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Insect osmoregulation is subject to highly sophisticated endocrine control. In

Drosophila, both Drosophila kinin and tyramine act on the Malpighian (renal)

tubule stellate cell to activate chloride shunt conductance, and so increase

the fluid production rate. Drosophila kinin is known to act through intracellu-

lar calcium, but the mode of action of tyramine is not known. Here, we used

a transgenically encoded GFP::apoaequorin translational fusion, targeted to

either principal or stellate cells under GAL4/UAS control, to demonstrate

that tyramine indeed acts to raise calcium in stellate, but not principal

cells. Furthermore, the EC(50) tyramine concentration for half-maximal acti-

vation of the intracellular calcium signal is the same as that calculated from

previously published data on tyramine-induced increase in chloride flux. In

addition, tyramine signalling to calcium is markedly reduced in mutants of

NorpA (a phospholipase C) and itpr, the inositol trisphosphate receptor gene,

which we have previously shown to be necessary for Drosophila kinin

signalling. Therefore, tyramine and Drosophila kinin signals converge on phos-

pholipase C, and thence on intracellular calcium; and both act to increase

chloride shunt conductance by signalling through itpr. To test this model,

we co-applied tyramine and Drosophila kinin, and showed that the calcium

signals were neither additive nor synergistic. The two signalling pathways

thus represent parallel, independent mechanisms for distinct tissues (nervous

and epithelial) to control the same aspect of renal function.
1. Introduction
Insect Malpighian tubules play key roles in ion transport and excretion [1],

immune function [2,3] and xenobiotic detoxification [4,5]. Because of these mul-

tiple roles, they are also important both in sensing and in mounting a

homeostatic response to stress [6–12]. They even show positional and

gender-specific asymmetry in function [13]. Their neuroendocrine control is

appropriately sophisticated, and well reviewed elsewhere [1,14,15].

The Drosophila melanogaster tubule is an excellent model for insect tubules,

particularly of Diptera, which segregate their transport function into two

specialized cell types [16]. Active cation transport is energized by an apical

plasma membrane Hþ V-ATPase, which drives alkali metal–proton exchange

to produce a net transport of potassium or sodium, so increasing the trans-

epithelial potential (TEP) [1]. Several neuropeptides have been linked to

activation of the principal cell: the diuretic hormones DH31 [17] and DH44

[18], which both act through cyclic AMP; CAPA [19], acting through calcium;

and Nplp1-4, an ‘orphan’ peptide [20] that was recently shown to activate a

receptor guanylate cyclase [10]. Activation of the principal cell alone produces

a modest increase in fluid secretion, because the resting chloride conductance is

relatively low.
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Figure 1. Tyramine acts to raise intracellular calcium in stellate, but not in principal cells. (a) Representative experiment, in which an apoaequorin::eGFP fusion was
expressed in principal cells by crossing to the c42 GAL4 driver (blue), or only in stellate cells, by crossing to the c724 GAL4 driver (red). A mock injection before the
addition of the secretagogue (at 5 � 1028 M) allows any injection artefact to be estimated; in this case, it was negligible. (b) Summary of peak responses from
three such experiments. Significant differences are marked with an asterisk.
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Stellate cells are activated by Drosophila kinin, or Drosokinin

(NSVVLGKKQRFHSWGamide) [21], a member of a neuropep-

tide family found in most insects [22,23], which signals through

a canonical G-protein coupled receptor (GPCR) to raise intra-

cellular calcium [24], and thence to rapidly increase the

chloride shunt conductance, effectively removing the ‘brake’

on active cation pumping, resulting in a rapid collapse of TEP

and concomitant increase in fluid secretion [25,26].

Recently, it has become clear that tyramine is a second ago-

nist for the stellate cell [6,27,28]. Like Drosophila kinin, it signals

through a canonical GPCR and acts to collapse the TEP, and so

increase fluid secretion. It is thus of great interest to establish

whether tyramine acts through intracellular calcium, and

whether the Drosophila kinin and tyramine signals interact

in any way. This is particularly straightforward to address in

Drosophila, with ready availability of classical mutants, and

powerful transgenics—indeed the first report of the use of a

genetically encoded calcium sensor in animals was in Drosophila
[29]. Here, as well as demonstrating that tyramine does indeed

signal through intracellular calcium in only the stellate cells, we

report the use of an improved calcium sensor in tubules that is

based on a translational fusion of the two jellyfish photo-

proteins apoaequorin and green fluorescent protein (GFP),

resulting in markedly improved sensitivity [30,31].
2. Material and methods
(a) Drosophila maintenance
Drosophila were kept at 258C, 12 : 12 h photoperiod and 45–55

per cent relative humidity, and raised on standard Drosophila
medium, as described previously [32].

(b) Generation of calcium reporter flies
We have previously described the use of quantitative reporters

based on transgenic aequorin [29], as well as imaging reporters

based on pericam [33]; here, we generated flies transgenic for a

calcium reporter based on a translational fusion of GFP and

apoaequorin, under control of the UAS control region (‘UAS-

GFP::aeq’) by cloning a synthetic cDNA into the transformation

vector pPfUASTg and germ-line transforming Drosophila accord-

ing to standard protocols. As reported elsewhere, we found that

such a reporter shows greatly increased stability and lumines-

cence [30], allowing superior real-time recordings to be

obtained with less tissue in each sample.
(c) Real-time intracellular calcium assays
Assays were as described earlier [29]. Briefly, week-old adult flies

were anaesthetised by chilling on ice for a few minutes, then

tubules dissected in Schneider’s culture medium (except as

described below). Where reduced tyrosine or tyramine levels

were required, tissues were dissected and assayed in standard

Drosophila saline [32], which does not contain these compounds.

Depending on the experiment, tubules expressed UAS-GFP::aeq,

driven by GAL4 lines c42 (specific to principal cells in the main

segment) or c724 (specific to stellate cells).

Tubules were incubated in the dark with coelenterazine to

reconstitute active aequorin, then real-time luminescence measured

in a Berthold luminometer. After establishing a stable baseline,

tyramine or Drosophila kinin was applied through injectors, and

response was followed up for a further period. At the end of the

experiment, undischarged aequorin was measured by permeabiliz-

ing the cells with Triton X-100 in the presence of excess calcium.

Instantaneous real-time calcium values throughout the experiment

were then back-calculated with an in-house PERL routine, based on

standard methods [34].

(d) Statistics
Data are plotted as mean + s.e.m. Where needed, data were

compared using Student’s t-test, taking p ¼ 0.05 (two-tailed) as

the critical value. For EC50 values, best fit was calculated by

least-squares nonlinear fit (GraphPad Prism), and the resulting

log(EC50) values compared with a t-test.
3. Results and discussion
The action of tyramine is to collapse the TEP across the tubule

by rapidly increasing the chloride shunt conductance, and

thus to stimulate KCl transport and fluid production [27].

These are the same actions ascribed to the neuropeptide Droso-
phila kinin, which has been shown to act to raise intracellular

calcium only in stellate cells [24,35], implying that the chloride

shunt conductance route is controlled by these cells. Consistent

with this, the Drosophila kinin receptor is found in stellate cells in

Drosophila [24], Anopheles [35] and Aedes [36]. Accordingly, tyr-

amine was applied to tubules transgenic for the enhanced

aequorin::GFP fusion, which provides a sensitive, real-time,

absolute measurement of intracellular calcium (figure 1).

When GFP::Aeq was driven in principal cells, no response

to tyramine was seen; but when driven in stellate cells, a pro-

minent, rapid calcium rise was observed, as previously
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Figure 2. Concentration dependence of tyramine activation of intracellular calcium in stellate cells. (a) Typical responses to varying concentrations of tyramine,
injected at 90 s. (b) Mean response across a range of concentrations, compared to corresponding mock injections (n ¼ 3 except for n ¼ 2 at 5�10210 M).
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Figure 3. The EC50 for tyramine activation of stellate cell intracellular calcium matches that calculated for activation of chloride conductance. (a) Data from figure 2
were re-plotted as a standard semi-log dose – response curve, and a curve (solid line) fitted to the original data (dotted line) using GraphPad Prism. (b) Data were
re-measured from fig. 2c of [4], and re-plotted as in (a).
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Figure 4. Like Drosophila kinin, tyramine calcium signalling is mediated by phospholipase C and the IP3 receptor. (a) Comparison of calcium responses in lines
carrying 2, 1 or 0 copies of NorpA, the major phospholipase C of tubules. Typical traces. (b) Comparison of itpr1664/itpr1664 homozygous mutant flies with wild type.
Note that, because of extensive pupal lethality of itpr mutants, these experiments were performed on feeding third instar larvae. Each trace is the average of three
independent replicates.
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documented for Drosophila kinin. Therefore, tyramine, like

Drosophila kinin, acts to raise intracellular calcium in only

stellate cells.
The tyramine response was concentration-dependent

(figure 2), with an EC50 of 1.77 � 1028 M (figure 3a). To test

whether this was relevant to the functional endpoint of
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Figure 5. Tyramine calcium signalling in stellate cells is not synergistic to
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of kinin and tyramine. (b) Traces from experiment with lower concentrations
of kinin and tyramine. (c) Peak increases in calcium signals (relative to basal)
observed in A and B, with a saturating concentration of kinin (1027 M) for
reference. Tubules from adult c724.GFP::aeq flies were dissected and
exposed to Drosophila kinin, tyramine or both at the point indicated, and
responses compared with mock injections at 30 s. Typical traces.

rspb.royalsocietypublishing.org
ProcR

SocB
280:20122943

4
elevated shunt conductance, this value was compared with

the EC50 for chloride shunt conductance activation, assayed

as a change in TEP [27]. No formal EC50 was reported in

this paper; accordingly, the original data were re-measured

and re-plotted (figure 3b) to obtain an EC50 of 1.6 �
1028 M. These two values do not differ significantly ( p ¼
0.83). Therefore, the concentration dependence of tyramine-

induced elevation of intracellular calcium is exactly compati-

ble with an action on chloride shunt conductance.

Both Drosophila kinin and tyramine signal through dis-

tinct GPCRs (lkr and CG7431, respectively [24,37,38]), but

use the same downstream messenger. It was therefore of

interest to establish whether tyramine signals through phos-

pholipase C (PLC) and inositol trisphosphate (IP3), as has

previously been established for Drosophila kinin [39]. This

was tested using well-known mutants for the widely

expressed PLC, no receptor potential A (norpA), and for the

only InsP3 receptor gene, itpr. NorpA nulls are viable, because

there is a second PLC in Drosophila (Plc21C), so using the null

norpA24 it was possible to study the calcium response in

tubules with 2, 1 or 0 working copies of norpA (figure 4a).

As can be seen, reduction in the number of copies of norpA
produced a corresponding reduction in calcium response,

as previously shown for the neuropeptide Drosophila kinin

[39]. PLC acts to liberate InsP3, which classically acts on its

cognate receptor in the endoplasmic reticulum to produce a

rapid calcium pulse, which typically triggers further calcium

entry into the cell. As iptr is a single copy gene in Drosophila,

nulls are lethal [40]—perhaps surprisingly as late as the

pupal stage—and so the impact of itpr was assessed in feeding

third instar larvae (figure 4b). As can be seen, in itpr1664/itpr1664

hypomorphs, the calcium response was attenuated. Therefore,

although the tyramine and Drosophila kinin signals originate

from different sources and act on distinct receptors,

their downstream signalling through NorpA, Itpr and Ca2þ
i

is indistinguishable.

Is parallel activation of the Drosophila kinin and tyramine

pathways synergistic? As both act through the same second

messenger, this would not be expected; and indeed

(figure 5), the calcium response to tyramine and Drosophila
kinin combined is not significantly greater than to either

secretagogue separately, at either high or submaximal

concentrations of the two agonists. Indeed, there is little evi-

dence for additivity in the signals, implying that the two

pathways converge on a limiting downstream component.

Overall, then, an intriguing model has been demon-

strated, in which two distinct secretagogues with two

different origins within the organism elicit responses which

are indistinguishable downstream, with both acting through

PLC and InsP3 to elevate intracellular calcium, and thence

to trigger a massive and rapid increase in the chloride

shunt conductance. At first sight, such a system would

seem to defy Occam’s razor; why should such independent

pathways exist? The solution proposed by Blumenthal [28]

is based on the origins of the two signals (figure 6). Drosophila
kinin is a bona fide neuropeptide, which has been mapped

to neurosecretory cells in the CNS and peripheral tissues

[42–45]. It thus provides a clear route through which the

CNS controls diuresis. In contrast, tyramine is generated

from tyrosine by the action of tyrosine decarboxylase, which

is found in the adjacent principal cells within the tubule

itself [28]. The principal cells are themselves under neuro-

endocrine control, from both the CNS and neurosecretory
cells in the midgut [46], and are the sites for active cation

transport. The parallel activation model would thus allow

the cation pumping cell (which sets up the TEP gradient for

chloride) to influence the conductance of the chloride shunt

pathway directly, and so produce efficient diuresis. So

the potential exists for neuroendocrine stimulation of the

principal cell, by any of the neuropeptides DH31, DH44,

CAPA or Nplp1-4, to not only increase the driving force
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for chloride (by pumping cations to the lumen), but also to

increase the conductance for chloride simultaneously. While

further work is needed, such a mechanism would be parsimo-

nious, as increasing active transport of cations without

increasing the chloride shunt conductance necessary for

fluid secretion would be energetically wasteful. With two

secretagogues with very different threshold concentrations,

there is also the scope to tune the system over a broad range

of inputs.

This pathway should be seen in the context of multiple

opportunities for cross-talk in the control of the insect renal

system. For example, although central control of renal func-

tion is widely studied, there are neurosecretory cells in the

midgut which contain—and so may co-release—several

pairs of neuropeptides that are known to act on the tubule;

for example, kinin and DH31, or short neuropeptide F and
DH31 [46]. In Locusta [47] and Rhodnius [48], the DH44

and kinin homologues co-localize in the same abdominal

neurosecretory cells. Within the CNS, the Drosophila kinin

receptor is known to be expressed on the neurosecretory

cells that express DH44 [18,24]. In small animals, scaling argu-

ments suggest that ion and water homeostasis are critical for

survival, so perhaps it is not surprising that such a complex

network of signals can interact to optimize the response of

the renal tubule from moment to moment.
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