassing the worsening of negative affec-
tive states during the early phases of the treatment. Center: a gradual 
increase in the dose of BUP may reverse chronic MOR neuroadap-

tations induced by full opioid agonists. Such reversal includes an 
increase in the number of surface MORs, as well as MOR resensitiza-
tion. Right: as full MOR agonists are discontinued, the occupation of 
upregulated and resensitized MOR by BUP guarantees an adequate 
opioid tone, circumventing the need of opioid-dependent persons to 
experience opioid withdrawal during the induction.
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titration; (4) the time point when the full opioid agonist was 
discontinued; (5) presence of either pain and/or OUD in the 
sample; (6) use of ancillary medications for opioid with-
drawal; (7) other clinical outcomes, such as non-medical 
opioid use.

6 � Discussion

The most notable finding of this review was that most of the 
data available are derived from either open-label studies or 
case series—reflecting the novelty of the BUP microinduc-
tion approach, as well as enduring adherence to traditional 
induction protocols. Despite the lack of systematic, high-
quality evidence to support its use, all reports indicate that 
BUP microinduction was safe and well tolerated, providing 
early signs for its feasibility. Taken together, the pharmaco-
logical plausibility of BUP microinduction, coupled with 
its promise to increase access to this first-line treatment for 
OUD, highlight the timely need for randomized, placebo-
controlled studies to establish the safety and efficacy of this 
approach. The contributions of this review include mecha-
nistic, methodological, and clinical implications.

6.1 � Mechanistic Implications

At the mechanistic level, we have underscored the need to 
uncover how BUP affects MOR and their signaling, espe-
cially against the backdrop of full opioid agonist-induced 
neuroadaptations. At present, the level of MOR receptor 
occupancy required to produce precipitated withdrawal by 
BUP remains to be investigated in preclinical and clinical 
studies. For instance, there are no positron emission tomog-
raphy (PET) studies examining the impact of microdoses of 
BUP among individuals receiving long-term, high-dose full 
opioid agonist therapy. Clarifying the level of MOR receptor 
occupancy that is sufficient to provide therapeutic benefit 
while avoiding precipitated withdrawal may guide the dose 
range that is optimal for BUP microinduction. Moreover, 
the capacity of BUP to reverse clinically relevant neuro-
adaptations induced by full opioid agonists—desensitiza-
tion, downregulation, and shift to stimulatory Gs type of G 
proteins—resemble earlier studies that used very low doses 
of naltrexone combined with full opioid agonists, and like-
wise warrants further research [79]. Future preclinical and 
translational studies are required to elucidate the specific 
mechanisms involved in microinduction.

6.2 � Methodological Implications

Despite its growing popularity, BUP microinduction has 
not yet been systematically examined in well-controlled 

studies, which explains the wide variability of methods and 
outcomes included in the existing reports.

For patients with OUD, the main clinically relevant out-
comes of BUP microinduction include: (1) Successful com-
pletion of the microinduction regimen; (2) retention in treat-
ment, using a longer-term, well-defined timepoint of at least 
6 months [80–82]; (3) change in non-medical opioid use; (4) 
emergence of adverse effects, such as precipitated opioid 
withdrawal, or mortality by opioid overdose. Further, future 
studies should also include assessments of patient comfort, 
healthcare provider experience, and ease of administering 
microinduction protocols.

Several other methodological questions in BUP microin-
duction warrant further consideration. First, the optimal time 
to discontinue the full opioid agonist remains understudied. 
For instance, it is possible that different full opioid agonists 
(e.g., methadone, oxycodone) may need to be discontinued 
at different time points during the microinduction, based 
on their pharmacodynamic (e.g., ligand-specific effects) or 
pharmacokinetic (e.g., differences in half-life) properties. 
Second, the role of patient expectancy in mediating the suc-
cess of microinduction should not be understated. It is likely 
that positive expectations about the microinduction process 
impact the likelihood of completing it, and vice versa. Thus, 
patients who did not tolerate BUP microinduction may have 
been excluded from case series—which, thus far, still con-
stitute the bulk of the evidence supporting this approach. 
Adequate blinding, using randomized, placebo-controlled, 
double-dummy designs may account for the conceivably 
high impact of expectancy on the short-term outcomes of 
BUP microinduction. The lack of methodologically sound 
trials remains the largest barrier to widespread implementa-
tion of this approach.

6.3 � Clinical Implications

The main clinical implication of BUP microinduction is its 
potential to enhance patient engagement with pharmaco-
therapy for OUD in a timely and efficient manner.

The reports included in this review had individuals 
receiving a wide range of opioid doses, including doses of 
over 1000 mg/day of MME. Even at high full opioid agonist 
doses, the opioid withdrawal severity during microinduction 
remained mild, with most participants successfully complet-
ing the induction. Persons with OUD receiving long-term 
and high doses of full opioid agonists—for example, > 90 
MME/day for 3 months or longer—present a particular chal-
lenge for induction onto BUP. Patients with chronic pain on 
long-term opioid therapy are also physiologically depend-
ent on opioids, and their challenges during induction onto 
BUP overlap with those of patients with OUD. Hence, these 
early findings provide preliminary support for microinduc-
tion as a potential strategy for patients receiving a wide dose 
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range of long-term opioid treatment for distinct indications. 
Variations in microinduction protocols may be appropriate 
depending on the patient population (OUD vs. chronic pain 
receiving long-term opioid therapy) and clinical setting 
(inpatient vs. outpatient).

Future well-controlled studies should examine the opti-
mum dose, route of administration—sublingual versus trans-
cutaneous—as well as the duration of BUP microinduction. 
It is possible that distinct microinduction approaches repre-
sent different ways of exploiting differences in the pharma-
cological profile of opioids to improve treatment outcomes.

7 � Conclusions

Despite overwhelming evidence supporting the effective-
ness of BUP pharmacotherapy for curbing fatalities among 
persons with OUD, the ceiling effect of BUP for opioid 
overdose, and the office-based prescribing of BUP in the 
USA, the requirement of moderate opioid withdrawal is still 
a significant barrier for induction. This requirement is, in 
part, a clinical manifestation of chronic neuroadaptations 
induced by full opioid agonists—MOR desensitization and 
downregulation—which may be partly reversed by BUP, in 
a dose-dependent manner. By harnessing the idiosyncratic 
pharmacological profile of BUP, microinduction holds 
promise to increase access to BUP pharmacotherapy and 
improve treatment outcomes. While mechanistic and clinical 
reports provide preliminary evidence supporting this innova-
tive approach, further translational research, as well as well-
designed randomized, placebo-controlled studies, are needed 
to ascertain whether the potential of BUP microinduction 
can be fully realized.
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