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ABSTRACT
Complex rearrangement patterns and mitotic errors are 
hallmarks of most pancreatic ductal adenocarcinomas 
(PDAC), a disease with dismal prognosis despite some 
therapeutic advances in recent years. DNA double- strand 
breaks (DSB) bear the greatest risk of provoking genomic 
instability, and DNA damage repair (DDR) pathways 
are crucial in preserving genomic integrity following a 
plethora of damage types. Two major repair pathways 
dominate DSB repair for safeguarding the genome 
integrity: non- homologous end joining and homologous 
recombination (HR). Defective HR, but also alterations in 
other DDR pathways, such as BRCA1, BRCA2, ATM and 
PALB2, occur frequently in both inherited and sporadic 
PDAC. Personalised treatment of pancreatic cancer is 
still in its infancy and predictive biomarkers are lacking. 
DDR deficiency might render a PDAC vulnerable to a 
potential new therapeutic intervention that increases 
the DNA damage load beyond a tolerable threshold, as 
for example, induced by poly (ADP- ribose) polymerase 
inhibitors. The Pancreas Cancer Olaparib Ongoing (POLO) 
trial, in which olaparib as a maintenance treatment 
improved progression- free survival compared with 
placebo after platinum- based induction chemotherapy in 
patients with PDAC and germline BRCA1/2 mutations, 
raised great hopes of a substantially improved outcome 
for this patient subgroup. This review summarises the 
relationship between DDR and PDAC, the prevalence and 
characteristics of DNA repair mutations and options for 
the clinical management of patients with PDAC and DNA 
repair deficiency.

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is an 
exceptional malignancy with a distinct biology and 
epidemiology. It is nowadays the fourth leading 
cause of cancer- related deaths in the Western world 
and one of the few cancers with a rising incidence. 
PDAC has shown the least therapeutic progress 
out of all major GI cancers over the last decades.1 
Various routes involving distinct precursor lesions 
guide PDAC development: (i) acinar cells undergo 
ductal reprogramming, forming metaplastic 
ducts which give rise to pancreatic intraepithelial 
neoplasia (PanIN1–3) with an increasing degree of 
dysplasia; (ii) pancreatic duct cells acquire onco-
genic events that accelerate an aggressive PDAC 
formation2; (iii) mutations in pancreatic ducts, 
depending on the mutational make- up, lead to cystic 
precursor tumours: the mucinous cystic neoplasms 

and the intraductal papillary mucinous neoplasms 
(IPMN), each following separate genetic routes 
towards PDAC. The dismal prognosis of PDAC is 
mainly caused by a unique molecular complexity 
including (i) a desmoplastic, immunosuppressive 
and stroma- enriched environment; (ii) a high level 
of intratumoural and intertumoural heteroge-
neity3; (iii) a condition ultimately leading to early 
metastasis and high chemoresistance. Numerous, 
but not all clinical trials on PDAC have failed over 
the last decade.4 Single gemcitabine, gemcitabine/
capecitabine and modified folinic acid, fluouracil, 
irinotecan, oxaliplatin (FOLFIRINOX) are now 
consolidated adjuvant treatment options.5 6 Neoad-
juvant and perioperative treatment concepts are 
currently being investigated.7 In advanced PDAC, 
FOLFIRINOX and the combination of nanosized 
albumin- bound paclitaxel (nab- PTX)/gemcitabine 
are superior to gemcitabine alone in first- line 
therapy and are thus considered the standard of 
care.8 9 However, median overall survival (mOS) in 
advanced disease rarely exceeds 1 year, resulting in 
a 5- year OS of <10% for all stages.3 This under-
pins the necessity for more innovative, effective 
and targeted regimens. However, in contrast to 
various other cancers, tailored approaches have 
been largely disappointing in PDAC.10–13 Activating 
KRAS mutations are major drivers of malignant 
growth in PDAC, and although yet undruggable, 
first promising developments have been made.14 
The oncogenic KRAS dosage also regulates diverse 
phenotypes in PDAC, leading to different routes 
of tumourigenesis permitted by the loss of distinct 
tumour suppressor gene pathways (eg, TP53, 
CDKN2A, SMAD4).15 Accordingly, oncogenic KRAS 
may synergise with additional tumour suppressor 
mutations to deregulate double- strand break (DSB) 
repair and subsequently induce genomic instability.16 
17 Besides, a tremendously high number of passenger 
mutations establishes the high intratumoural and 
intertumoural heterogeneity. To approach this 
heterogeneity, transcriptional profiling of purified 
pancreatic cancer epithelial cells allowed a certain 
degree of subgrouping, having led to various partly 
overlapping classifications according to Collisson et 
al,18 Moffitt et al19 and Bailey et al.20 The basal- like 
and classical subtypes have meanwhile evolved as 
the most robust transcriptional classifier. However, 
transcriptional phenotypes could be recently inte-
grated with genomic alterations by using whole- 
genome analysis from purified epithelium of 
primary and metastatic human PDAC together with 
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single- cell RNA sequencing. Thereby, the Notta group revealed 
that molecular subtypes are specifically linked to copy number 
aberrations, for example, in the KRAS gene, which in turn addi-
tionally drive genomic instability.21 These observations indicate 
that genomic aberrations can define the molecular subtype, and 
PDAC heterogeneity as well as evolution during disease progres-
sion is caused by certain mutational triggers.21 To genomically 
classify PDAC according to patterns of variation in chromosomal 
structure, four subtypes have been defined and also allowed 
predictions in terms of a given treatment. Those subtypes have 
been termed (i) ‘stable’, (ii) ‘locally rearranged’, (iii) ‘scattered’ 
and (iv) ‘unstable’.16 The latter accounts for around 14% of 
human PDACs and harbours mutations in the genes responsible 
for DNA repair that are involved in the so- called DNA damage 
repair (DDR), such as BRCA1/2, PALB2 and ATM. Mutations in 
these genes also cluster in inherited forms of PDAC.22 Thus, a 
significant proportion of human PDACs with either somatic or 
germline mutations in DDR genes might benefit from tailored, 
targeted therapies. These aspects form the focus of the current 
review.

DNA DAMAGE REPAIR AND CANCER
Preserving the integrity of our DNA is eminent in preventing 
genomic instability, a hallmark of cancer, various chronic diseases 
and the normal process of ageing.23 DNA damage is a common 
event and must undergo immediate repair in order to ensure 
the exact transfer of genetic information during cell division. 
The inability of the DDR to repair following endogenous and 
exogenous insults can lead to (i) an accumulation of genomic 
defects, (ii) subsequent malignant transformation, (iii) cancer 
progression and (iv) further impairment of the DNA repair 

capacity. By contrast, during tumour progression or on therapy- 
induced tumour evolution, the DDR machinery can be reconsti-
tuted to assign new growth advantages to outgrowing tumour 
clones with disturbed genomic integrity. Repair mechanisms 
include the detection and excision of the defect, the rejoining 
of DNA ends and the reconstruction of the sequence based on 
a DNA matrix (figure 1). Basically, DNA lesions can occur in 
two major ways, affecting either a single- strand break (SSB) or 
DSB or mono- adducts and interstrand crosslinks, respectively. 
Damage affecting a single DNA strand can be removed either 
by base excision, mismatch (MMR)24 or nucleotide excision 
repair (NER),25 all of which use the sister strand as a template 
(figure 1). Conversely, DSBs or crosslinked DNA strands (eg, 
caused by platinum agents or irradiation) require partial strand 
substitution, a process that is much more complex and suscep-
tible to errors.26 It is noteworthy that the accumulation of unre-
solved SSBs inexorably induces DSB formation, namely when 
encountering a replication fork. Two main mechanisms affect 
DSB repair, namely non- homologous end joining (NHEJ) and 
homologous recombination (HR) (figure 1). While NHEJ is a 
more error- prone form of DSB repair, in which a DNA segment 
is removed and both ends are adjoined without consideration 
of homology, HR is an accurate process that uses the sister 
chromatid as a repair template.27 Herein, the MRN (Mre11, 
Rad50 and Nbs1 proteins) complex makes up the core of the 
initial DSB repair machinery as an upstream effector of HR and 
partially NHEJ. This complex crucially participates in all DSB 
repair events such as (i) DNA damage sensing, (ii) DDR protein 
recruitment to the damaged site, (iii) cell cycle checkpoints acti-
vation and (iv) damage repair.28 29 Accordingly, DSBs detected 
by the MRN complex activate the cell cycle regulatory serine/

Figure 1 Overview of main DNA lesions and their related DNA damage repair pathways. Schematic representation of I. single- strand break 
repair by direct and indirect base excision repair, II. double- strand break repair by homologous recombination and non- homologous end joining, III. 
replication error repair by mismatch repair and IV. DNA adducts repair by either transcription- coupled nucleotide excision repair (TC- NER) or global 
genomic nucleotide excision repair (GG- NER). Symbolic pills show potential targeted therapeutic interventions by PARP inhibition and platinum 
agents (Pt). Black stars represent an indirect single- strand break. Dashed circles emphasize proteins found to be mutated in human pancreatic ductal 
adenocarcinoma. Dashed lines represent the regulatory role of ATM and ATR on non- homologous end joining. alt- NHEJ, alternative non- homologous 
end joining; BER, base excision repair; c- NHEJ, canonical non- homologous end joining; MMR, mismatch repair; ROS, reactive oxygen species; SSB, 
single- strand break.
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threonine kinases ataxia telangiectasia mutated (ATM) and 
ATM and Rad3- related protein (ATR) to allow the formation 
of protruding 3’ ends at both sides of the break.24 Subsequently, 
ATM activates CHK2, which arrests cell cycle progression, inter-
acts with TP53 that is responsible for cell cycle and apoptosis 
control and contributes to regulating BRCA1 in DNA repair.30 
The MRN complex also attracts BRCA1 to the DNA damage 
site, supporting DNA resection, forming the adjoining 3’ ends 
and recruiting PALB2 and BRCA2.31 This newly formed complex 
of BRCA1, PALB2 and BRCA2 finally activates RAD51, that 
is responsible for binding single- stranded DNA segments and 
invading the homologous sequences in the sister chromatid.31 
Alternatively, ATR is activated by the presence of a DNA cross-
linking adduct phosphorylating the Fanconi anaemia (FA) core 
complex, which helps to excise the defect.32 During this DNA 
crosslink repair process involving NER, DSBs are generated in 
the proximity of the incised oligonucleotide.32 Subsequently, this 
accumulation of DSBs requires repair, particularly by HR and 
not NHEJ.33 34 Consequently, mutations in HR genes (such as 
BRCA1, BRCA2, XRCC2 and XRCC3) can further exhibit hyper-
sensitivity to crosslinking agents (figure 1).32

In summary, a plethora of distinct and tailored repair mech-
anisms work to preserve genomic integrity in healthy and in 
cancerous cells. Any failure of the DDR leads to a subsequent 
accumulation of mutations as well as structural aberrations, 
usually generating particularly aggressive tumours. It is of great 
importance that the sole dependence on the remaining DDR 
pathways has yielded several conceptual approaches such as 
synthetic lethality for discovering and characterising cancer- 
specific vulnerabilities in customised interventions.35

DNA DAMAGE REPAIR DEFECTS AND PANCREATIC CANCER
The incidence of PDAC shows significant variations from a 
geographic perspective, with the highest in high- income coun-
tries.36 Although the cause of PDAC is complex and multifac-
torial, a variety of inherited and non- inherited risk factors have 
been described, some of which may explain these variations. 
Non- inherited risk factors include chronic pancreatitis, diabetes 
mellitus, smoking, alcohol consumption, obesity and possibly 
Helicobacter pylori infection.3 Apart from these, various genes 
have been associated with increased PDAC susceptibility.22

Sporadic pancreatic cancer with somatic DDR gene mutations
Tumour biology in PDAC is determined by the type of muta-
tions and structural aberrations and not by their pathogenic or 

somatic occurrence,37 the latter dominating the most frequently 
occurring sporadic PDAC. In fact, biallelic inactivation, zygosity- 
dependent phenotype penetrance and sensitivity to poly (ADP- 
ribose) polymerase (PARP) inhibition, as shown for BRCA1/2 in 
PDAC, are frequently associated with genomic features such as 
dramatic chromosomal rearrangements, indicating a deficient 
HR profile.16 37 Particularly in pancreatic carcinogenesis, single 
mitotic errors as well as distinct genomic rearrangements such 
as chromothripsis (an unstable subtype enriched feature) can 
lead to a dramatic loss of genetic information accompanied by 
a simultaneous loss of function of several tumour suppressors. 
In turn, rapid and synchronous clonogenic escape is thought 
to establish the metastatic disease.38 Large- scale genomic anal-
ysis revealed 63 genetic alterations per single PDAC, with 
‘DNA damage control’ being one of the most prominent terms 
(figure 2).39 Another study reported either an unstable genome 
or a BRCAness mutational signature in 24% of analysed PDACs, 
with 17% germline and 29% somatic mutations in BRCA1/2, 
ATM or PALB2.16 Basically, BRCAness encompasses defects in 
the HR pathway, mimicking the consequences of BRCA1 or 
BRCA2 loss.40 Overall, ATM appears to be the most frequently 
mutated DDR gene in somatically mutated sporadic PDAC, with 
an overall mutational frequency of approximately 4%, followed 
by BRCA2, STK11 and BRCA1 (figure 2). Loss of ATM occurs in 
precancerous lesions such as PanINs or IPMNs and in primary 
tumours, underpinning its crucial role in genomic integrity.41 42 
The ultimate therapeutic strategy for PDAC is the delineation of 
patient subgroups who might be susceptible to an interference 
with the DDR due to the intrinsically high DNA damage load, 
leading to a further increase beyond a tolerable threshold.

DDR gene mutations in the germline of patients with 
pancreatic cancer
Familial pancreatic cancer and hereditary pancreatic cancer 
syndromes
Unlike sporadic PDACs, up to 10% of the cases cluster in fami-
lies, with at least two first- degree relatives (FDR) being affected. 
These cases are designated as familial pancreatic cancers (FPC). 
The risk of developing PDAC in relatives fulfilling the FPC 
criteria increases with the number of affected FDRs by 4.6, 6.4 
and up to 32- fold for 1, 2 and ≥3 FDRs, respectively, compared 
with the whole population.43 Nevertheless, 80%–90% of the 
genetic events leading to FPC remain unknown, leaving as few 
as 10%–20% with a clearly identifiable germline mutation. This 
makes it difficult to properly distinguish FPCs from apparently 

Figure 2 Frequency of gene alterations in primary pancreatic ductal adenocarcinomas. Three available pancreatic cancer sequencing data sets123 
124 125 (n=751) were assessed for somatic gene mutations (panel of 118 genes from 16 123 and additionally extended in more detail for DNA damage 
repair genes from cBioPortal). DDR, DNA damage repair.
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sporadic PDACs. Specifically, inheritance can be frequently 
attributed to germline DDR gene mutations (ATM, BRCA1, 
BRCA2, MLH1, MSH2, PALB2, PMS2 and STK11) and to muta-
tions in classical cancer susceptibility genes such as CDKN2A or 
TP53. Table 1 summarises the frequencies of the most relevant 
FPC- causing genes.22 44 45

Moreover, several inherited cancer predisposition syndromes 
are characterised by usually monoallelic, dominantly inher-
ited autosomal mutations that predispose to PDAC and other 
cancers such as prostate, breast and ovarian cancer (eg, BRCA1/2 
mutations).46 47 The majority of the underlying germline muta-
tions are well- characterised, such as Peutz- Jeghers caused by 
STK11 mutations or Lynch syndrome caused by MLH1 and 
MSH2 mutations. Furthermore, the risk of PDAC is increased 
in familial adenomatous polyposis (usually associated with APC 
mutations), familial atypical multiple- mole melanoma syndrome 
(FAMMM; CDK2NA mutations), hereditary pancreatitis (PRSS1 
and SPINK1 mutations) and Li- Fraumeni syndrome (TP53 muta-
tions).48–50 It is to be noted that Peutz- Jeghers syndrome- related 
PDACs are mostly, but not exclusively, associated with the IPMN 
precursor lesion pathway.51 Finally, chronic pancreatitis in 
patients with cystic fibrosis related to the CFTR gene has been 
associated with a moderately increased incidence of PDAC in 
mutation carriers.52

Sporadic pancreatic cancer with germline mutations
Interestingly, in about 3.9%–13.5% of patients with apparently 
sporadic PDAC, DDR gene mutations can be detected in the 
germline, although negative family history of cancer.53 5455 55 56 
57 This mirrors an incomplete penetration, rather than a de novo 

mutation in the germline. With a frequency up to 3.4%,56 ATM 
serine/threonine kinase is the most frequently mutated DDR 
gene in this group (table 2). Biallelic mutations in ATM cause 
a syndrome known as ataxia telangiectasia that predisposes to 
various cancers, including PDAC (twofold to threefold increased 
risk).58 59 BRCA1/2 mutations are also frequent in this subgroup 
and have the highest prevalence (12.1%) in Ashkenazi Jews.60 
A recent study also identified germline mutations in 7.3% of 
patients with IPMN and associated them with an increased risk 
of developing PDAC,42 for instance, PALB2, which codes for a 
BRCA2- interacting protein essential for the DSB repair function. 
Monoallelic germline mutations in PALB2 are also associated 
with breast cancer.61 Biallelic germline mutations result in a rare 
subtype of FA (FA- N) associated with a severe predisposition to 
paediatric malignancies.62

BRCANESS REVISITED
Most of the DDR genes mutated in PDAC are crucial for the 
proper functioning of the HR pathway. Alterations in these 
genes lead to a homologous recombination- deficient (HRD) 
phenotype within a given tumour defining the term BRCAness. 
This defect can arise following certain genomic, epigenetic or 
post- translational alterations in certain DDR genes. Recently, it 
has been shown that loss- of- function alterations in BRCA1/2 are 
an indispensable initiating event in so- called BRCA- associated 
cancer types (pancreatic, prostate, breast or ovarian cancer). 
Thus, the tumour lineage, together with a given mutation, 
determines the tumour biology, and, subsequently, therapeutic 
decision- making in non- BRCA- associated cancers, for example, 
BRCA1/2 mutations, is carried out in a biologically neutral 
manner.37 Molecularly, the BRCA1/PALB2/BRCA2 complex 
activates RAD51 to allow the incursion of the sister chromatid 
homologous sequences, a crucial step during HR (as described 
before). Similarly, ATM or ATR loss- driven DSB sensor defects 
lead to failure of this repair complex (figure 1). Therefore, any 
disruption of HR influences cells to rely on error- prone DNA 
repair pathways (such as NHEJ) for DSB repair, cumulating in 
augmented genomic instability. The term HRDness extends this 
phenotypic spectrum to other somatic or germline mutations 
causing HR defects, including non- BRCA- related phenotypes.63 
Along this line, a highly promising concept could be the chem-
ical induction of HRDness using certain therapeutics (eg, ATM 
or ATR inhibitors) and subsequently targeting the respective 
tumour with classical DNA- damaging agents. However, testing 

Table 1 Frequency of the most common deleteriously mutated genes 
in familial pancreatic cancer

Gene
Zhen et al44 
(n=515)

Roberts et 
al22 (n=166)

Takai et al45 
(n=54)

Mutation 
prevalence 
(%)

BRCA2 19 n.a. 3 3.9

ATM n.a. 4 2 2.7

CDKN2A 13 n.a. n.a. 2.5

BRCA1 6 n.a. n.a. 1.2

PALB2 3 n.a. 2 0.9

Mutations data were analysed from three familial pancreatic cancer cohorts (735 
samples).
n.a., not applicable.

Table 2 Frequency of germline mutations in DNA damage repair and cell cycle control genes in sporadic pancreatic ductal adenocarcinoma and 
frequency of loss- of- function variants in gnomAD controls

Gene Grant et al53 (n=290)
Shindo et al54 
(n=854) Hu et al55 (n=2999)

Brand et al56 
(n=298)

Yurgelun et al57 
(n=289)

Mutation 
prevalence (%)

pLoF variants in 
gnomAD controls 
(%)

BRCA2 2 12 57 4 4 1.67 0.335

BRCA1 1 3 18 4 3 0.61 0.207

PALB2 n.a. 2 12 1 1 0.34 0.167

MSH6 1 n.a. 6 1 2 0.21 0.376

MLH1 1 2 4 n.a. n.a. 0.15 0.066

MSH2 2 n.a. 1 n.a. 1 0.08 0.022

ATM 3 10 69 10 4 2.03 0.312

CDKN2A – 1 9 1 2 0.27 0.006

TP53 1 1 6 1 1 0.21 0.006

Germline mutations data were analysed from five sporadic PDAC cohorts (4730 samples).
gnomAD, Genome Aggregation Database; LoF, loss- of- function; n.a., not applicable.
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such concepts requires appropriate preclinical data in models 
that faithfully recapitulate human disease.

TRANSLATIONAL MODELS OF DDR IN PANCREATIC CANCER
Nowadays, the prediction of tumour biology and treatment 
response in patients is mainly based on DNA and RNA- 
sequencing of the tumour. Here, subclonal genetic events require 
high coverage, and an incomplete characterisation of the muta-
tional spectrum, for example, due to simplified panel sequencing, 
limits the interpretation of the results. To study the effects of 
DDR deficiency on pancreatic carcinogenesis and to test novel 
therapeutic strategies, in vivo and in vitro model systems with 
a high translational capacity have been developed.64 Thus, the 
greatest challenge is the recapitulation of the exceptionally high 
intertumoural and intratumoural heterogeneity in PDAC.

Human PDAC cells harbouring BRCA2, FANCC, FANCG 
gene mutations display in vitro hypersensitivity to DNA inter-
strand crosslinking agents (ICA) such as mitomycin C or 
cisplatin, which do, in fact, result in structural and chromosomal 
alterations following xenograft transplantation.65 These two- 
dimensional cell monolayers have the advantage of easy propa-
gation, access and replicability. However, artefacts due to culture 
methods and clonal selection, as well as the lack of microenvi-
ronmental tumour interactions, limit their value and can only be 
a basis for more complex models.

Accordingly, in a genetically engineered mouse model the 
loss of Brca2 does not propagate PDAC development but needs 
further drivers such as Trp53. However, in both situations more 

chromosomal instability is generated that sensitises to DNA- 
damaging agents.17 66 Interestingly, oncogenic KRASG12D in a 
BRCA2- deficient background promotes chromosomal instability 
and apoptosis, but inhibits tumour growth. However, loss of 
Palb2 and Brca1 in a Trp53, KrasG12D- mutated context (KPC) 
enhances genomic instability, decreases survival, but generates 
vulnerability to ICA and PARP inhibitors.67 Interestingly, these 
tumours also showed a genotype- specific immune cell infiltra-
tion pattern with CD3+ T cells, resulting in decreased tumour 
progression and improved survival, after treatment with an 
interleukin (IL)-6 and programmed death- ligand 1 (PD- L1) 
antibody.68

Atm- deficient mice expressing oncogenic KRASG12D (AKC) 
showed accelerated dysplastic growth in the pancreas, epithelial- 
to- mesenchymal transition and a highly metastatic phenotype 
(figure 3).69 AKC mice exhibit features of the unstable human 
PDAC subtype including chromosomal instability, deregulated 
DNA integrity checkpoints and aneuploidy.41 70 Single targeting 
of either PARP1 or ATR in this model yielded moderate effi-
cacy comparable to gemcitabine.70 Moreover, targeting of the 
remaining HR- associated ATR protein and NHEJ by DNA- PK 
inhibition led to a lethal accumulation of DNA damage. Likewise, 
adding an ATM inhibitor to PARP, ATR and DNA- PK inhibition 
in ATM- proficient PDAC cells virtually removes DDR. Preclini-
cally, maintenance therapy with single PARP inhibitors can force 
the selection of aneuploid, highly aggressive, multidrug- resistant 
subclones.71

Figure 3 Schematic representation of pancreatic cancer progression in a homologous recombination- deficient context. HRDness resulting from ATM 
deficiency sensitises pancreatic cells to exogenous and endogenous DNA damaging factors enabling an oncogenic cascade through acinar- to- ductal 
metaplasia. Sustained impaired double- strand break repair results in accelerated genomic instability driving the progression of preneoplastic PanIN 
stages to HRD pancreatic ductal adenocarcinoma (PDAC). Persistent HRD or therapeutically induced HRD by eg, ATMi renders cancer cells vulnerable 
to therapeutic interventions promoting DNA damage. Monotherapeutic approaches as PARPi subsequently tend to complex multidrug resistance 
(MDR) involving epithelial- to- mesenchymal- transition (EMT) and alternative DNA repair. Smart tailored use of synergistically druggable vulnerabilities 
within the DNA damage repair machinery could be exploited to hit HRD tumors “hard and early” and prevent further MDR acquisition, as eg, recently 
shown upon inhibition of PARP, ATR and DNA- PKcs.71 ADM, acinar- to- ductal metaplasia; ADR, acinar- to- ductal reprogramming; DSB, double- strand 
break; HRD, homologous recombination- deficient; NHEJ, non- homologous end joining; PanIN, pancreatic intraepithelial neoplasia.
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Patient- derived xenografts (PDX) are today state of the art for 
the human translation of the aforementioned models72 and do, 
in fact, faithfully reflect phenotypic and therapeutic features.73 
However, PDX are not suitable for either high- throughput 
drug screens or response prediction analysis in an individual 
patient due the long time required for their determination and 
propagation.

Therefore, three- dimensional cultured organoids can be easily 
determined from different sources including circulating tumour 
cells,74 metastasis or primary PDAC itself in a short time span.75 
Patient- derived organoids (PDOs) represent PDAC heterogeneity 
and partly its microenvironment,75 76 providing a potentially 
better model system for testing/predicting drug response.77 78

THERAPEUTIC INTERFERENCE WITH THE DDR IN 
PANCREATIC CANCER
Platinum analogues
Platinum agents can crosslink purine bases on the DNA, thereby 
interrupting DNA transcription and stall replication which can 
consecutively lead to DSBs and the induction of apoptosis.79 
The removal of monoadducts on one DNA strand in response 
to platinum- induced DNA damage primarily involves NER. The 
repair of interstrand crosslinks additionally uses the FA pathway, 
translesion synthesis and HR, making these agents interesting 
for patients with an HRDness phenotype (figure 1).80 81 It is of 
note that structural differences in platinum agents cause differ-
ences in DDR recognition as has been observed for cisplatin 
and oxaliplatin, although they form similar adducts at the same 
sites on the DNA. These differences in recognition, excision and 
processing affect the cytotoxicity and activity of the individual 
platinum adducts.82 Genomic instability in PDAC, at least in 
the case of BRCA1/2 or PALB2 mutations, co- segregates with 
(i) defective DNA maintenance, (ii) a mutational signature of 
DNA damage repair deficiency and (iii) an exceptional response 
to platinum. This may allow treatment stratification according 
to a given genetic event.16 Molecular subtyping is necessary for 
identifying these new target populations of unstable PDACs. 
The response of 820 patients with PDAC to a platinum- based 
regimen was recently evaluated in a large registry with a compre-
hensive genomic profiling programme. HRDness- causing germ-
line or somatic mutations were grouped into three categories 
according to a known or suspected platinum responsiveness: 
(i) BRCA1/BRCA2/PALB2, (ii) ATM/ATR and (iii) FA core/MRN 
complex effectors. Overall, HR mutations were prevalent in 
16.5% of patients. Interestingly, patients with advanced HR- de-
fective (HRD) PDAC had a worse outcome than patients with 
HR- proficient (HRP) PDAC if they were not treated with plat-
inum, underpinning their overall more aggressive tumour biology 
and particular platinum susceptibility (mOS: HRD 0.76 years vs 
HRP 1.13 years, p=0.1535). In line platinum treatment substan-
tially prolonged mOS in the HRD patients (n=53) compared 
with the HRP patients (n=258) (mOS: HRD 2.37 years vs HRP 
1.45 years; p=0.000072; HR, 0.44, 95% CI 0.29 to 0.66). 
The mOS positively correlated with an increasing number 
of HR- related mutations and was independent of the therapy 
line.83 Golan et al collected data from 43 patients with advanced 
BRCA1/2- mutated PDAC, showing a significant survival benefit 
for platinum treatment compared with platinum- naïve patients 
(22 vs 9 months; p<0.039).84 Interestingly, in patients with 
FPC, platinum efficacy increases with the number of affected 
FDRs.85 A recent phase II trial further determined the effectivity 
of a first- line gemcitabine/cisplatin treatment in 50 patients 
with advanced gBRCA1/2, PALB2- mutated PDAC (2- year OS 

30.6% and 3- year OS 17.8%).86 Various retrospective studies 
confirmed the superior tumour response to platinum derivates 
in DDR- deficient PDAC (summarised in table 3).84 85 87 FOLF-
IRINOX is the only platinum- containing treatment for patients 
with advanced PDAC established in a positive phase III trial.8 
However, only about 25% of patients are eligible for FOLF-
IRINOX, due to its high level of adverse effects.88 Therefore, 
appropriate patient selection, including the Eastern Cooperative 
Oncology Group performance status and the genetic make- up 
of the tumour, is similarly critical. A retrospective analysis of 
32 curatively resected patients with a germline BRCA1, BRCA2 
or PALB2 mutation revealed a significant survival benefit when 
treated with platinum, compared with 62 HRP patients (mOS: 
HRD 47.7 months vs HRP 23.1 months, p=0.032). Interest-
ingly, the subgroup of HRD patients benefited to a relative extent 
from perioperative platinum- based chemotherapy (mOS: HRD 
not reached vs HRP 23.1 months).89 If platinum was omitted the 
survival rates were similar between both cohorts. Various other 
studies reported similar trends (summarised in table 4).

In view of the data shown above, several conclusions can be 
drawn: (i) in patients with unselected advanced PDAC the only 
approved platinum- based regimen in a first- line setting is FOLF-
IRINOX (level of evidence 1b); (ii) platinum does not seem to 
be the main critical effector in HR- proficient PDAC in either an 
adjuvant (level of evidence 1a)90 or palliative setting (level of 
evidence 1a)91; (iii) platinum derivates such as oxaliplatin seem 
to determine the treatment response to a combination regimen 
such as FOLFIRINOX in advanced HRD PDAC.3 92 93

PARP inhibitors
PARPs are activated by DNA breaks and catalyse the transfer 
of ADP- riboses to form long- branched chains to target proteins 
involved in processes such as transcription and DNA damage 
repair. The resulting scaffold of negatively charged polymers 
further recruits DDR effectors (figure 1). PARP1 was originally 
described in SSB repair through base excision but is now well- 
accepted as also participating in DSB repair, stalled replication 
fork sensing and in the recruitment of DNA repair proteins at 
DNA damage sites94 (figure 1). As PARP1/2 are crucial enzymes 
during HR- mediated DSB repair in most cancer cells, targeting 
these enzymes in HRD tumours seems to be an elegant method 
and underpins the principle of synthetic lethality.94 However, 
side effects in highly proliferative healthy cells can occur as well. 
PARP inhibitors are nicotinamide mimetics that directly inhibit 
PARP1 activity and further act by trapping the PARP protein 
at SSBs, forcing a lethal accumulation of DNA damage and cell 
death consecutively. While the efficacy of PARP1 inhibitors is 
established in BRCA- associated cancer types,37 their specific 
role in PDAC has only recently been demonstrated. However, 
monotherapy with PARP1 inhibitors displayed only modest 
activity in HRD PDAC, mostly BRCA1/2- mutated95–97 (table 5), 
and studies without genetic stratification did not show a mean-
ingful benefit.98 Besides the missing stratification, factors such 
as previous therapies are meaningful, for example, as shown 
in a phase I trial in pretreated BRCA1/2- mutated patients with 
PDAC, in which only patients who were not refractory to plat-
inum responded (PR or CR) to rucaparib.95 However, in proving 
the effectiveness of gemcitabine/cisplatin (as shown in ‘Platinum 
analogues’ section) in gBRCA/PALB2- mutated PDAC, a phase II 
trial failed to demonstrate an additional benefit of veliparib in 27 
patients (mOS G/C+V 15.5 months vs G/C 16.4 months, p=0.6) 
(table 5).86 In line with this, a currently not fully published phase 
I/II trial in patients with advanced PDAC showed a significantly 
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Table 4 Retrospective studies on platinum- based chemotherapy in patients with resected homologous recombination- deficient PDAC

Disease 
setting Mutations Design

Therapy 
line Therapy

Number of 
pts. mDFS mOS Reference

Resected Group 1: BRCA1/2 or 
PALB2
Group 2: ATM/ATR/ATRX
Group 3: BAP1, BARD1, 
BRIP1, CHEK1/2, 
RAD50/51/51B or 
FANCA/C/D2/E/F/G/L

Retrospective Adjuvant Platinum- containing
Platinum- naïve

Total: 377
HRD: 63
HRP: 314

n.a. HRD+platinum (n=49): 4.53 y
HRD- platinum (n=14): 1.8 y
HRP+platinum (n=220): 2.96 y
HRP- platinum (n=94): 3.09 y

83

Resected BRCA1
BRCA2

Retrospective n.a. n.a. Total: 20 13 m n.a. 84

Resected BRCA1
BRCA2
PALB2

Retrospective Various Platinum- containing
Platinum- naïve

Total: 96
HRD: 32
HRP: 64

HRD+perioperative 
platinum: 19.9 m
HRP+perioperative 
platinum: 11.7 m

HRD+perioperative platinum: 
not reached
HRP+perioperative platinum: 
23.1 m

89

Resected BRCA1 (n=4)
gBRCA2 (n=18)

Retrospective Adjuvant Platinum- containing
Platinum- naïve

Total: 127
HRD: 22
HRP: 105

HRD+platinum (n=10): 31 m
HRD- platinum (n=8): 17.8 m
HRP+platinum: 33 m
HRP- platinum: 28 m

130

HRD, homologous recombination- deficient; HRP, homologous recombination- proficient; m, month; n.a., not applicable; pts., patients; y, year.

Table 3 Retrospective studies on platinum- based chemotherapy in patients with advanced homologous recombination- deficient PDAC

Mutations Design
Therapy 
line Therapy

Number 
of pts. mPFS mOS Efficacy Reference

Group 1: BRCA1/2, PALB2 
(n=38)
Group 2: ATM/ATR/ATRX (n=22)
Group 3: BAP1, BARD1, BRIP1, 
CHEK1/2, RAD50/51/51B, 
FANCA/C/D2/E/F/G/L (n=12)

Retrospective Various Platinum- containing 
any therapy line
Platinum- naïve

Total: 443
HRD: 72
HRP: 371

First- line: 
HRD+platinum 
(n=53): 13.7 m
HRP+platinum 
(n=268): 8.2 m
Second- line: 
HRD+platinum 
(n=28): 8.6 m
HRP+platinum 
(n=103): 4.1 m

HRD+platinum 
(n=53): 2.37 y
HRD- platinum 
(n=19): 0.76 y
HRP+platinum 
(n=258): 1.45 y
HRP- platinum 
(n=113): 1.13 y

HRD+platinum: 
p=0.001

83

BRCA1
BRCA2

Retrospective First- line Platinum- containing 
any therapy line
Platinum- naïve

Total: 43 n.a. HRD+platinum 
(n=22): 22 m
HRD- platinum 
(n=21): 9 m

p=0.0389 84

BRCA1 (n=7)
BRCA2 (n=5)
PALB2 (n=3)
MSH2 (n=1)
FANCF (n=1)

Retrospective First- line FOLFIRINOX Total: 36
HRD: 12

n.a. HRD: 14 m
HRP: 5 m

HRD vs HRP: 
p=0.08

126

BRCA2 (n=10)
ATM (n=8)
BRCA1 (n=2)
CHEK2 (n=2)
ATR (n=1)
PALB2 (n=1)

Retrospective Various Platinum- containing 
any therapy line

Total: 28
HRD: 13

HRD+platinum: 
20.8 m
HRP+platinum : 
1.7 m

n.a. p=0.049 127

gBRCA2 (n=3)
BRCA2 (n=2)
BRCA1 (n=1)
POLE (n
gRAD51C (n=1)
gMUTYH (n=1)

Retrospective First- line FOLFIRINOX Total: 40 HRD+platinum: 
18.5 m
HRP+platinum: 
6.9 m

11.5 m mPFS: p=0.003 128

BRCA1 (n=5)
BRCA2 (n=17)
PALB2 (n=4)

Retrospective Various Platinum- containing 
any therapy line

Total: 78
HRD: 26
HRP: 52

HRD+platinum: 
10.1 m
HRP+platinum: 
6.9 m

HRD+platinum: 
24.6 m
HRP+platinum: 
18.8 m

mPFS: p=0.0068
mOS: p=0.0467

129

FOLFIRINOX, folinic acid, fluouracil, irinotecan, oxaliplatin; HRD, homologous recombination- deficient; HRP, homologous recombination- proficient; m, month; mOS, median overall 
survival; mPFS, median progression- free survival; n.a., not applicable; pts., patients; y, year.
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higher objective response rate (ORR) of 50% in HRD patients 
(n=16) compared with 17% HRP patients (n=41) for the 
combination of folinic acid, fluouracil, oxaliplatin and veliparib 
(table 5)99 The most promising evidence of PARP inhibition 
in advanced PDAC was published recently from the phase III 
POLO trial.100 Patients with germline BRCA1/BRCA2- mutated 
advanced PDAC without progress to platinum- based first- line 
chemotherapy (≥16 weeks) received either olaparib as mainte-
nance treatment or placebo. Olaparib nearly doubled the median 
PFS compared with placebo (7.4 vs 3.8 months; p=0.004), while 
OS remained similar in both arms (18.9 vs 18.1 months).100 The 
interim analysis of a single- arm phase II trial with rucaparib 
as maintenance therapy after platinum- based induction in the 
case of any pathogenic BRCA1, BRCA2 or PALB2 mutation 
also demonstrated an ORR of 37% with minimal toxicity in 
19 patients.101 In summary, PARP inhibitors represent the first 
targeted therapy to show efficacy in a subpopulation of patients 
with advanced PDAC in a phase III clinical trial.100

Toxicity and therapeutic pitfalls
PARP inhibitors cause side effects as seen with high- dose veli-
parib, causing unacceptably high haematological toxicity and 
a sporadic association with acute myeloid leukaemia in the 
long term.102 Similarly, veliparib plus gemcitabine/cisplatin and 
olaparib plus cisplatin/irinotecan/mitomycin C were associated 
with a marked increase of mainly haematological Common Termi-
nology Criteria for Adverse Events (CTCAE) ≥grade 3 toxici-
ties.103 Adverse events CTCAE ≥grade 3 also emerged in 40% 
of patients on olaparib monotherapy, mainly involving haema-
tological and GI side effects, as well as fatigue/asthenia.95 96 100 
However, health- related quality of life in the POLO trial revealed 
no clinically meaningful difference between the olaparib and 

placebo groups.104 Thus, the toxicity of PARP inhibitors has to 
be taken into account, particularly when combined with chemo-
therapy and when used at high doses. Although this has not been 
ultimately solved, there might be potential solutions for opti-
mising these therapies, such as (i) more elaborated application 
regimens, (ii) novel drug formulations and/or (iii) the syner-
gistic action of several drugs each used at an ineffective dose 
range on their own. So- called ‘nanomedicine’ strategies could 
help to overcome drug delivery challenges by reducing systemic 
toxicities on the one hand and by overcoming diffusion- limiting 
PDAC stroma on the other. As suggested by the approved nab- 
PTX novel concepts with superior activity could arise, including 
surface- optimised nanocarriers.9 105

Another pitfall is the lack of predictive knowledge about a 
given HRDness- causing mutation, that is, not every mutation 
of a given DDR gene assigns sensitivity to PARP inhibitors.106 
At the moment, most of the data collected on BRCA1/2 muta-
tions and on non- BRCA mutations are purely preclinical70 107 
(figure 2). In ovarian cancer, it has already been shown that 
both somatic genetic alterations and modifications in epigenetic 
markers may lead to functional restoration and revert HRD, but 
whether the same can happen in PDAC tumours is elusive.108 109 
We need to develop better in silico prediction algorithms that 
take into account the general role of a gene in a signalling 
network and its precise mutation. Finally, the additive value of 
PARP inhibitors together with or after a platinum- based regimen 
is questionable and response predictors in this clinical setting are 
lacking.37 95–97 100

Some open questions still remain and a multimodal approach 
including preclinical models, advanced in silico algorithms and 
explorative basket trials also including non-BRCA1/2 mutations 
is required. Here, it might be reasonable to restrict these to 

Table 5 Clinical trials with PARP inhibitors on patients with advanced PDAC

Mutations Design Therapy line Therapy Number of pts. mPFS mOS Efficacy Reference

Abstract- 
based 
publication

gBRCA1/2 Phase I First- line Cisplatin
Gemcitabine
Veliparib

Total: 17
HRD: 9
HRP: 7
Unknown: 1

n.a. HRD: 23.3 m
HRP: 11 m

n.a. 102 No

gBRCA1 (n=12)
gBRCA2 (n=35)
gPALB2 (n=3)

Phase II First- line Cisplatin
Gemcitabine
A. +Veliparib
B. − Veliparib

Total: 50
A. 27
B. 23

A. 10.1 m
B. 9.7 m

A. 15.5 m
B. 16.4 m

mPFS: 
p=0.73
mOS: p=0.6

86 Yes

gBRCA1/2 (n=16)
sBRCA1/2 (n=3)

Phase II ≥Second- line Rucaparib Total: 19 n.a.* n.a.* n.a.* 95 No

gBRCA1 (n=5)
gBRCA2 (n=11)

Phase II ≥Second- line Veliparib Total: 16
HRD: 9
HRP: 7

1.7 m 3.1 m n.a. 97 No

gBRCA1 (n=5)
gBRCA2 (n=17)
gBRCA1/2 (n=1)

Phase II ≥Second- line Olaparib Total: 23 4.6 m 9.8 m n.a. 96 No

DDR mutation (eg, 
BRCA1/2, PALB2, 
ATM)

Phase I/II Various mFOLFOX
Veliparib

Total: 57
HRD: 16
HRP 41

HRD: 7.2 m
HRP: 3.5 m

HRD: 11.1 m
HRP: 6.8 m

  n.a. 99 Yes

gBRCA1 (n=3)
gBRCA2 (n=13)
gPALB2 (n=2)
sBRCA2 (n=1)

Phase II First- line 
maintenance 
after platinum 
induction

Rucaparib Total: 19 9.1 m n.a. n.a. 101 Yes

gBRCA1 (n=45)
gBRCA2 (n=108)
gBRCA1/2 (n=1)

Phase III First- line 
maintenance 
after platinum 
induction

A. Olaparib
B. Placebo

Total: 154
A. 92
B. 62

A. 7.4 m
B. 3.8 m

A. 18.9 m
B. 18.1 m

mPFS: 
p=0.004
mOS: 
p=0.91

100 No

*As prespecified in the protocol, enrolment was stopped because of an insufficient response rate among the first 15 patients.
FOLFOX, folinic acid, fluouracil, oxaliplatin 
; HRD, homologous recombination- deficient; HRP, homologous recombination- proficient; m, month; mOS, median overall survival; mPFS, median progression- free survival; n.a., not applicable; pts., 
patients.
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BRCA- associated cancers, as in non- BRCA- associated cancers at 
least BRCA1/2 mutations frequently appear to work in a biolog-
ically neutral manner.37

Inducing homologous recombination deficiency and future 
directions
New treatment modalities currently aim at inducing or main-
taining an HRD state independent of the mutational make- up 
of a given tumour. This could increase the efficacy of DDR- 
interfering agents and increase the patient cohort. Such strat-
egies might also bypass drug resistance, since PARP inhibitor 
resistance can occur, for example, by HR restoration (figure 3). 
Specifically, hypoxia might impair HR, for instance, by silencing 
the BRCA1 promoter or downregulation of RAD51/52.110 Anti- 
angiogenic agents (AA) counteract hypoxia- induced angiogenesis 
and, in turn, lower blood perfusion and thereby oxygen tension. 
This hypothesis is in contrast with transiently AA- induced repair 
termed tumour ‘vessel normalisation’. Nevertheless, concrete 
evidence supporting the fact that vessel normalisation is decisive 
for AA functioning is lacking, whereas induced hypoxia appears 
to be the major driver.111 Indeed, trials testing bevacizumab and 
cediranib combined with olaparib did not show unexpected 
toxicities, but showed promising antitumour response at least 
in ovarian cancer.94 Phase II basket trials including PDAC are 
currently recruiting (NCT02498613; table 6).

The phosphoinositide 3- kinase (PI3K)- protein kinase 
B- mammalian target of rapamycin pathway seems relevant in 
maintaining HR,94 thereby blocking PI3K sensitising to PARP 
inhibitors via BRCA1/2 downregulation in triple- negative breast 
cancer cells.112 However, robust data are lacking and clinical 
evidence only supports tolerability.113 MEK inhibition causes 
repression of both HR and NHEJ repair activity in PDAC cells. 
A clinical trial exploring these preclinical data is currently 
enrolling (NCT03162627; table 6). Furthermore, inhibition of 
the nuclear serine/threonine kinase WEE1 can induce HRDness 
in PDAC. The DNA damage checkpoint WEE1 impairs unsched-
uled replication origin firing and thus prevents nucleotide pool 
depletion and replication stress, ultimately resulting in DSBs.114 
Preclinically, the WEE1 inhibitor AZD1775 sensitises to radio-
therapy, an observation currently examined in a clinical trial 
(NCT02194829; table 6). Another approach might be molecules 
mimicking BRCA2 mutations that disrupt the RAD51- BRCA2 
complex.115 Finally, clinical grade ATM inhibitors (AZD0156, 
KU60019, AZD1390), which directly prevent downstream 
ATM phosphorylation, can sensitise tumour cells to DDR inter-
fering strategies. Preliminary data from the AToM study, a phase 
I clinical trial in advanced cancers, showed promising partial 
responses on a combination with olaparib.116

The limited success of treatments based on single DDR inhib-
iting agents is mostly due to compensatory pathways, drug 
toxicity and a lack of reliable response predictors. Moreover, 

Table 6 Ongoing clinical trials of therapies affecting DNA damage repair pathways that include patients with pancreatic cancer

Trial Design Patients Treatment Status

NCT02950064 Phase I trial, open- label BRCA- mutated pancreatic, ovarian, triple- negative breast or prostate 
cancers or solid tumours with other DDR mutations

BTP-114, a novel platinum product Active, not 
recruiting

NCT01489865 Phase I/II trial, single 
arm

PDAC with BRCA mutation or personal or family history of hereditary 
breast or ovarian cancer

ABT-888 (a new PARP inhibitor) with 
mFOLFOX6

Active, not 
recruiting

NCT01585805 Phase II, open- label, 
randomised

Metastatic or locally advanced BRCA- mutated PDAC Veliparib alone vs gemcitabine/cisplatin vs 
veliparib and gemcitabine/cisplatin

Active, not 
recruiting

NCT02498613 Phase II trial, single 
arm

Advanced solid tumours with failure to at least one line of standard 
systemic treatment

Olaparib+cediranib (anti- VEGF) Recruiting

NCT03162627 Phase I/II Refractory advanced cancer Olaparib+selumetinib (anti- MEK) Recruiting

NCT03404960 Phase Ib/II, open- label, 
randomised

Metastatic or locally advanced PDAC, with 16 weeks of platinum- 
based treatment without progression

Niraparib+nivolumab or ipilimumab Recruiting

NCT02630199 Phase I, open- label Advanced, refractory cancer Paclitaxel and AZD6738 (ATR inhibitor) Recruiting

NCT02223923 Phase I, single group Solid tumour refractory to conventional treatment AZD6738 (ATR inhibitor) with radiotherapy Recruiting

NCT03669601 Phase I, non- 
randomised

Locally advanced or metastatic solid tumour that has progressed on 
standard therapy

AZD6738 and gemcitabine Recruiting

NCT02264678 Phase I, two- part, 
open- label

Solid malignant tumour that is not considered appropriate for further 
standard treatment

AZD6738 with different drugs, including 
carboplatin and olaparib

Recruiting

NCT03682289 Phase II Locally advanced or metastatic solid tumour malignancy, including any 
pancreatic cancers

AZD6738 alone or in combination with 
olaparib

Recruiting

NCT02576444 Phase II Metastatic progressive cancer Patients with HRD will be treated with olaparib 
and AZD6738

Active, not 
recruiting

NCT02723864 Phase I, single group Metastatic cancer with previous fail to survival prolonging therapies Veliparib+cisplatin+VX-970 (ATR inhibitor) Recruiting

NCT02595931 Phase I, single group Metastatic or unresectable malignancy that is refractory to standard 
therapy or for which no standard therapy exists and where irinotecan 
is deemed a reasonable treatment option

VX-970 and irinotecan Recruiting

NCT02588105 Phase I Locally advanced/metastatic cancer that is refractory or resistant to 
standard therapy, or have no effective standard

AZD0156+olaparib, AZD0156+irinotecan/
FOLFIRI

Active, not 
recruiting

NCT02194829 Phase I A phase I and randomised phase II study of nab- paclitaxel/gemcitabine 
with or without AZD1775 for treatment of metastatic adenocarcinoma 
of the pancreas

Nab- paclitaxel/gemcitabine
Nab- paclitaxel/gemcitabine+AZD1775

Active, not 
recruiting

FOLFIRI, folinic acid, fluouracil, irinotecan 
; FOLFOX, folinic acid, fluouracil, oxaliplatin 
; nab, nanosized albumin- bound; PDAC, pancreatic ductal adenocarcinoma 
.
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the appropriate stratification of clinical trials for the different 
DDR alterations may help to identify the best treatment, 
as it has already done in prostate cancer (eg, Triton2 study, 
NCT02952534). Exploiting vulnerabilities by (i) seeking a 
synthetic lethal interaction within a given PDAC genotype and/
or by (ii) a synergistic interaction in the low- dose range between 
applied drugs could boost both efficacy and tolerability.71 Thus, 
the multiple targeting of distinct DDR pathways could be a 
promising concept, provided that precise dose- escalation studies 
are warranted together with extensive preclinical testing. The 
combinatorial use of ATR inhibitors with conventional chemo-
therapy or PARP inhibitors in patients with ATM- deficient 
PDAC seems interesting, as it could assign HRDness to a given 
cancer.107 This is currently being assessed in various recruiting 
trials; for more details see table 6.

PDOs may in future also provide guidance for selecting the 
most appropriate combination(s). A prerequisite for such an 
approach, particularly in a disease like PDAC with extraordi-
nary high intertumoural heterogeneity, is the sequencing of the 
tumour or the tumour DNA in liquid biopsies to determine the 
presence of a particular DDR mutation that can be appropriately 
targeted.

Homologous recombination deficiency and immunotherapy
Checkpoint inhibitors have revolutionised the treatment of 
some cancers, with the highest efficacy in mismatch repair- 
deficient tumours carrying a significant mutational burden. As 
mentioned above, MMR proteins correct the erroneous incor-
poration of bases during DNA replication. In PDAC, MMR 
deficiency is very rarely found in around 1% of cases and 
is associated with a better prognosis.117 MMR deficiency is 
predictive of an improved response to immunotherapy across 
multiple types of cancer including PDACs.118 PARP inhibitors 
can increase immune response and induce PD- L1 expres-
sion.117 Nonetheless, whether this establishes a synergistic axis 
between PARP and immune checkpoint inhibition in HRD 
PDAC remains unclear. In patients with PDAC, low ATM 
expression inversely correlates with PD- L1 expression, and the 
preclinical inhibition of ATM increased interferon signalling 
and sensitised to immune checkpoint inhibition.119 A phase 
Ib/II trial is currently recruiting to estimate the efficacy and 
safety of PARP inhibition with either ipilimumab (anticyto-
toxic T- lymphocyte- associated protein 4) or nivolumab (anti-
programmed cell death protein 1) (table 6; NCT03404960). 
Supporting data come from phase II trials combining olaparib 
with durvalumab (anti- PD- L1), showing tolerable toxicity and 
promising disease control rates in patients with breast and 
prostate cancer.120 121 In general, immunotherapy in PDAC 
appears to be restricted to cases with specific mutations leading 
to neoantigen expression. As in an unselected population with 
metastatic PDAC, ORR was far below expectations.122

CONCLUSIONS
Impaired DNA damage repair is a relevant characteristic of 
PDAC, frequently with an inherited origin. Loss- of- function 
mutations in genes involved in DNA damage repair justify thera-
peutic targeting with a platinum agent in the polychemotherapy 
and/or PARP inhibitors as a reasonable option, particularly for 
later lines of treatment. At least for BRCA- associated cancer 
types (pancreatic, prostate, breast or ovarian cancer), BRCA1/2 
mutations remain clinically relevant, independent of their patho-
genic or somatic origin. Maintenance with PARP inhibitors after 
induction chemotherapy is a promising approach that is likely to 

be incorporated in clinical practice for patients with a BRCA1/2 
germline mutation. With the ultimate goal of hitting PDACs 
‘hard and early’ and avoiding the emergence of resistant clones, 
more studies are urgently needed to demonstrate the efficacy 
of combinatorial approaches to DDR inhibition and to iden-
tify the best combinations for the respective targets in the DDR 
machinery. Furthermore, potential ‘HRDness inducers’ creating 
artificial vulnerabilities, in combination with DNA- damaging 
drugs such as PARP inhibitors and/or alternative DDR inhibi-
tors, could provide a significant benefit for a larger group of 
patients with PDAC and open up a new era in the field of PDAC 
treatment.
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