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Abstract 

Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed-Parameter Tractable 
algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space 
complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to 
extend their scope of applicability, we introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such 
that a given tree-decomposition can be slimmed down to a prescribed treewidth tw′ . Our rationale is that the time 
gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to 
take deleted edges into account. Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2O(tw)n 
time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g., 
NP-hardness when tw′ or tw − tw

′ is constant). We propose a prototype implementation for our approach which we 
apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search 
of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption 
of tree-decomposition-based algorithms in Bioinformatics.
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Introduction
Graph models and parameterized algorithms are found at 
the core of a sizable proportion of algorithmic methods 
in bioinformatics addressing a wide array of subfields, 
spanning sequence processing [1], structural bioinfor-
matics [2], comparative genomics [3], phylogenetics [4], 
and further examples that can be found in a review by 
Bulteau and Weller [5]. RNA bioinformatics is no excep-
tion, with the prevalence of the secondary structure, an 
outer planar graph [6], as an abstraction of RNA con-
formations, and the notable utilization of graph models 
to represent complex topological motifs called pseudo-
knots [7], inducing the hardness of several tasks, such as 
structure prediction [8–10], structure alignment [11], or 

structure/sequence alignment [12]. Such motifs are func-
tionally important and conserved, as witnessed by their 
presence in the consensus structure of 336 RNA families 
in the 14.5 edition of the RFAM database [13]. Moreo-
ver, methods in RNA bioinformatics [14] are increas-
ingly considering non-canonical base pairs and modules 
[15, 16], further increasing the density of RNA structural 
graphs and outlining the need for scalable algorithms.

A parameterized complexity approach can be used to 
circumvent the frequent NP-hardness of relevant prob-
lems. It generally considers one or several parameters, 
whose values are naturally bounded (or much smaller 
than the input size) within real-life instances. Once rele-
vant parameters have been identified, one aims to design 
a Fixed Parameter Tractable (FPT) algorithm, having pol-
ynomial complexity for any fixed value of the parameter, 
and reasonable dependency on the parameter value. The 
treewidth is a classic parameter for FPT algorithms, and 
intuitively captures a notion of distance of the input to a 
tree. It is popular in bioinformatics due to the existence 
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of efficient heuristics [17, 18] for computing tree-decom-
positions of reasonable treewidth. Given a tree-decom-
position, many combinatorial optimization tasks can be 
solved using dynamic programming (DP), in time/space 
complexities that remain polynomial for any fixed tree-
width value. Resulting algorithms remain correct upon 
(almost) arbitrary modifications of the objective function 
parameters, and can be adapted to study statistical prop-
erties of search spaces through changes of algebra.

Unfortunately, the existence of a parameterized (or 
FPT) algorithm does not necessarily imply that of a prac-
tically-efficient implementation, even when the param-
eter takes low typical values. Indeed, the dependency 
of the complexity on the treewidth may be prohibitive, 
both in terms of time and memory requirements. This 
limitation is particularly obvious while searching and 
aligning structured RNAs, giving rise to an algorithmic 
problem called RNA structure-sequence alignment [12, 
19, 20], for which the best known exact algorithm is in 
�(n.mtw+1) , with n the structure length, m the sequence/
window length, and tw the treewidth of the structure 
(inc. backbone). Such a complexity becomes impractical 
for structures having a treewidth higher than ∼ 4 , which 
represent 50 to 70% of known RNA structures, as shown 
by Fig.  1, based on a broad analysis of structures found 
in the PDB database. Similar complexities hold for prob-
lems that can be expressed as (weighted) constraint sat-
isfaction problems, with m representing the cardinality 
of the variable domains. Such frameworks are frequently 
used for molecular design, both in proteins [21] and RNA 

[22], and may require the consideration of tree-widths as 
high as 20 or more [23].

In this paper, we investigate a pragmatic strategy to 
increase the practicality of parameterized algorithms 
based on the treewidth parameter [27]. We put our 
instance graphs on a diet, i.e. we introduce a preprocess-
ing that reduces their treewidth to a prescribed value by 
removing a minimal cardinality set of edges. As discussed 
previously, the practical complexity of many algorithms 
greatly benefits from the consideration of simplified 
instances, having lower treewidth. Moreover, specific 
countermeasures for errors introduced by the simplifica-
tion can sometimes be used to preserve the correctness 
of the algorithm. For instance, for searching structured 
RNAs using RNA structure-sequence alignment [19], 
an iterated filtering strategy could use instances of 
increasing treewidth to restrict potential hits, weeding 
them early so that a—costly—full structure is reserved 
to (quasi-)hits. This strategy could remain exact while 
saving substantial time. Alternative countermeasures 
could be envisioned for other problems, such as a rejec-
tion approach to correct a bias introduced by simplified 
instances in RNA design. An overview of our approach is 
sketched on Fig. 2

After stating our problem(s) in Sect.  2, we study in 
Sect.  3 the parameterized complexity of the Graph-
Diet problem, the removal of edges to reach a pre-
scribed treewidth. We propose, in Sect.  4, a practical 
Dynamic Programing FPT algorithm for Tree-Diet, 
along with possible further optimizations for Path-Diet, 

Fig. 1  Histogram of treewidth values over all RNA-only structures in the PDB database [24]. The data consists of 5 760 non-redundant graphs, each 
corresponding to a “chain” of a PDB entity. The nucleotide chains and their base pairs were extracted using the DSSR tool [25]. On each of these 
graphs, 4 standard treewidth heuristics from the LibTW library [26] (min-degree, min-fill-in, lex-BFS, max-cardinality-search) were launched, and 
the best width result was selected. Even if these heuristics reputedly tend to yield results close to the optimal, these results are still upper bounds. 
For each individual structure, the actual treewidth value may be lower. Depending on whether non-canonical base pairs are taken into account 
(right) or not (left), the proportion of structures having a width ≥ 4 ranges from  50 to 70% . For such values, the complexity of structure-sequence 
alignment ( O(n ·mtw+1) ) becomes prohibitive. It is also worth noting that only pseudo-knotted structures may have a treewidth ≥ 3
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two natural simplifications of the Graph-Diet prob-
lem, where a tree (resp. path) decomposition is provided 
as input and used as a guide. Finally, we show in Sect. 5 
how our algorithm can be used to extract hierarchies of 
graphs/structural models of increasing complexity to 
provide alternative sampling strategies for RNA design, 
and speed-up the search for pseudoknotted non-coding 
RNAs. We conclude in Sect. 6 with future considerations 
and open problems.

Statement of the problem(s) and results
A tree-decomposition T  (over a set V of vertices) is a tree 
whose nodes are subsets of V, known as bags. The bags 
containing any v ∈ V  induce a (connected) subtree of T  . 
A path-decomposition is a tree-decomposition whose 
underlying tree T  is a path. The width of T  (denoted 
w(T ) ) is the size of its largest bag minus 1. An edge {u, v} 
is visible in T  if some bag contains both u and v, other-
wise it is lost. T  is a tree-decomposition of G if all edges of 
G are visible in T  . The treewidth of a graph G is the mini-
mum width over all tree-decompositions of G.

Problem  (Graph-Diet) Given a graph G = (V ,E) of 
treewidth tw, and an integer tw′ < tw , find a tree-decom-
position over V of width at most tw′ losing a minimum 
number of edges from G.

A tree-diet of T  is any tree-decomposition T ′ obtained 
by removing vertices from the bags of T  . T ′ is a d-tree-
diet if w(T ′) ≤ w(T )− d.

Problem  (Tree-Diet) Given a graph G, a tree-decom-
position T  of G of width tw, and an integer tw′ < tw , find 
a (tw − tw′)-tree-diet of T  losing a minimum number of 
edges.

Note that for Tree-Diet, T  does not have to be optimal, so 
the width tw of the input tree decomposition might be larger 
than the actual treewidth of G, thus Tree-Diet can be used 
to reduce the width of any input decomposition. We define 
Binary-Tree-Diet and Path-Diet analogously, where T  is 
restricted to be a binary tree (respectively, a path). An exam-
ple of an instance of Graph-Diet and of Tree-Diet are 
given in Fig. 3.

Parameterized complexity in a nutshell
The basics of parameterized complexity can be loosely 
defined as follows (see [28] for the formal background). 
A parameter k for a problem is an integer associated with 
each instance which is expected to remain small in practi-
cal instances (especially when compared to the input size 
n). An exact algorithm, or the problem it solves, is FPT if 
it takes time f (k)poly(n) , and XP if it takes time ng(k) (for 
some functions f, g). Under commonly accepted conjectures 
(see for instance [29] for details), W[1]-hard problems may 
not be FPT, and Para-NP-hard problems (NP-hard even for 
some fixed value of k) are not FPT nor XP.

Our results
Our results are summarized in Table  1. Although the 
Graph-Diet problem would give the most interesting 

Fig. 2  General description of our approach and rationale. Starting from a structured instance, e.g. an RNA structure with pseudoknots, our 
tree-diet/path-diet algorithms extract simplified tree/path decompositions, having prescribed target width tw′ . Those can be used within existing 
parameterized algorithms to yield efficient heuristics, a posteriori approximations or even exact solutions
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tree-decompositions in theory, it seems unlikely to admit 
efficient algorithms in practice (see Sect. 3).

Thus we focus on the Tree-Diet relaxation, where an 
input tree-decomposition is given, which we use as a guide/
restriction towards a thinner tree-decomposition. Seen as 
an additional constraint, it makes the problem harder (the 
case tw′

= 1 becomes NP-hard, Theorem  3, although for 
Graph-Diet it corresponds to the Spanning Tree prob-
lem and is polynomial). With parameter tw however, it 
does help reduce the search space. In Theorem 7 we give an 
O((6�)tw�2n) Dynamic Programming algorithm, where � 
is the maximum number of children of any bag in the tree-
decomposition. This algorithm can thus be seen as XP in 
general, but FPT on bounded-degree tree-decompositions 

(e.g. binary trees and paths). This is not a strong restriction, 
since the input tree may safely and efficiently be transformed 
into a binary one (see Supplementary Section  A for more 
details). Moreover, the duplications of bags which are used 
in the conversion may only decease the number of lost edges 
incurred by Tree-Diet.

We also consider the case where the treewidth needs to 
be reduced by d = 1 only, this without constraining the 
source treewidth. We give a polynomial-time algorithm 
for Path-Diet in this setting (Theorem 8) which gener-
alizes into an XP algorithm for larger values of d, noting 
that an FPT algorithm for d is out of reach by Theorem 5. 
We also show that the problem is Para-NP-hard if the 
tree degree is unbounded (Theorem 4).
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Fig. 3  Illustrations for the Graph-Diet and Tree-Diet problems. Given a graph G on the left (treewidth 3), an optimal solution for Graph-Diet, with target 
treewidth 2, yields the tree-decomposition in the middle (edge ah is lost). On the other hand, any 1-tree-diet for the tree-decomposition on the 
right loses at least 3 edges

Table 1  Parameterized results for our problems. Algorithm complexities are given up to polynomial time factors ( O∗ notation), � 
denotes the maximum number of children in the input tree-decomposition

a See Theorem 2 statement for a more precise formulation

Parameter Source treewidth Target treewidth Difference

Problem tw tw
′

d = tw − tw
′

Graph-Diet FPT Para-NP-hard Para-NP-harda

via MSO tw
′
= 2 d = 1

Theorem 1 EDP(K4 ) [30] Theorem 3

Tree-Diet XP FPT  open Para-NP-hard
tw

′
= 1

Theorem 3

Para-NP-hard

O
∗((6�)tw) d = 1

Theorem 7 Theorem 5

Binary-Tree-Diet FPT W[1]-hard
Theorem 5

XP  open

Path-Diet O
∗(12tw) XP

Theorem 7 O
∗(twd)

Theorem 8
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Algorithmic limits: parameterized complexity 
considerations
Graph-Diet can be seen as a special case of the Edge 
Deletion Problem (EDP) for the family of graphs H 
of treewidth tw′ or less: given a graph G, remove as few 
edges as possible to obtain a graph in H . Such edge modi-
fication problems are more often parameterized by the 
number k of edited edges (see [31] for a complete sur-
vey). Given our focus on increasing the practicality of 
treewdith-based algorithms in bioinformatics, we restrict 
our focus to treewidth related parameters tw, tw′ and 
d = tw − tw′.

Considering the target treewidth tw′ , we note that EDP 
is NP-hard when H is the family of treewidth-2 graphs 
[30], namely K4-free graphs, hence the notation EDP(K4 ). 
It follows that Graph-Diet is Para-NP-hard for the tar-
get treewidth parameter tw′.

Graph‑diet: practical solutions seem unlikely
For a combination of the parameters tw′ and k, we could 
imagine graph minor theorems yielding parameterized 
algorithms “for free”, as it is often the case with tree-
width-based problems. In this respect, Graph-Diet cor-
responds to deciding if a graph G belongs to the family of 
graphs having treewidth tw′ , augmented by k additional 
edges, denoted as Treewidth-tw′+k e since its intro-
duction by Cai [32]. If this family were minor-closed, pol-
ynomial minor-free-testing [33, 34] would yield an FPT 
algorithm. However, this is not the case: for some graphs 
in the family, an edge contraction yields a graph G′ not in 
Treewidth-tw′+k e, as illustrated by Fig. 4.

Regarding the source graph treewidth tw, the ver-
tex deletion equivalent of Graph-Diet, where one asks 
for a minimum subset of vertices to remove to obtain 
a given treewidth, is known as a Treewidth Modu-
lator. This problem has been better-studied than its 
edge-deletion counterpart [35], and has been shown 
to be FPT for the treewidth [36]. For the edge-deletion 

version (Graph-Diet), we can use an optimization vari-
ant of Courcelle’s Theorem [29, Thm. 7.12] to show that 
the problem is FPT for tw. However, this is a purely the-
oretical result as the running-time of such “black-box” 
algorithms typically involve towers of exponentials on the 
treewidth parameter.

Theorem 1  Graph Diet is FPT for the treewidth.

Proof  We formulate Graph Diet as a Monadic Sec-
ond-Order Logic (MSO) forumula as follows: given a 
graph G = (V ,E) , an integer tw′ and a set X of edges, let 
φtw′(G,X) be true iff G[E \ X] has treewidth tw′ . Clearly 
φtw′ can be expressed as an MSO formula, since both 
G[E \ X] and “being of treewidth tw′ ” can be expressed in 
MSO [37]. Thus, by Arnborg et  al. [38], there exists an 
algorithm that, given G of treewidth tw, finds a set X of 
minimum size satisfying φtw′(G,X) in time ftw′(tw) · n . 
Writing g(tw) = maxtw′

≤tw ftw′(tw) , this yields an algo-
rithm for Graph Diet running in time at most g(tw) · n . 
�

Overall, even though Graph Diet is FPT for the tree-
width, “practical” exact algorithms seem out of reach. 
Indeed, any algorithm for Graph-Diet can be used 
to compute the Treewidth of an arbitrary graph, for 
which current state-of-the-art exact algorithms require 
time in twO(tw3) [27]. We thus have the following conjec-
ture, which motivates the Tree-Diet relaxation of the 
problem.

Conjecture 1  Graph-Diet does not admit algorithms 
with single-exponential running time for the treewidth.

On a related note, it is worth noting that Edge Deletion 
to other graph classes (interval, permutation, ...) does 
admit efficient algorithms when parameterized by the 
treewidth alone [39], painting a contrasted picture.

Finally, for parameter d, any polynomial-time algo-
rithm for constant d would allow to compute the tree-
width of any graph in polynomial time. Since treewidth is 
NP-hard we have the following result.

Theorem  2  There is no XP algorithm for Graph-Diet 
with parameter d unless P= NP.

Proof  We consider the decision version of Graph-
Diet where a bound k on the number of deleted edges 
is given. We build a Turing reduction from Treewidth: 
more precisely, assuming an oracle for Graph-Diet with 
d = 1 is available, we build a polynomial-time algorithm 
to compute the treewidth of a graph G. This is achieved 
by computing Graph-Diet(G, tw, d = 1, k = 0) for 

a
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c d

e

f
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b

c’

e

f
Fig. 4  A graph G (left) with treewidth 3. Deleting edge cd gives 
treewidth 2, implying that G ∈ Treewidth2+ 1e . However, if one 
contracts edge cd, then the resulting graph (right) has treewidth 3, 
and deleting any single edge does not decrease the treewidth. This 
example shows that the graph family Treewidth 2+1e is not 
minor-closed
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decreasing values of tw (starting with tw = |V | ): the first 
value of tw for which this call returns no solution is the 
treewidth of G. Note that this is not a many-one reduc-
tion, since several calls to Graph-Diet may be neces-
sary (so this does not precisely qualify as an NP-hardness 
reduction, even though a polynomial-time algorithm for 
Graph-Diet(G, tw, d = 1, k = 0) would imply P=NP). �

Lower bounds for tree‑diet
Parameters tw′ and d would be the most interesting in 
practice, since parameterized algorithms would be effi-
cient for small diets or small target treewidth. However, 
we prove strong lower-bounds for Tree-Diet on each of 
these parameters, leaving very little hope for parameter-
ized algorithms (we thus narrow down the possible algo-
rithms to the combined parameter tw′

+ d , i.e. tw, see 
Sect. 4). Only XP for parameter d when T  has a constant 
degree remains open (cf. Table 1).

Theorem 3  Tree-Diet and Path-Diet   are Para-NP-
hard for the target treewidth parameter tw′ (NP-hard for 
tw′

= 1).

Proof  By reduction from the NP-hard problem Span-
ning Caterpillar Tree [40]: given a graph G, does 
G have a spanning tree C that is a caterpillar? Given 
G = (V ,E) with n = |V | , we build a tree-decomposi-
tion T  of G consisting of n− 1 bags containing all ver-
tices (the width of the decomposition is therefore n− 1 ) 

connected in a path. Then (G, T ) admits a tree-diet to 
treewidth 1 with n− 1 visible edges if, and only if, G 
admits a caterpillar spanning tree. Indeed, the subgraph 
of G with visible edges must be a graph with pathwidth 1, 
i.e. a caterpillar [41]. With n− 1 visible edges, the cater-
pillar connects all n vertices together, i.e. it is a spanning 
tree. �

Theorem  4  Tree-Diet is Para-NP -hard for the 
parameter d. More precisely, it is W[1]-hard for param-
eter �, the degree of T , even when d = 1.

Proof  As illustrated in Fig.  5, this can be shown  by 
reduction from Multi-Colored Clique (Given a 
graph G, an integer k and a partition of the vertices of G 
into k sets, is there a clique in G containing exactly one 
vertex from each of the k sets?). Consider a k-partite 
graph G = (V ,E) with V =

⋃k
i=1 Vi . We assume that G 

is regular (each vertex has degree δ and that each Vi has 
the same size n (Multi Colored Clique is W[1]-hard 
under these restrictions [28, 29]). Let L := δk −

(k
2

)

 and 
N = max{|V |, L+ 1} . We now build a graph G′ and a 
tree-decomposition T ′ : start with G′

:= G . Add k inde-
pendent cliques K1, . . . ,Kk of size N + 1 . Add k sets of 
N vertices Zi ( i ∈ [k] ) and, for each i ∈ [k] , add edges 
between each v ∈ Vi and each z ∈ Zi . Build T  using 
2k + 1 bags T0,T1,i,T2,i for i ∈ [k] , such that T0 = V  , 
T1,i = Vi ∪ Ki and T2,i = Vi ∪ Zi . The tree-decomposi-
tion is completed by connecting T2,i to T1,i and T1,i to T0 

a
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a a

b
b

b b
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c c

•••••
•• • ••
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Z2

(N)g
g

g gh h h h
i i
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Fig. 5  Reduction for Theorem 4 showing that Tree-Diet is NP-hard even for d = 1 , from a graph G (left) with k = 3 and n = 3 to a graph G′ (right, 
given by its tree-decomposition of width N + n+ 1 ): a 1-tree-diet for G′ amounts to selecting a k-clique in the root bag, i.e. in G 
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for each i ∈ [k] . Thus, T  is a tree-decomposition of G′ 
with � = k and maximum bag size n+ N + 1 (vertices 
of V induce a size-3 path in T  , other vertices appear in 
a single bag, edges of G appear in T0 , edges of Ki in T1,i , 
and finally edges between Vi and Zi appear in T2,i ). The 
following claim completes the reduction:

⇐  Assume G has a k-clique X = {x1, . . . , xk} (with 
xi ∈ Vi ). Build T ′ by removing each xi from bags T0 and 
T1,i . Then T ′ is a 1-tree-diet of T  . There are no edges lost 
by removing xi from T1,i (since xi is not connected to Ki ), 
and the edges lost in T0 are all edges of G adjacent to any 
xi . Since X forms a clique and each xi has degree δ , there 
are L = kδ −

(k
2

)

 such edges.

⇒  Consider a 1-tree-diet T ′ of T  losing L edges. 
Since each bag T1,i has maximum size, T ′ must remove 
at least one vertex xi in each T1,i . Note that xi ∈ Vi 
(since removing xi ∈ Ki would loose at least N ≥ L+ 1 
edges). Furthermore, xi may not be removed from T2,i 
(otherwise N edges between xi and Zi would be lost), 
so xi must also be removed from T0 . Let K be the 
number of edges in G[{x1 . . . xk}] . The total number of 
lost edges in T0 is δk − K  . Thus, we have δk − K ≤ L 
and K ≥

(k
2

)

 : {x1, . . . , xk} form a k-clique of G. �

Theorem 5  Path-Diet is W[1]-hard for parameter d.

Proof  By reduction from Clique. Given a δ-regular 
graph G with n vertices and m edges and an integer 
k, consider the trivial tree-decomposition T  of G with 
a single bag containing all vertices of G (it has width 
n− 1 ). Then (T ,G) has a k-tree-diet losing δk −

(k
2

)

 
edges if and only if G has a k-clique. Indeed, such a 
tree-diet T ′ would remove a set X of k vertices from G 
and losing δk −

(k
2

)

 edges, so X induces 
(k
2

)

 edges and is 
a k-clique of G. Any instance G, with parameter k, of 
clique can therefore be transformed into an equiva-
lent instance (T ,G) of Path-diet, with parameter 
d = k . Since it qualifies as a parameterized reduction, 
Path-Diet is W[1]-hard. �

FPT algorithm
For general tree‑decompositions
We describe here a O(3twn)-space, O(�tw+2

· 6twn)-time 
dynamic programming algorithm for the Tree-Diet 
problem, with � and tw being respectively the maximum 
number of children of a bag in the input tree-decom-
position and its width. On binary tree-decompositions 

T has a 1-tree-diet losing at most L edges from

G
′
⇔ G has a k − clique.

(where each bag has at most 2 children), it yields a 
O(3twn)-space O(12twn)-time FPT algorithm.

Coloring formulation
We aim at solving the following problem: given a tree-
decomposition T  of width tw of a graph G, we want to 
remove vertices from the bags of T  to reach a target 
width tw′ while losing as few edges from G as possible. 
We tackle the problem through an equivalent coloring 
formulation: our algorithm will assign a color to each 
occurrence of a vertex in the tree decomposition. We 
work with three colors: red (r), orange (o), and green 
(g). Green means that the vertex is kept in the bag, while 
orange and red means removal of the vertex. An edge is 
thus visible within a bag when both its ends are green. 
It is lost if there is no bag where it is visible. To ensure 
equivalence with the original problem, the colors will be 
assigned following local rules, which we now describe.

Definition 1  A coloring of vertices in the bags of the 
decomposition is said to be valid if it follows the follow-
ing rules:

•	 A vertex of a bag not present in its parent may be 
green or orange (R1)

•	 A green vertex in a bag may be either green or red in 
its children (R2)

•	 A red vertex in a bag must stay red in its children 
(R3)

•	 An orange vertex in a bag has to be either orange or 
green in exactly one child (unless there is no child 
with this vertex), and must be red in the other chil-
dren (R4)

These rules are summarized in Fig. 6a.
When going down the tree, a green vertex may only 

stay green or permanently become red. As for orange 
vertices, they are locally absent but “may potentially 
be found further down the tree”, while red vertices are 
removed from both the current bag and its entire subtree. 
An immediate consequence of these rules is therefore 
that the green occurences of a given vertex form a (pos-
sibly empty) connected subtree. (R4) in particular is cru-
cial to this connectivity: if an orange vertex could become 
orange in several children, it would be able to turn green 
in several disconnected subtrees. Figure  6b shows an 
example sketch for a valid coloring of the occurrences 
of a given vertex in the tree-decomposition. A vertex 
may only be orange along a path starting form its high-
est occurrence in the tree, with any part branching off 
that path entirely red. It ends at the top of a (potentially 
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empty) green subtree, whose vertices may also be parents 
to entirely red subtrees.

We will now more formally prove the equivalence of 
the coloring formulation to the original problem. Let us 
first introduce two definitions. Given a valid coloring C 
of a tree-decomposition of G, an edge (u, v) of G is said 
to be realizable if there exists a bag in which both u and 
v are green per C . Given an integer d, a coloring C of T  
is said to be d−diet-valid if removing red/orange vertices 
reduces the width of T  from w(T) to w(T )− d.

Proposition 1  Given a graph G, a tree-decomposition 
T  of width tw, and a target width tw′ < tw , The Tree-
Diet problem is equivalent to finding a (tw − tw′)-diet-
valid coloring C of T  allowing for a number of realizable 
edges in G as large as possible.

Proof  Given a (tw − tw′)-tree-diet of T  specifying 
which vertices are removed from which bags, we first 
show how to obtain a valid coloring C for T  incurring the 
same number of lost (unrealizable) edges. Let us denote 
by T ′ the tree decomposition of width tw′ obtained by 
applying the diet to T  . To start with, a vertex u is colored 
green in the bags where it is not removed. By the validity 
of T ′ as a decomposition, this set of bags forms a con-
nected subtree, that we denote T g

u  . We also write Tu for 
the subtree of bags containing u in the original decom-
position T  . If T g

u  and Tu do not have the same root, then 
u is colored orange on the the path in T  from the root of 

Tu (included) and the root of T g
u  (excluded). Vertex u is 

colored red in any other bag of Tu not covered by these 
two cases. The resulting coloring follows rules (R1-4) and 
induces the same set of lost/non-realizable edges as the 
original (tw − tw′)-tree-diet. Conversely, an equivalent 
(tw − tw′)-tree-diet is obtained from a (tw − tw′)-diet-
valid coloring by removing red/orange vertices and keep-
ing green ones. If a given vertex has no green occurences, 
it is entirely removed from the tree decomposition and 
all its edges are lost (it becomes an isolated vertex). We 
may add it back to the tree decomposition by introducing 
a new bag containing only this vertex, which we connect 
arbitrarily to the tree decomposition. �

Decomposition of the search space and sub‑problems
Based on this coloring formulation, we now describe 
a dynamic programming scheme for the Tree-Diet 
problem. We work with sub-problems indexed by tuples 
(Xi, f ) , with Xi a bag of the input tree decomposition and f 
a coloring of the vertices of Xi in green, orange or red (in 
particular, f −1(g) denotes the green vertices of Xi , and 
similarly for o and r).

Let us introduce some notations before giving the defi-
nition of our dynamic programming table. Given an edge 
(u, v) of G, realizable when coloring a tree-decomposition 
T  of G with C , we write T g

uv the subtree of T  in which 

Fig. 6  (a) Color assignation rules for vertices, when going down-tree. (b) Sketch of the general pattern our color assignation rules create on Tu , the 
subtree of bags containing a given vertex u. Looking at it top-down: any orange part may only be a path starting at the root of the sub-tree. Some 
red sub-trees may branch off from it. On the sketch, at the end of the orange path, the vertex turns green. This top-most green vertex is at the root 
of a green sub-tree, with potential red sub-trees branching off from it
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both u and v are green. We denote by Ti the subtree of the 
decomposition rooted at Xi , and C(i,  f) the d-diet-valid 
colorings of Ti agreeing with f on i, with d = tw − tw′ . 
Our dynamic programming table is then defined as:

The cell c(Xi, f ) therefore aggregates all edges realizable 
strictly below Xi . As we shall see through the recurrence 
relation below and its proof, edges with both ends green 
in Xi will be accounted for above Xi in T .

We assume w.l.o.g that the tree-decomposition is 
rooted at an empty bag R. Given the definition of the 
table, the maximum number of realizable edges, compat-
ible with a tree-diet of (tw − tw′) to T  , can be found in 
c(R, ∅).

The following theorem presents a recurrence relation 
obeyed by c(Xi, f ) :

Theorem 6  For a bag Xi of T , with children Y1, ...Y�, we 
have:

with

•	 m: a map from the orange vertices in Xi to the chil-
dren of Xi . It decides for each orange vertex u, which 
child, among those which contain u, will color u 
orange or green; If there are no orange vertices in Xi , 
only the trivial empty map is considered.

•	 compatible(Yj , f ,m) : the set of colorings of Yj com-
patible with f on Xi and m;

•	 count(f , f ′j ) : set of edges of G involving two vertices 
of Yj green by f ′j  , but such that one of them is either 
not in Xi or not green by f.

Note that compatible(Yj , f ,m) may contain colorings f ′j  
that colour too many vertices in Yj in green to reach tar-
get width tw′ . In that case c(Yj , f ′j ) = −∞.

Theorem 6 relies on the following separation lemma for 
realizable edges under a valid coloring of a tree-decom-
position. Recall that we suppose w.l.o.g that the tree-
decomposition is rooted at an empty bag.

c(Xi, f ) =















max
C∈C(i,f )

�

�

�

�

�

Edges (u, v), realizable within Ti colored with C

such that T
g
uv is entirely contained strictly below Xi

�
�

�

�

�

if f assigns green to at most tw′
+ 1 vertices

−∞ otherwise.

c(Xi, f ) = max
m:f −1(o)→[1..�]





�

1≤j≤�

�

max
f ′j ∈compatible(Yj ,f ,m)

c(Yj , f
′

j )+

�

�

�
count(f , f ′j )

�

�

�

�



,

Lemma 1  An edge (u, v) of G, realizable in T  under C , 
is contained in exactly one set of the form count(C|P ,C|X ) 
with X a bag of T  and P its parent, C|P ,C|X the restrictions 
of C to P and X, respectively, and “count” defined as above. 

In addition, X is the root of the subtree of T  in which both 
u and v are green.

Proof  Given, in a tree-decomposition, a bag P colored 
with f, with a child X colored with h, a more precise defi-
nition for count(f, h) is:

Now, given a realizable edge (u, v), in a tree-decomposi-
tion T  colored with C , the set of bags in which both u and 
v are green forms a connected subtree of T  . This subtree 
has a root, or lowest common ancestor, that we denote 
R(u,v) . Since we assumed T  to be rooted at an empty bag, 

R(u,v) is not the root of T  , and has a parent. We call this 
parent P(u,v) . Clearly, (u,  v) belongs to the “count set” 
associated to the edge (P(u,v)) → (R(u,v)) of T  , while for 
any other edge X → Y  of T  , the colors of u and v cannot 
verify the conditions to belong to the associated “count 
set”. �

Proof of Theorem  6  ≤  Let us more concisely use 
RE↓(Ti, C,G) to denote the set of edges (u, v) of G, realiz-
able under the (tw − tw′)-diet-valid coloring C of Ti , such 
that T g

uv is entirely contained strictly below Xi . We have, if 
f contains enough red/orange vertices to reduce the size of 
Xi to target size: 

 By definition, c(Xi, f ) is the maximum number 
of realizable edges in the subtree-decomposition 
rooted at Xi , such that all green-green occurences 

count(f , h)

=

{

(u, v) ∈ E

∣

∣

∣

h(u) = h(v) = g and

(u /∈ P or f (u) �= g or v /∈ P or f (v) �= g)

}

.

c(Xi, f ) = max
C∈C(i,f )

∣

∣RE↓(Ti, C,G)
∣

∣.
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of the edge occur strictly below Xi , and under the 
constraint that f colors Xi . Let C be a coloring for 
Ti realizing the optimum c(Xi, f ) . Its restrictions 
to Y1 . . .Y� yield colorings f ′1 . . . f

′

� . Likewise, its 
restrictions to the subtree-decompositions T ′

1 . . .T
′

� 
rooted at Y1 . . .Y� yield colorings C′1 . . . C

′

� compat-
ible with f ′1 . . . f

′

� . C′1 . . . C
′

� cannot be better than the 
optimal, so ∀j , |RE↓(T ′

j , C
′

j ,G)| ≤ c(Yj , f
′

j ) Let (u,  v) 
be an edge of RE↓(Ti, C,G) . Per Lemma  1, either 
(u, v) ∈ count(f , f ′j ) for some j (if Yj is the root of T g

uv ) 
and (u, v) /∈ ∪jRE↓(T

′

j
,C′

j
,G) or (u, v) ∈ count(f , f ′j ) and ∃j such 

that (u, v) ∈ RE↓(T
′

j , C
′

j ,G) . Therefore: 

 and, a fortiori 

≥  Conversely, given f, let m be an assignation 
map for orange vertices and f ′1 . . . f

′

� colorings of 
Y1 . . .Y� compatible with f and m, and let C′1 . . . C

′

� 
be colotings of T ′

1 . . .T
′

� realizing the optima 
c(Y1, f

′

1) . . . c(Y�, f
′

�) . The union of C′1 . . . C
′

� and f 
is a coloring C for Ti , the subtree-decomposition 
rooted at Xi , which can not be better than optimal 
( |RE↓(Ti, C,G)| ≤ c(Xi, f ) ). As before, an edge (u, v) 
either belongs to ∪jcount(f , f

′

j ) or to ∪jRE↓(T
′

j , C
′

j ,G) 
but not both. In any case, it belongs to RE↓(Ti, C,G) . 
Therefore: 

 This is true for any choice of m, f ′1 . . . f
′

� , therefore: 

 which concludes the proof.�
	 Dynamic programming algorithm The recur-
rence relation of Theorem 6 naturally yields a dynamic 

c(Xi, f ) = |RE↓(Ti, C,G)| =
∑

1≤j≤�

[

|RE↓(T
′

j , C
′

j ,G)| + count(f , f ′j )
]

≤

∑

1≤j≤�

(

c(Yj , f
′

j )+ count(f , f ′j )
)

,

c(Xi, f ) ≤ max
m:f −1(o)→[1...�]

∑

1≤j≤�

max
f ′j ∈compatible(Yj ,f ,m)

(

c(Yj , f
′

j )+ count(f , f ′j )
)

.

∑

1≤j≤�

(

c(Yj , f
′

j )+ count(f , f ′j )
)

=

∑

1≤j≤�

(

|RE↓(T
′

j , C
′

j ,G)| + count(f , f ′j )
)

= |RE↓(Ti, C,G)| ≤ c(Xi, f ).

max
m:f −1(o)→[1...�]

∑

1≤j≤�

max
f ′j ∈compatible(Yj ,f ,m)

(

c(Yj , f
′

j )+ count(f , f ′j )
)

≤ c(Xi, f ),

programming algorithm for the Tree-Diet problem, 
as stated below:

Theorem  7  There exists a O(�tw+2
· 6tw · n)-time, 

O(3tw · n)-space algorithm for the Tree-Diet problem, 
with � the maximum number of children of a bag in the 
input tree-decomposition, and tw its width.

Proof (Proof of Theorem  7)  Given the coloring for-
mulation and Proposition 1, and given the sub-problems 
and c(Xi, f )-table definitions, with R the (empty) root of 

the tree-decomposition, c(R, ∅) is indeed the maximum 
possible number of realizable edges when imposing a 
(tw − tw′)-diet to T  . The recurrence relation of Theo-
rem  6 therefore lends itself to a dynamic programming 
approach, over the tree-decomposition T  following leaf-
to-root order, for the problem.

It is reasonable to assume the number of bags in a tree 
decomposition to be linear in n (this is for instance the 
case for a nice tree decomposition [29, 42], or for a tree 
decomposition obtained from an elimination ordering, 
see [17, 43]). Therefore, the number of entries to the table 
is O(3twn) , given that a bag X may be colored in 3|X | ways, 
and that the maximum size of X is tw + 1 . For a given 
entry Xi , one must first enumerate all possible choices 
of m : f −1(o) → [1...�] , map assigning one child of Xi to 
each orange vertex in Xi . There are O(�tw+1) possibilities 
for m in the worst case, as |f −1(o)| ≤ tw + 1 . Then, for 
each child Yj , one must enumerate all possible colorings 
f ′j  compatible with f. Possibilities for f ′j (u) depend on the 
color by f:

•	 if u /∈ Xi → f ′j (u) = o or g

•	 if f (u) = g → f ′j (u) = g or r

•	 if f (u) = o → f ′j (u) = o or g if m[u] = j or 
f ′j (u) = r otherwise.
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•	 if f (u) = r → f ′j (u) = r

Overall, as there are at most � children, tw + 1 verti-
ces in each child, and 2 possibilities (see enumeration 
of cases above) of color for each vertex in a child, yield-
ing a total number of compatible colorings bounded 
by O(� · 2tw+1) . Multiplying these contributions, the 
overall time complexity of our algorithm is therefore 
O(�tw+2

· 6tw · n) . �
Corollary 1  Binary-Tree-Diet ( � = 2 ) admits an 
FPT algorithm for the tw parameter.

A pseudo-code implementation of the algorithm, using 
memoization, is included in Additional file 1: Section B

For path decompositions
In the context of path decompositions, we note that the 
number of removed vertices per bag can be limited to at 
most 2d without losing the optimality. More precisely, we 
say that a coloring C is d-simple if any bag has at most d 
orange and d red vertices. We obtain the following result, 
using transformations given in Fig. 7.

Proposition 2  Given a graph G and a path-decompo-
sition T  , if C is a d-diet-valid coloring of T  losing k edges, 
then T  has a d-diet-valid coloring that is d-simple, and 
loses at most k edges.

Proof of Proposition 2  Consider such a coloring C with 
a maximal number of green vertices. We show that it is 
d-simple. Assume the path-decomposition T  is rooted 
in bag X1 and each Xi is the parent of Xi+1 . Pick i to be 
the smallest index so that at least d + 1 vertices in Xi are 

colored red by C , assume any such i exists. Then one of 
these vertices, say u, is not colored red in Xi−1 (either 
because i = 1 , or it is not in Xi−1 , or it is orange or green 
in Xi−1 ). Consider C′ obtained by C and coloring u green 
in Xi . Then C′ satisfies local rules R1 through R4 (a green 
vertex may be absent, green or orange in the parent bag, 
and a red vertex may be green in the parent bag). Fur-
thermore, it is d-diet-valid since it still removes at least 
d (red) vertices in Xi . Overall C′ is another d-diet-valid 
coloring with more green vertices: a contradiction, so no 
such i exist (and no bag has d + 1 red vertices). The same 
argument works symmetrically for orange vertices. Over-
all, C is d-simple. �

Together with Proposition 1, this shows that it is suffi-
cient to restrict our algorithm to d-simple colorings. (See 
also Fig. 7). In particular, for any set Xi , choosing which 
≤ d vertices are orange and which ≤ d are red, among the 
total of n vertices, is enough to fix a coloring. The num-
ber of such colorings is therefore bounded by O(tw2d) . 
Applying this remark to our algorithm presented in 
Sect. 4.1 yields the following result:

Theorem 8  Path-Diet can be solved in O(tw2dn)-space 
and O(tw4dn)-time.

Proofs of concept
We now illustrate the relevance of our approach, and the 
practicality of our algorithm for Tree-Diet, by using it 
in conjunction with FPT algorithms for three problems 
in RNA bioinformatics. We implemented in C++ the 
dynamic programming scheme described in Theorem  7 

(a) (b)

(c) (d)

• •• •

• •

• •• •

• •

u v

u
v

(e)
Fig. 7  Five cases where two vertices are deleted in the same bag with d = 1 . Bags are points in the line, and an interval covering all bags containing 
v is drawn for each v (with an equivalent coloring, see Proposition 1). Cases (a) to (d) can be safely avoided by applying the given transformations. In 
the example for case (e), however, it is necessary to delete both vertices u and v form a central bag. It is sufficient to avoid cases (a) and (b) in order 
to obtain an XP algorithm for d 
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and Additional file  1: Section  B. Its main primitives are 
made available for Python scripting through pybind11 
[44].

It actually allows to solve a generalized weighted ver-
sion of Tree Diet, as explained in Additional file 1: Sec-
tion B. This feature allows to favour the conservation of 
important edges (e.g. RNA backbone) during simplifica-
tion, by assigning them a much larger weight compared 
to other edges. Our implementation is freely available at 
https://​gitlab.​inria.​fr/​amibio/​tree-​diet.

The execution time of this implementation on elements 
of the data set used for Fig. 1 (all RNA-only structures of 
the PDB database) is represented on Figure  8, for input 
treewidth values of up to 7. It shows that our tree-diet 
method is applicable with reasonable run-times ( � 1 h) 
for all structures of width ≤ 7 . The proofs-of-concepts 
presented in this section involve however instances with 
treewidth of up to 9, in the case of RNA design, for which 
the run-time also stays reasonable.

Memory‑parsimonious unbiased sampling of RNA designs
As a first use case for our simplification algorithm, we 
strive to ease the sampling phase of a recent method, 
called RNAPond [22], addressing RNA negative design. 
The method targets a set of base pairs S, representing 
a secondary structure of length n, and infers a set D of 
m disruptive base pairs (DBPs) that must be avoided. It 
relies on a �(k · (n+m)) time algorithm for sampling 
k random sequences (see Additional file  1: Section  C 
for details) after a preprocessing in �(n ·m · 4tw) time 
and �(n · 4tw) space. Here, the input consists of a graph 
G = ([1, n], S ∪D) and a tree decomposition T  of G, 
having width tw. In practice, the preprocessing largely 
dominates the overall runtime, even for large values of k, 
and its large memory consumption represents the main 
bottleneck.

This discrepancy in the complexities/runtimes of the 
preprocessing and sampling suggests an alternative 
strategy: relaxing the set of constraints to (S′,D′) , with 
(S′ ∪D′) ⊂ (S ∪D) , and compensating it through a rejec-
tion of sequences violating constraints in (S,D) \ (S′,D′) . 
The relaxed algorithm would remain unbiased, while the 
average-case time complexity of the rejection algorithm 
would be in �(k · q · (n+m)) time, where q represents 
the relative increase of the partition function ( ≈ the 
sequence space) induced by the relaxation. The preproc-
essing step would retain the same complexity, but based 
on a (reduced) treewidth tw′

≤ tw for the relaxed graph 
G′

= ([1, n], S′ ∪D′).
These complexities enable a tradeoff between the rejec-

tion (time), and the preprocessing (space), which may 
be critical to unlock future applications of RNA design. 
Indeed, the treewidth can be decreased by removing 

relatively few base pairs, as demonstrated below using 
our algorithm on pairs inferred for hard design instances.

We considered sets of DBPs inferred by RNAPond over 
two puzzles in the EteRNA benchmark. The EteRNA22 
puzzle is an empty secondary structure spanning 400 nts, 
for which RNAPond obtains a valid design after inferring 
465 DBPs. A tree decomposition of the graph formed 
by these 465 DPBs is then obtained with the standard 
min-fill-ordering heuritic [18], giving a width of 6. The 
EteRNA77 puzzle is 105 nts long, and consists in a col-
lection of helices interspersed with destabilizing inter-
nal loops. RNApond failed to produce a solution, and its 
final set of DBPs consists of 183 pairs, for which the same 
heuristic yields a tree decomposition of width 9. We fur-
ther make both tree decompositions binary through bag 
duplications (see Supplementary Section  A), giving an 
FPT runtime to our algorithm, while potentially lowering 
the number of lost edges.

Executing the tree-diet algorithm (Theorem 7) on both 
graphs and their tree decompositions, we obtained sim-
plified graphs, having lower treewidth while typically 
losing few edges, as illustrated and reported in Fig.  9. 
Remarkably, the treewidth of the DBPs inferred for 
EteRNA22 can be decreased to tw′

= 5 by only remov-
ing 5 DBPs/edges (460/465 retained), and to tw′

= 4 by 
removing 4 further DBPs (456/465). For EteRNA77, our 
algorithm reduces the treewidth from 9 to 6 by only 
removing 7 DBPs.

Rough estimates can be provided for the tradeoff 
between the rejection and preprocessing complexities, by 
assuming that removing a DBP homogeneously increases 
the value of Z by a factor α := 16/10 (#pairs/#incomp. 

Fig. 8  Run-time of the tree-diet algorithm on all RNA-only structures 
of the PDB database, versus the size (length of the RNA string) 
of these structures. The data set is the same as Fig. 1, limited to 
structures of treewidth ≤ 7 . Structures are colored by their original 
treewidth. Here, we have asked the algorithm to reduce the 
treewidth by 2

https://gitlab.inria.fr/amibio/tree-diet
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pairs). The relative increase in partition function is then 
q ≈ αb , when b base pairs are removed. For EteRNA22, 
reducing the treewidth by 2 units (6→4), i.e. a 16 fold 
reduction of the memory and preprocessing time, can 
be achieved by removing 9 DBPs, i.e. a 69 fold expected 
increase in the time of the generation phase. For 
EteRNA77, the same 16 fold ( tw′

= 9 → 7 ) reduction of 
the preprocessing time/space can be achieved through an 
estimated 4 fold increase of the generation time. A more 
aggressive 256 fold memory gain can be achieved at the 
expense of an estimated 1  152 fold increase in genera-
tion time. Given the large typical asymmetry in runtimes 
and implementation constants between the computa-
tion-heavy preprocessing and, relatively light, generation 
phases, the availability of an algorithm for the tree-diet 
problem provides new options, especially to circumvent 
memory limitations.

Structural alignment of complex RNAs
Structural homology is often posited within functional 
families of non-coding RNAs, and is foundational to algo-
rithmic methods for multiple RNA alignments [13], con-
sidering RNA base pairs while aligning distant homologs. 
In the presence of complex structural features (pseudo-
knots, base triplets), the sequence-structure alignment 
problem becomes hard, yet admits XP solutions based 
on the treewidth of the base pair + backbone graph. In 
particular, Rinaudo et al. [12] describe a �(n.mtw+1) algo-
rithm for optimally aligning a structured RNA of length 
n onto a genomic region of length m. It optimizes an 
alignment score that includes: (i) substitution costs for 
matches/mismatches of individual nucleotides and base 
pairs (including arc-breaking) based on the RIBOSUM 

matrices [45]; and (ii) an affine gap cost model [46]. We 
used the implementation of the Rinaudo et al. algorithm, 
implemented in the LicoRNA software package [47, 48].

Impact of treewidth on the structural alignment 
of a riboswitch
In this case study, we used our tree-diet algorithm to 
modulate the treewidth of complex RNA structures, and 
investigate the effect of the simplification on the qual-
ity and runtimes of structure-sequence alignments. We 
considered the Cyclic di-GMP-II riboswitch, a regulatory 
motif found in bacteria that is involved in signal trans-
duction, and undergoes conformational change upon 
binding the second messenger c-di-GMP-II [49, 50]. A 
2.5Å resolution 3D model of the c-di-GMP-II riboswitch 
in C. acetobutylicum, proposed by Smith et al. [51] based 
on X-ray crystallography, was retrieved from the PDB 
[24] (PDBID: 3Q3Z). We annotated its base pairs geo-
metrically using the DSSR method [52]. The canonical 
base pairs, supplemented with the backbone connec-
tions, were then accumulated in a graph, for which we 
heuristically computed an initial tree decomposition T4 , 
having treewidth tw = 4.

We simplified our the initial tree decomposition T4 , 
and obtained simplified models T3, and T2, having width 
tw′

= 3 and 2 respectively. As controls, we included 
tree decompositions based on the secondary structure 
(max. non-crossing set of BPs; T2D ) and sequence ( T1D ). 
We used LicoRNA to predict an alignment aT ,w of each 
original/simplified tree decomposition T  onto each 
sequence w of the c-di-GMP-II riboswitch family in the 
RFAM database [13] (RF01786). Finally, we reported the 
LicoRNA runtime, and computed the Sum of Pairs Score 

Fig. 9  (Left) Target secondary structure (blue BPs), full set of disruptive base pairs (DPB; top) inferred by RNAPond on the Eterna77 puzzle, and 
subsets of DBPs (bottom) cumulatively removed by the tree-diet algorithm to reach prescribed treewidths. (Right) Number of BPs retained by our 
algorithm, targeting various treewidth values for the EteRNA22 and EteRNA77 puzzles
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(SPS) [53] as a measure of the accuracy of aT ,w against a 
reference alignment a⋆w:

the alignment a⋆w between the 3Q3Z sequence and w 
induced by the manually-curated RFAM alignment of the 
RF01786 family.

The results, presented in Fig. 10, show a limited impact 
of the simplification on the quality of the predicted 
alignment, as measured by the SPS in comparison with 
the RFAM alignment. The best average SPS (77.3%) is 
achieved by the initial model, having treewidth of 4, but 
the average difference with simplified models appears 
very limited (e.g. 76.5% for T3 ), especially when consider-
ing the median. Meanwhile, the runtimes mainly depend 
on the treewidth, ranging from 1h for T4 to 300ms for 
T1D . Overall, T2D seems to represent the best compromise 
between runtime and SPS, although its SPS may be arti-
ficially inflated by our election of RF01786 as our refer-
ence (built from a covariance model, i.e. essentially a 2D 
structure). Finally, the difference in number of edges (and 
induced SPS) between T2D and T2 , both having tw = 2 , 
exemplifies the difference between the Tree-Diet and 
Graph-Diet problems, and motivates further work on 
the latter.

Exact iterative strategy for the genomic search of ncRNAs
In this final case study, we consider an exact filtering 
strategy to search new occurrences of a structured 
RNA within a given genomic context. In this setting, 
one attempts to find all ε-admissible (cost ≤ ε ) occur-
rences/hits of a structured RNA S of length n within 
a given genome of length g ≫ n , broken down in 
windows of length κ .n, κ > 1 . Classically, one would 
align S against individual windows, and report those 

SPS(aT ,w; a
⋆
w) =

∣

∣MatchCols(aT ,w) ∩MatchCols(a⋆w)
∣

∣

∣

∣MatchCols(a⋆w)
∣

∣

,

associated with an ǫ−admissible alignment cost. 
This strategy would have an overall �(g · ntw+2) time 

Fig. 10  Impact on alignment quality (SPS; Left) and runtime (Right) of simplified instances for the RNA sequence-structure alignment of the 
pseudoknotted c-di-GMP-II riboswitch. The impact of simplifications on the quality of predicted alignments, using RFAM RF01786 as a reference, 
appears limited while the runtime improvement is substantial

complexity, applying for instance the algorithm of 
[12].

Our instance simplification framework enables an 
alternative strategy, that incrementally filters out unsuit-
able windows based on models of increasing granularity. 
Indeed, for any given target sequence, the min alignment 
cost cδ obtained for a simplified instance of treewidth 
tw − δ can be corrected (cf Additional file 1: Section D) 
into a lower bound c⋆δ for the min alignment cost c⋆0 of the 
full-treewidth instance tw. Any window such that c⋆δ > ε 
thus also obeys c⋆0 > ε , and can be safely discarded from 
the list of putative ε-admissible windows, without having 
to perform a full-treewidth alignment. Given the expo-
nential growth of the alignment runtime for increas-
ing treewidth values (see Fig.  10, right) this strategy is 
expected to yield substantial runtime savings.

We used this strategy to search occurrences of the 
Twister ribozyme (PDBID 4OJI), a highly-structured 
( tw = 5 ) 54nts RNA initially found in O. sativa (Asian 
rice) [54]. We targeted the S. bicolor genome (sorghum), 
focusing on a 10kb region centered on the 2,485,140 
position of the 5th chromosome, where an instance of the 
ribozyme was suspected within an uncharacterized tran-
script (LOC110435504). The 4OJI sequence and structure 
were extracted from the 3D model as above, and included 
into a tree decomposition T5 (73 edges), simplified into T4 
(71 edges), T3 (68 edges) and T2 (61 edges) using the tree-
diet algorithm.

We aligned all tree decompositions against all windows 
of size 58nts using a 13nts offset, and measured the score 
and runtime of the iterative filtering strategy using a cost 
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cutoff ε = −5 . The search recovers the suspected occur-
rence of twister as its best result (Fig. 11C), but produced 
hits (cf Fig. 11D) with comparable sequence conservation 
that could be the object of further studies. Regarding the 
filtering strategy, while T2 only allows to rule out 3 win-
dows out of 769, T3 allows to eliminate an important pro-
portion of putative targets, retaining only 109 windows, 
further reduced to 15 windows by T4 , 6 of which end up 
as final hits for the full model T5 (cf Fig. 11A). The search 
remains exact, but greatly reduces the overall runtime 
from 24 h to 34 min (42 fold!).

Conclusion and discussion
We have established the parameterized complexity of 
three treewidth reduction problems, motivated by appli-
cations in Bioinformatics, as well as proposed practical 
algorithms for instances of reasonable treewidths. The 
reduced widths obtained by our proposed algorithm 
can be used to obtain: (i) sensitive heuristics, owing to 
the consideration of a maximal amount of edges/infor-
mation in the thinned graphs; (ii) a posteriori approxi-
mation ratios, by comparing the potential contribution 
of removed edges to the optimal score obtained of the 
thinned instance by a downstream FPT/XP algorithm; 
(iii) substantial practical speedups without loss of cor-
rectness, e.g. when partial filtering can be safely achieved 
based on simplified input graphs.

Open questions
Regarding the parameterized complexity of Graph-
Diet and Tree-Diet, some questions remain open (see 
Table 1): an FPT algorithm for Tree-Diet (ideally, with 
2O(tw)

· n running time), would be the most desirable, if 

possible satisfying the backbone constraints. The exist-
ence of such an algorithm is not trivial. In particular, it is 
perhaps worth noting that it is not implied by the exist-
ence of an FPT algorithm for graph-diet with the input 
treewidth as a parameter (1). Indeed, in comparison to 
the latter, tree-diet subtly restricts the search space to 
tree decompositions that are subsets of the input tree 
decomposition. It follows that the result of graph diet 
for a graph G may substantially differ from the result of 
tree-diet given a tree decomposition T  of G as input. 
We also aim at trying to give efficient exact algorithms 
for graph diet in the context of RNA (we conjecture 
this is impossible in the general case). Finally, we did not 
include the number of deleted edges in our multivariate 
analysis: even though in practice it is more difficult a pri-
ori to guarantee their small number, we expect it can be 
used to improve the running time in many cases.

Backbone preservation
In two of our applications, the RNA secondary structure 
graph contains two types of edges: those representing 
the backbone of the sequence (i.e., between consecutive 
bases) and those representing base pair bonds. In prac-
tice, we want all backbone edges to be visible in the 
resulting tree-decomposition, and only base pairs may 
be lost. This can be integrated to the Tree-Diet model 
(and to our algorithms) using weighted edges, using the 
total weight rather than the count of deleted edges for 
the objective function. Note that some instances might 
be unrealizable (with no tree-diet preserving the back-
bone, especially for low tw′ ). In most cases, ad-hoc bag 
duplications can help avoid this issue. The design of pre-
processing methods, involving bag duplications or other 

Fig. 11  Corrected costs associated with the search for structured homologs of the Twister ribozyme in chromosome 5 of S. bicolor, using simplified 
instances of various treewidth (A). Gray areas represent scores which, upon correction, remain below the cutoff, and have to be considered for 
further steps of the iterated filtering. Canonical base pairs of the ribozyme (PDBID 4OJI; B, mapped onto to the best hit (C) and second best hit (D) 
found along the search colored depending on their support in the target sequence (Red: incompatible; Purple: unstable G-U; Blue: stable)
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operations on tree decompositions, and aimed at ensur-
ing the existence of a backbone-preserving tree-diet will 
be the subject of future work.

From a theoretical perspective, weighted edges may 
only increase the algorithmic complexity of the problems. 
However, a more precise model could consider graphs 
which already include a hamiltonian path (the backbone), 
and the remaining edges form a degree-one or two sub-
graph. Such extra properties may, in some cases, actu-
ally reduce the complexity of the problem. As an extreme 
case, we conjecture the Path-Diet problem for tw′

= 1 
becomes polynomial in this setting.
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