
Marchand et al.
Algorithms for Molecular Biology (2022) 17:8
https://doi.org/10.1186/s13015-022-00213-z

RESEARCH

Tree diet: reducing the treewidth to unlock
FPT algorithms in RNA bioinformatics
Bertrand Marchand1,2, Yann Ponty1* and Laurent Bulteau2* 

Abstract 

Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed-Parameter Tractable
algorithms, many of which rely on a combination of tree-decomposition and dynamic programming. The time/space
complexities of such approaches hinge critically on low values for the treewidth tw of the input graph. In order to
extend their scope of applicability, we introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such
that a given tree-decomposition can be slimmed down to a prescribed treewidth tw′ . Our rationale is that the time
gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra post-processing needed to
take deleted edges into account. Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2O(tw)n
time and space. We complement this result with parameterized complexity lower-bounds for stronger variants (e.g.,
NP-hardness when tw′ or tw − tw

′ is constant). We propose a prototype implementation for our approach which we
apply on difficult instances of selected RNA-based problems: RNA design, sequence-structure alignment, and search
of pseudoknotted RNAs in genomes, revealing very encouraging results. This work paves the way for a wider adoption
of tree-decomposition-based algorithms in Bioinformatics.

Keywords:  RNA, treewidth, FPT algorithms, RNA design, structure sequence alignment

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Graph models and parameterized algorithms are found at
the core of a sizable proportion of algorithmic methods
in bioinformatics addressing a wide array of subfields,
spanning sequence processing [1], structural bioinfor-
matics [2], comparative genomics [3], phylogenetics [4],
and further examples that can be found in a review by
Bulteau and Weller [5]. RNA bioinformatics is no excep-
tion, with the prevalence of the secondary structure, an
outer planar graph [6], as an abstraction of RNA con-
formations, and the notable utilization of graph models
to represent complex topological motifs called pseudo-
knots [7], inducing the hardness of several tasks, such as
structure prediction [8–10], structure alignment [11], or

structure/sequence alignment [12]. Such motifs are func-
tionally important and conserved, as witnessed by their
presence in the consensus structure of 336 RNA families
in the 14.5 edition of the RFAM database [13]. Moreo-
ver, methods in RNA bioinformatics [14] are increas-
ingly considering non-canonical base pairs and modules
[15, 16], further increasing the density of RNA structural
graphs and outlining the need for scalable algorithms.

A parameterized complexity approach can be used to
circumvent the frequent NP-hardness of relevant prob-
lems. It generally considers one or several parameters,
whose values are naturally bounded (or much smaller
than the input size) within real-life instances. Once rele-
vant parameters have been identified, one aims to design
a Fixed Parameter Tractable (FPT) algorithm, having pol-
ynomial complexity for any fixed value of the parameter,
and reasonable dependency on the parameter value. The
treewidth is a classic parameter for FPT algorithms, and
intuitively captures a notion of distance of the input to a
tree. It is popular in bioinformatics due to the existence

Open Access

Algorithms for
Molecular Biology

*Correspondence: yann.ponty@lix.polytechnique.fr; laurent.bulteau@u-pem.fr
1 LIX CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de
Paris, Palaiseau, France
2 LIGM, CNRS, Univ Gustave Eiffel, 77454 Marne‑la‑Vallée, France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00213-z&domain=pdf

Page 2 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

of efficient heuristics [17, 18] for computing tree-decom-
positions of reasonable treewidth. Given a tree-decom-
position, many combinatorial optimization tasks can be
solved using dynamic programming (DP), in time/space
complexities that remain polynomial for any fixed tree-
width value. Resulting algorithms remain correct upon
(almost) arbitrary modifications of the objective function
parameters, and can be adapted to study statistical prop-
erties of search spaces through changes of algebra.

Unfortunately, the existence of a parameterized (or
FPT) algorithm does not necessarily imply that of a prac-
tically-efficient implementation, even when the param-
eter takes low typical values. Indeed, the dependency
of the complexity on the treewidth may be prohibitive,
both in terms of time and memory requirements. This
limitation is particularly obvious while searching and
aligning structured RNAs, giving rise to an algorithmic
problem called RNA structure-sequence alignment [12,
19, 20], for which the best known exact algorithm is in
�(n.mtw+1) , with n the structure length, m the sequence/
window length, and tw the treewidth of the structure
(inc. backbone). Such a complexity becomes impractical
for structures having a treewidth higher than ∼ 4 , which
represent 50 to 70% of known RNA structures, as shown
by Fig. 1, based on a broad analysis of structures found
in the PDB database. Similar complexities hold for prob-
lems that can be expressed as (weighted) constraint sat-
isfaction problems, with m representing the cardinality
of the variable domains. Such frameworks are frequently
used for molecular design, both in proteins [21] and RNA

[22], and may require the consideration of tree-widths as
high as 20 or more [23].

In this paper, we investigate a pragmatic strategy to
increase the practicality of parameterized algorithms
based on the treewidth parameter [27]. We put our
instance graphs on a diet, i.e. we introduce a preprocess-
ing that reduces their treewidth to a prescribed value by
removing a minimal cardinality set of edges. As discussed
previously, the practical complexity of many algorithms
greatly benefits from the consideration of simplified
instances, having lower treewidth. Moreover, specific
countermeasures for errors introduced by the simplifica-
tion can sometimes be used to preserve the correctness
of the algorithm. For instance, for searching structured
RNAs using RNA structure-sequence alignment [19],
an iterated filtering strategy could use instances of
increasing treewidth to restrict potential hits, weeding
them early so that a—costly—full structure is reserved
to (quasi-)hits. This strategy could remain exact while
saving substantial time. Alternative countermeasures
could be envisioned for other problems, such as a rejec-
tion approach to correct a bias introduced by simplified
instances in RNA design. An overview of our approach is
sketched on Fig. 2

After stating our problem(s) in Sect. 2, we study in
Sect. 3 the parameterized complexity of the Graph-
Diet problem, the removal of edges to reach a pre-
scribed treewidth. We propose, in Sect. 4, a practical
Dynamic Programing FPT algorithm for Tree-Diet,
along with possible further optimizations for Path-Diet,

Fig. 1  Histogram of treewidth values over all RNA-only structures in the PDB database [24]. The data consists of 5 760 non-redundant graphs, each
corresponding to a “chain” of a PDB entity. The nucleotide chains and their base pairs were extracted using the DSSR tool [25]. On each of these
graphs, 4 standard treewidth heuristics from the LibTW library [26] (min-degree, min-fill-in, lex-BFS, max-cardinality-search) were launched, and
the best width result was selected. Even if these heuristics reputedly tend to yield results close to the optimal, these results are still upper bounds.
For each individual structure, the actual treewidth value may be lower. Depending on whether non-canonical base pairs are taken into account
(right) or not (left), the proportion of structures having a width ≥ 4 ranges from 50 to 70% . For such values, the complexity of structure-sequence
alignment ( O(n ·mtw+1) ) becomes prohibitive. It is also worth noting that only pseudo-knotted structures may have a treewidth ≥ 3

Page 3 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

two natural simplifications of the Graph-Diet prob-
lem, where a tree (resp. path) decomposition is provided
as input and used as a guide. Finally, we show in Sect. 5
how our algorithm can be used to extract hierarchies of
graphs/structural models of increasing complexity to
provide alternative sampling strategies for RNA design,
and speed-up the search for pseudoknotted non-coding
RNAs. We conclude in Sect. 6 with future considerations
and open problems.

Statement of the problem(s) and results
A tree-decomposition T (over a set V of vertices) is a tree
whose nodes are subsets of V, known as bags. The bags
containing any v ∈ V induce a (connected) subtree of T  .
A path-decomposition is a tree-decomposition whose
underlying tree T is a path. The width of T (denoted
w(T) ) is the size of its largest bag minus 1. An edge {u, v}
is visible in T if some bag contains both u and v, other-
wise it is lost. T is a tree-decomposition of G if all edges of
G are visible in T  . The treewidth of a graph G is the mini-
mum width over all tree-decompositions of G.

Problem  (Graph-Diet) Given a graph G = (V ,E) of
treewidth tw, and an integer tw′ < tw , find a tree-decom-
position over V of width at most tw′ losing a minimum
number of edges from G.

A tree-diet of T is any tree-decomposition T ′ obtained
by removing vertices from the bags of T  . T ′ is a d-tree-
diet if w(T ′) ≤ w(T)− d.

Problem  (Tree-Diet) Given a graph G, a tree-decom-
position T of G of width tw, and an integer tw′ < tw , find
a (tw − tw′)-tree-diet of T losing a minimum number of
edges.

Note that for Tree-Diet, T does not have to be optimal, so
the width tw of the input tree decomposition might be larger
than the actual treewidth of G, thus Tree-Diet can be used
to reduce the width of any input decomposition. We define
Binary-Tree-Diet and Path-Diet analogously, where T is
restricted to be a binary tree (respectively, a path). An exam-
ple of an instance of Graph-Diet and of Tree-Diet are
given in Fig. 3.

Parameterized complexity in a nutshell
The basics of parameterized complexity can be loosely
defined as follows (see [28] for the formal background).
A parameter k for a problem is an integer associated with
each instance which is expected to remain small in practi-
cal instances (especially when compared to the input size
n). An exact algorithm, or the problem it solves, is FPT if
it takes time f (k)poly(n) , and XP if it takes time ng(k) (for
some functions f, g). Under commonly accepted conjectures
(see for instance [29] for details), W[1]-hard problems may
not be FPT, and Para-NP-hard problems (NP-hard even for
some fixed value of k) are not FPT nor XP.

Our results
Our results are summarized in Table 1. Although the
Graph-Diet problem would give the most interesting

Fig. 2  General description of our approach and rationale. Starting from a structured instance, e.g. an RNA structure with pseudoknots, our
tree-diet/path-diet algorithms extract simplified tree/path decompositions, having prescribed target width tw′ . Those can be used within existing
parameterized algorithms to yield efficient heuristics, a posteriori approximations or even exact solutions

Page 4 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

tree-decompositions in theory, it seems unlikely to admit
efficient algorithms in practice (see Sect. 3).

Thus we focus on the Tree-Diet relaxation, where an
input tree-decomposition is given, which we use as a guide/
restriction towards a thinner tree-decomposition. Seen as
an additional constraint, it makes the problem harder (the
case tw′

= 1 becomes NP-hard, Theorem 3, although for
Graph-Diet it corresponds to the Spanning Tree prob-
lem and is polynomial). With parameter tw however, it
does help reduce the search space. In Theorem 7 we give an
O((6�)tw�2n) Dynamic Programming algorithm, where �
is the maximum number of children of any bag in the tree-
decomposition. This algorithm can thus be seen as XP in
general, but FPT on bounded-degree tree-decompositions

(e.g. binary trees and paths). This is not a strong restriction,
since the input tree may safely and efficiently be transformed
into a binary one (see Supplementary Section A for more
details). Moreover, the duplications of bags which are used
in the conversion may only decease the number of lost edges
incurred by Tree-Diet.

We also consider the case where the treewidth needs to
be reduced by d = 1 only, this without constraining the
source treewidth. We give a polynomial-time algorithm
for Path-Diet in this setting (Theorem 8) which gener-
alizes into an XP algorithm for larger values of d, noting
that an FPT algorithm for d is out of reach by Theorem 5.
We also show that the problem is Para-NP-hard if the
tree degree is unbounded (Theorem 4).

a b

c d

e f
g

h i

a b d

a d c

c d e

d e f

e f hg e h f h i

a d e h

a d c ea b d

d e f h

f h i

g e h

Fig. 3  Illustrations for the Graph-Diet and Tree-Diet problems. Given a graph G on the left (treewidth 3), an optimal solution for Graph-Diet, with target
treewidth 2, yields the tree-decomposition in the middle (edge ah is lost). On the other hand, any 1-tree-diet for the tree-decomposition on the
right loses at least 3 edges

Table 1  Parameterized results for our problems. Algorithm complexities are given up to polynomial time factors ( O∗ notation), �
denotes the maximum number of children in the input tree-decomposition

a See Theorem 2 statement for a more precise formulation

Parameter Source treewidth Target treewidth Difference

Problem tw tw
′

d = tw − tw
′

Graph-Diet FPT Para-NP-hard Para-NP-harda

via MSO tw
′
= 2 d = 1

Theorem 1 EDP(K4 ) [30] Theorem 3

Tree-Diet XP FPT open Para-NP-hard
tw

′
= 1

Theorem 3

Para-NP-hard

O
∗((6�)tw) d = 1

Theorem 7 Theorem 5

Binary-Tree-Diet FPT W[1]-hard
Theorem 5

XP open

Path-Diet O
∗(12tw) XP

Theorem 7 O
∗(twd)

Theorem 8

Page 5 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

Algorithmic limits: parameterized complexity
considerations
Graph-Diet can be seen as a special case of the Edge
Deletion Problem (EDP) for the family of graphs H
of treewidth tw′ or less: given a graph G, remove as few
edges as possible to obtain a graph in H . Such edge modi-
fication problems are more often parameterized by the
number k of edited edges (see [31] for a complete sur-
vey). Given our focus on increasing the practicality of
treewdith-based algorithms in bioinformatics, we restrict
our focus to treewidth related parameters tw, tw′ and
d = tw − tw′.

Considering the target treewidth tw′ , we note that EDP
is NP-hard when H is the family of treewidth-2 graphs
[30], namely K4-free graphs, hence the notation EDP(K4 ).
It follows that Graph-Diet is Para-NP-hard for the tar-
get treewidth parameter tw′.

Graph‑diet: practical solutions seem unlikely
For a combination of the parameters tw′ and k, we could
imagine graph minor theorems yielding parameterized
algorithms “for free”, as it is often the case with tree-
width-based problems. In this respect, Graph-Diet cor-
responds to deciding if a graph G belongs to the family of
graphs having treewidth tw′ , augmented by k additional
edges, denoted as Treewidth-tw′+k e since its intro-
duction by Cai [32]. If this family were minor-closed, pol-
ynomial minor-free-testing [33, 34] would yield an FPT
algorithm. However, this is not the case: for some graphs
in the family, an edge contraction yields a graph G′ not in
Treewidth-tw′+k e, as illustrated by Fig. 4.

Regarding the source graph treewidth tw, the ver-
tex deletion equivalent of Graph-Diet, where one asks
for a minimum subset of vertices to remove to obtain
a given treewidth, is known as a Treewidth Modu-
lator. This problem has been better-studied than its
edge-deletion counterpart [35], and has been shown
to be FPT for the treewidth [36]. For the edge-deletion

version (Graph-Diet), we can use an optimization vari-
ant of Courcelle’s Theorem [29, Thm. 7.12] to show that
the problem is FPT for tw. However, this is a purely the-
oretical result as the running-time of such “black-box”
algorithms typically involve towers of exponentials on the
treewidth parameter.

Theorem 1  Graph Diet is FPT for the treewidth.

Proof  We formulate Graph Diet as a Monadic Sec-
ond-Order Logic (MSO) forumula as follows: given a
graph G = (V ,E) , an integer tw′ and a set X of edges, let
φtw′(G,X) be true iff G[E \ X] has treewidth tw′ . Clearly
φtw′ can be expressed as an MSO formula, since both
G[E \ X] and “being of treewidth tw′ ” can be expressed in
MSO [37]. Thus, by Arnborg et al. [38], there exists an
algorithm that, given G of treewidth tw, finds a set X of
minimum size satisfying φtw′(G,X) in time ftw′(tw) · n .
Writing g(tw) = maxtw′

≤tw ftw′(tw) , this yields an algo-
rithm for Graph Diet running in time at most g(tw) · n .
�

Overall, even though Graph Diet is FPT for the tree-
width, “practical” exact algorithms seem out of reach.
Indeed, any algorithm for Graph-Diet can be used
to compute the Treewidth of an arbitrary graph, for
which current state-of-the-art exact algorithms require
time in twO(tw3) [27]. We thus have the following conjec-
ture, which motivates the Tree-Diet relaxation of the
problem.

Conjecture 1  Graph-Diet does not admit algorithms
with single-exponential running time for the treewidth.

On a related note, it is worth noting that Edge Deletion
to other graph classes (interval, permutation, ...) does
admit efficient algorithms when parameterized by the
treewidth alone [39], painting a contrasted picture.

Finally, for parameter d, any polynomial-time algo-
rithm for constant d would allow to compute the tree-
width of any graph in polynomial time. Since treewidth is
NP-hard we have the following result.

Theorem 2  There is no XP algorithm for Graph-Diet
with parameter d unless P= NP.

Proof  We consider the decision version of Graph-
Diet where a bound k on the number of deleted edges
is given. We build a Turing reduction from Treewidth:
more precisely, assuming an oracle for Graph-Diet with
d = 1 is available, we build a polynomial-time algorithm
to compute the treewidth of a graph G. This is achieved
by computing Graph-Diet(G, tw, d = 1, k = 0) for

a

b

c d

e

f

a

b

c’

e

f
Fig. 4  A graph G (left) with treewidth 3. Deleting edge cd gives
treewidth 2, implying that G ∈ Treewidth2+ 1e . However, if one
contracts edge cd, then the resulting graph (right) has treewidth 3,
and deleting any single edge does not decrease the treewidth. This
example shows that the graph family Treewidth 2+1e is not
minor-closed

Page 6 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

decreasing values of tw (starting with tw = |V | ): the first
value of tw for which this call returns no solution is the
treewidth of G. Note that this is not a many-one reduc-
tion, since several calls to Graph-Diet may be neces-
sary (so this does not precisely qualify as an NP-hardness
reduction, even though a polynomial-time algorithm for
Graph-Diet(G, tw, d = 1, k = 0) would imply P=NP). �

Lower bounds for tree‑diet
Parameters tw′ and d would be the most interesting in
practice, since parameterized algorithms would be effi-
cient for small diets or small target treewidth. However,
we prove strong lower-bounds for Tree-Diet on each of
these parameters, leaving very little hope for parameter-
ized algorithms (we thus narrow down the possible algo-
rithms to the combined parameter tw′

+ d , i.e. tw, see
Sect. 4). Only XP for parameter d when T has a constant
degree remains open (cf. Table 1).

Theorem 3  Tree-Diet and Path-Diet are Para-NP-
hard for the target treewidth parameter tw′ (NP-hard for
tw′

= 1).

Proof  By reduction from the NP-hard problem Span-
ning Caterpillar Tree [40]: given a graph G, does
G have a spanning tree C that is a caterpillar? Given
G = (V ,E) with n = |V | , we build a tree-decomposi-
tion T of G consisting of n− 1 bags containing all ver-
tices (the width of the decomposition is therefore n− 1 )

connected in a path. Then (G, T) admits a tree-diet to
treewidth 1 with n− 1 visible edges if, and only if, G
admits a caterpillar spanning tree. Indeed, the subgraph
of G with visible edges must be a graph with pathwidth 1,
i.e. a caterpillar [41]. With n− 1 visible edges, the cater-
pillar connects all n vertices together, i.e. it is a spanning
tree. �

Theorem 4  Tree-Diet is Para-NP -hard for the
parameter d. More precisely, it is W[1]-hard for param-
eter �, the degree of T , even when d = 1.

Proof  As illustrated in Fig. 5, this can be shown by
reduction from Multi-Colored Clique (Given a
graph G, an integer k and a partition of the vertices of G
into k sets, is there a clique in G containing exactly one
vertex from each of the k sets?). Consider a k-partite
graph G = (V ,E) with V =

⋃k
i=1 Vi . We assume that G

is regular (each vertex has degree δ and that each Vi has
the same size n (Multi Colored Clique is W[1]-hard
under these restrictions [28, 29]). Let L := δk −

(k
2

)

 and
N = max{|V |, L+ 1} . We now build a graph G′ and a
tree-decomposition T ′ : start with G′

:= G . Add k inde-
pendent cliques K1, . . . ,Kk of size N + 1 . Add k sets of
N vertices Zi ( i ∈ [k] ) and, for each i ∈ [k] , add edges
between each v ∈ Vi and each z ∈ Zi . Build T using
2k + 1 bags T0,T1,i,T2,i for i ∈ [k] , such that T0 = V  ,
T1,i = Vi ∪ Ki and T2,i = Vi ∪ Zi . The tree-decomposi-
tion is completed by connecting T2,i to T1,i and T1,i to T0

a
a

a a

b
b

b b

c
c

c c

•••••
•• • ••

•K1

(N + 1)
••• •••· · ·

Z1

(N)

d d

d d

e e

e e

f
f

f f

•••••
•• • ••

•K2

(N + 1)
••• •••· · ·

Z2

(N)g
g

g gh h h h
i i

i i

•••••
•• • ••

•K3

(N + 1)
••• •••· · ·

Z3

(N)

Fig. 5  Reduction for Theorem 4 showing that Tree-Diet is NP-hard even for d = 1 , from a graph G (left) with k = 3 and n = 3 to a graph G′ (right,
given by its tree-decomposition of width N + n+ 1 ): a 1-tree-diet for G′ amounts to selecting a k-clique in the root bag, i.e. in G 

Page 7 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

for each i ∈ [k] . Thus, T is a tree-decomposition of G′
with � = k and maximum bag size n+ N + 1 (vertices
of V induce a size-3 path in T  , other vertices appear in
a single bag, edges of G appear in T0 , edges of Ki in T1,i ,
and finally edges between Vi and Zi appear in T2,i ). The
following claim completes the reduction:

⇐ Assume G has a k-clique X = {x1, . . . , xk} (with
xi ∈ Vi ). Build T ′ by removing each xi from bags T0 and
T1,i . Then T ′ is a 1-tree-diet of T  . There are no edges lost
by removing xi from T1,i (since xi is not connected to Ki ),
and the edges lost in T0 are all edges of G adjacent to any
xi . Since X forms a clique and each xi has degree δ , there
are L = kδ −

(k
2

)

 such edges.

⇒ Consider a 1-tree-diet T ′ of T losing L edges.
Since each bag T1,i has maximum size, T ′ must remove
at least one vertex xi in each T1,i . Note that xi ∈ Vi
(since removing xi ∈ Ki would loose at least N ≥ L+ 1
edges). Furthermore, xi may not be removed from T2,i
(otherwise N edges between xi and Zi would be lost),
so xi must also be removed from T0 . Let K be the
number of edges in G[{x1 . . . xk}] . The total number of
lost edges in T0 is δk − K  . Thus, we have δk − K ≤ L
and K ≥

(k
2

)

 : {x1, . . . , xk} form a k-clique of G. �

Theorem 5  Path-Diet is W[1]-hard for parameter d.

Proof  By reduction from Clique. Given a δ-regular
graph G with n vertices and m edges and an integer
k, consider the trivial tree-decomposition T of G with
a single bag containing all vertices of G (it has width
n− 1 ). Then (T ,G) has a k-tree-diet losing δk −

(k
2

)

edges if and only if G has a k-clique. Indeed, such a
tree-diet T ′ would remove a set X of k vertices from G
and losing δk −

(k
2

)

 edges, so X induces
(k
2

)

 edges and is
a k-clique of G. Any instance G, with parameter k, of
clique can therefore be transformed into an equiva-
lent instance (T ,G) of Path-diet, with parameter
d = k . Since it qualifies as a parameterized reduction,
Path-Diet is W[1]-hard. �

FPT algorithm
For general tree‑decompositions
We describe here a O(3twn)-space, O(�tw+2

· 6twn)-time
dynamic programming algorithm for the Tree-Diet
problem, with � and tw being respectively the maximum
number of children of a bag in the input tree-decom-
position and its width. On binary tree-decompositions

T has a 1-tree-diet losing at most L edges from

G
′
⇔ G has a k − clique.

(where each bag has at most 2 children), it yields a
O(3twn)-space O(12twn)-time FPT algorithm.

Coloring formulation
We aim at solving the following problem: given a tree-
decomposition T of width tw of a graph G, we want to
remove vertices from the bags of T to reach a target
width tw′ while losing as few edges from G as possible.
We tackle the problem through an equivalent coloring
formulation: our algorithm will assign a color to each
occurrence of a vertex in the tree decomposition. We
work with three colors: red (r), orange (o), and green
(g). Green means that the vertex is kept in the bag, while
orange and red means removal of the vertex. An edge is
thus visible within a bag when both its ends are green.
It is lost if there is no bag where it is visible. To ensure
equivalence with the original problem, the colors will be
assigned following local rules, which we now describe.

Definition 1  A coloring of vertices in the bags of the
decomposition is said to be valid if it follows the follow-
ing rules:

•	 A vertex of a bag not present in its parent may be
green or orange (R1)

•	 A green vertex in a bag may be either green or red in
its children (R2)

•	 A red vertex in a bag must stay red in its children
(R3)

•	 An orange vertex in a bag has to be either orange or
green in exactly one child (unless there is no child
with this vertex), and must be red in the other chil-
dren (R4)

These rules are summarized in Fig. 6a.
When going down the tree, a green vertex may only

stay green or permanently become red. As for orange
vertices, they are locally absent but “may potentially
be found further down the tree”, while red vertices are
removed from both the current bag and its entire subtree.
An immediate consequence of these rules is therefore
that the green occurences of a given vertex form a (pos-
sibly empty) connected subtree. (R4) in particular is cru-
cial to this connectivity: if an orange vertex could become
orange in several children, it would be able to turn green
in several disconnected subtrees. Figure 6b shows an
example sketch for a valid coloring of the occurrences
of a given vertex in the tree-decomposition. A vertex
may only be orange along a path starting form its high-
est occurrence in the tree, with any part branching off
that path entirely red. It ends at the top of a (potentially

Page 8 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

empty) green subtree, whose vertices may also be parents
to entirely red subtrees.

We will now more formally prove the equivalence of
the coloring formulation to the original problem. Let us
first introduce two definitions. Given a valid coloring C
of a tree-decomposition of G, an edge (u, v) of G is said
to be realizable if there exists a bag in which both u and
v are green per C . Given an integer d, a coloring C of T
is said to be d−diet-valid if removing red/orange vertices
reduces the width of T from w(T) to w(T)− d.

Proposition 1  Given a graph G, a tree-decomposition
T of width tw, and a target width tw′ < tw , The Tree-
Diet problem is equivalent to finding a (tw − tw′)-diet-
valid coloring C of T allowing for a number of realizable
edges in G as large as possible.

Proof  Given a (tw − tw′)-tree-diet of T specifying
which vertices are removed from which bags, we first
show how to obtain a valid coloring C for T incurring the
same number of lost (unrealizable) edges. Let us denote
by T ′ the tree decomposition of width tw′ obtained by
applying the diet to T  . To start with, a vertex u is colored
green in the bags where it is not removed. By the validity
of T ′ as a decomposition, this set of bags forms a con-
nected subtree, that we denote T g

u  . We also write Tu for
the subtree of bags containing u in the original decom-
position T  . If T g

u and Tu do not have the same root, then
u is colored orange on the the path in T from the root of

Tu (included) and the root of T g
u (excluded). Vertex u is

colored red in any other bag of Tu not covered by these
two cases. The resulting coloring follows rules (R1-4) and
induces the same set of lost/non-realizable edges as the
original (tw − tw′)-tree-diet. Conversely, an equivalent
(tw − tw′)-tree-diet is obtained from a (tw − tw′)-diet-
valid coloring by removing red/orange vertices and keep-
ing green ones. If a given vertex has no green occurences,
it is entirely removed from the tree decomposition and
all its edges are lost (it becomes an isolated vertex). We
may add it back to the tree decomposition by introducing
a new bag containing only this vertex, which we connect
arbitrarily to the tree decomposition. �

Decomposition of the search space and sub‑problems
Based on this coloring formulation, we now describe
a dynamic programming scheme for the Tree-Diet
problem. We work with sub-problems indexed by tuples
(Xi, f) , with Xi a bag of the input tree decomposition and f
a coloring of the vertices of Xi in green, orange or red (in
particular, f −1(g) denotes the green vertices of Xi , and
similarly for o and r).

Let us introduce some notations before giving the defi-
nition of our dynamic programming table. Given an edge
(u, v) of G, realizable when coloring a tree-decomposition
T of G with C , we write T g

uv the subtree of T in which

Fig. 6  (a) Color assignation rules for vertices, when going down-tree. (b) Sketch of the general pattern our color assignation rules create on Tu , the
subtree of bags containing a given vertex u. Looking at it top-down: any orange part may only be a path starting at the root of the sub-tree. Some
red sub-trees may branch off from it. On the sketch, at the end of the orange path, the vertex turns green. This top-most green vertex is at the root
of a green sub-tree, with potential red sub-trees branching off from it

Page 9 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

both u and v are green. We denote by Ti the subtree of the
decomposition rooted at Xi , and C(i, f) the d-diet-valid
colorings of Ti agreeing with f on i, with d = tw − tw′ .
Our dynamic programming table is then defined as:

The cell c(Xi, f) therefore aggregates all edges realizable
strictly below Xi . As we shall see through the recurrence
relation below and its proof, edges with both ends green
in Xi will be accounted for above Xi in T .

We assume w.l.o.g that the tree-decomposition is
rooted at an empty bag R. Given the definition of the
table, the maximum number of realizable edges, compat-
ible with a tree-diet of (tw − tw′) to T  , can be found in
c(R, ∅).

The following theorem presents a recurrence relation
obeyed by c(Xi, f) :

Theorem 6  For a bag Xi of T , with children Y1, ...Y�, we
have:

with

•	 m: a map from the orange vertices in Xi to the chil-
dren of Xi . It decides for each orange vertex u, which
child, among those which contain u, will color u
orange or green; If there are no orange vertices in Xi ,
only the trivial empty map is considered.

•	 compatible(Yj , f ,m) : the set of colorings of Yj com-
patible with f on Xi and m;

•	 count(f , f ′j) : set of edges of G involving two vertices
of Yj green by f ′j  , but such that one of them is either
not in Xi or not green by f.

Note that compatible(Yj , f ,m) may contain colorings f ′j
that colour too many vertices in Yj in green to reach tar-
get width tw′ . In that case c(Yj , f ′j) = −∞.

Theorem 6 relies on the following separation lemma for
realizable edges under a valid coloring of a tree-decom-
position. Recall that we suppose w.l.o.g that the tree-
decomposition is rooted at an empty bag.

c(Xi, f) =















max
C∈C(i,f)

�

�

�

�

�

Edges (u, v), realizable within Ti colored with C

such that T
g
uv is entirely contained strictly below Xi

�
�

�

�

�

if f assigns green to at most tw′
+ 1 vertices

−∞ otherwise.

c(Xi, f) = max
m:f −1(o)→[1..�]





�

1≤j≤�

�

max
f ′j ∈compatible(Yj ,f ,m)

c(Yj , f
′

j)+

�

�

�
count(f , f ′j)

�

�

�

�



,

Lemma 1  An edge (u, v) of G, realizable in T under C ,
is contained in exactly one set of the form count(C|P ,C|X)
with X a bag of T and P its parent, C|P ,C|X the restrictions
of C to P and X, respectively, and “count” defined as above.

In addition, X is the root of the subtree of T in which both
u and v are green.

Proof  Given, in a tree-decomposition, a bag P colored
with f, with a child X colored with h, a more precise defi-
nition for count(f, h) is:

Now, given a realizable edge (u, v), in a tree-decomposi-
tion T colored with C , the set of bags in which both u and
v are green forms a connected subtree of T  . This subtree
has a root, or lowest common ancestor, that we denote
R(u,v) . Since we assumed T to be rooted at an empty bag,

R(u,v) is not the root of T  , and has a parent. We call this
parent P(u,v) . Clearly, (u, v) belongs to the “count set”
associated to the edge (P(u,v)) → (R(u,v)) of T  , while for
any other edge X → Y of T  , the colors of u and v cannot
verify the conditions to belong to the associated “count
set”. �

Proof of Theorem 6  ≤ Let us more concisely use
RE↓(Ti, C,G) to denote the set of edges (u, v) of G, realiz-
able under the (tw − tw′)-diet-valid coloring C of Ti , such
that T g

uv is entirely contained strictly below Xi . We have, if
f contains enough red/orange vertices to reduce the size of
Xi to target size:

 By definition, c(Xi, f) is the maximum number
of realizable edges in the subtree-decomposition
rooted at Xi , such that all green-green occurences

count(f , h)

=

{

(u, v) ∈ E

∣

∣

∣

h(u) = h(v) = g and

(u /∈ P or f (u) �= g or v /∈ P or f (v) �= g)

}

.

c(Xi, f) = max
C∈C(i,f)

∣

∣RE↓(Ti, C,G)
∣

∣.

Page 10 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

of the edge occur strictly below Xi , and under the
constraint that f colors Xi . Let C be a coloring for
Ti realizing the optimum c(Xi, f) . Its restrictions
to Y1 . . .Y� yield colorings f ′1 . . . f

′

� . Likewise, its
restrictions to the subtree-decompositions T ′

1 . . .T
′

�
rooted at Y1 . . .Y� yield colorings C′1 . . . C

′

� compat-
ible with f ′1 . . . f

′

� . C′1 . . . C
′

� cannot be better than the
optimal, so ∀j , |RE↓(T ′

j , C
′

j ,G)| ≤ c(Yj , f
′

j) Let (u, v)
be an edge of RE↓(Ti, C,G) . Per Lemma 1, either
(u, v) ∈ count(f , f ′j) for some j (if Yj is the root of T g

uv )
and (u, v) /∈ ∪jRE↓(T

′

j
,C′

j
,G) or (u, v) ∈ count(f , f ′j) and ∃j such

that (u, v) ∈ RE↓(T
′

j , C
′

j ,G) . Therefore:

 and, a fortiori

≥ Conversely, given f, let m be an assignation
map for orange vertices and f ′1 . . . f

′

� colorings of
Y1 . . .Y� compatible with f and m, and let C′1 . . . C

′

�
be colotings of T ′

1 . . .T
′

� realizing the optima
c(Y1, f

′

1) . . . c(Y�, f
′

�) . The union of C′1 . . . C
′

� and f
is a coloring C for Ti , the subtree-decomposition
rooted at Xi , which can not be better than optimal
( |RE↓(Ti, C,G)| ≤ c(Xi, f) ). As before, an edge (u, v)
either belongs to ∪jcount(f , f

′

j) or to ∪jRE↓(T
′

j , C
′

j ,G)
but not both. In any case, it belongs to RE↓(Ti, C,G) .
Therefore:

 This is true for any choice of m, f ′1 . . . f
′

� , therefore:

 which concludes the proof.�
	 Dynamic programming algorithm The recur-
rence relation of Theorem 6 naturally yields a dynamic

c(Xi, f) = |RE↓(Ti, C,G)| =
∑

1≤j≤�

[

|RE↓(T
′

j , C
′

j ,G)| + count(f , f ′j)
]

≤

∑

1≤j≤�

(

c(Yj , f
′

j)+ count(f , f ′j)
)

,

c(Xi, f) ≤ max
m:f −1(o)→[1...�]

∑

1≤j≤�

max
f ′j ∈compatible(Yj ,f ,m)

(

c(Yj , f
′

j)+ count(f , f ′j)
)

.

∑

1≤j≤�

(

c(Yj , f
′

j)+ count(f , f ′j)
)

=

∑

1≤j≤�

(

|RE↓(T
′

j , C
′

j ,G)| + count(f , f ′j)
)

= |RE↓(Ti, C,G)| ≤ c(Xi, f).

max
m:f −1(o)→[1...�]

∑

1≤j≤�

max
f ′j ∈compatible(Yj ,f ,m)

(

c(Yj , f
′

j)+ count(f , f ′j)
)

≤ c(Xi, f),

programming algorithm for the Tree-Diet problem,
as stated below:

Theorem 7  There exists a O(�tw+2
· 6tw · n)-time,

O(3tw · n)-space algorithm for the Tree-Diet problem,
with � the maximum number of children of a bag in the
input tree-decomposition, and tw its width.

Proof (Proof of Theorem 7)  Given the coloring for-
mulation and Proposition 1, and given the sub-problems
and c(Xi, f)-table definitions, with R the (empty) root of

the tree-decomposition, c(R, ∅) is indeed the maximum
possible number of realizable edges when imposing a
(tw − tw′)-diet to T  . The recurrence relation of Theo-
rem 6 therefore lends itself to a dynamic programming
approach, over the tree-decomposition T following leaf-
to-root order, for the problem.

It is reasonable to assume the number of bags in a tree
decomposition to be linear in n (this is for instance the
case for a nice tree decomposition [29, 42], or for a tree
decomposition obtained from an elimination ordering,
see [17, 43]). Therefore, the number of entries to the table
is O(3twn) , given that a bag X may be colored in 3|X | ways,
and that the maximum size of X is tw + 1 . For a given
entry Xi , one must first enumerate all possible choices
of m : f −1(o) → [1...�] , map assigning one child of Xi to
each orange vertex in Xi . There are O(�tw+1) possibilities
for m in the worst case, as |f −1(o)| ≤ tw + 1 . Then, for
each child Yj , one must enumerate all possible colorings
f ′j compatible with f. Possibilities for f ′j (u) depend on the
color by f:

•	 if u /∈ Xi → f ′j (u) = o or g

•	 if f (u) = g → f ′j (u) = g or r

•	 if f (u) = o → f ′j (u) = o or g if m[u] = j or
f ′j (u) = r otherwise.

Page 11 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

•	 if f (u) = r → f ′j (u) = r

Overall, as there are at most � children, tw + 1 verti-
ces in each child, and 2 possibilities (see enumeration
of cases above) of color for each vertex in a child, yield-
ing a total number of compatible colorings bounded
by O(� · 2tw+1) . Multiplying these contributions, the
overall time complexity of our algorithm is therefore
O(�tw+2

· 6tw · n) . �
Corollary 1  Binary-Tree-Diet ( � = 2 ) admits an
FPT algorithm for the tw parameter.

A pseudo-code implementation of the algorithm, using
memoization, is included in Additional file 1: Section B

For path decompositions
In the context of path decompositions, we note that the
number of removed vertices per bag can be limited to at
most 2d without losing the optimality. More precisely, we
say that a coloring C is d-simple if any bag has at most d
orange and d red vertices. We obtain the following result,
using transformations given in Fig. 7.

Proposition 2  Given a graph G and a path-decompo-
sition T  , if C is a d-diet-valid coloring of T losing k edges,
then T has a d-diet-valid coloring that is d-simple, and
loses at most k edges.

Proof of Proposition 2  Consider such a coloring C with
a maximal number of green vertices. We show that it is
d-simple. Assume the path-decomposition T is rooted
in bag X1 and each Xi is the parent of Xi+1 . Pick i to be
the smallest index so that at least d + 1 vertices in Xi are

colored red by C , assume any such i exists. Then one of
these vertices, say u, is not colored red in Xi−1 (either
because i = 1 , or it is not in Xi−1 , or it is orange or green
in Xi−1 ). Consider C′ obtained by C and coloring u green
in Xi . Then C′ satisfies local rules R1 through R4 (a green
vertex may be absent, green or orange in the parent bag,
and a red vertex may be green in the parent bag). Fur-
thermore, it is d-diet-valid since it still removes at least
d (red) vertices in Xi . Overall C′ is another d-diet-valid
coloring with more green vertices: a contradiction, so no
such i exist (and no bag has d + 1 red vertices). The same
argument works symmetrically for orange vertices. Over-
all, C is d-simple. �

Together with Proposition 1, this shows that it is suffi-
cient to restrict our algorithm to d-simple colorings. (See
also Fig. 7). In particular, for any set Xi , choosing which
≤ d vertices are orange and which ≤ d are red, among the
total of n vertices, is enough to fix a coloring. The num-
ber of such colorings is therefore bounded by O(tw2d) .
Applying this remark to our algorithm presented in
Sect. 4.1 yields the following result:

Theorem 8  Path-Diet can be solved in O(tw2dn)-space
and O(tw4dn)-time.

Proofs of concept
We now illustrate the relevance of our approach, and the
practicality of our algorithm for Tree-Diet, by using it
in conjunction with FPT algorithms for three problems
in RNA bioinformatics. We implemented in C++ the
dynamic programming scheme described in Theorem 7

(a) (b)

(c) (d)

• •• •

• •

• •• •

• •

u v

u
v

(e)
Fig. 7  Five cases where two vertices are deleted in the same bag with d = 1 . Bags are points in the line, and an interval covering all bags containing
v is drawn for each v (with an equivalent coloring, see Proposition 1). Cases (a) to (d) can be safely avoided by applying the given transformations. In
the example for case (e), however, it is necessary to delete both vertices u and v form a central bag. It is sufficient to avoid cases (a) and (b) in order
to obtain an XP algorithm for d 

Page 12 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

and Additional file 1: Section B. Its main primitives are
made available for Python scripting through pybind11
[44].

It actually allows to solve a generalized weighted ver-
sion of Tree Diet, as explained in Additional file 1: Sec-
tion B. This feature allows to favour the conservation of
important edges (e.g. RNA backbone) during simplifica-
tion, by assigning them a much larger weight compared
to other edges. Our implementation is freely available at
https://​gitlab.​inria.​fr/​amibio/​tree-​diet.

The execution time of this implementation on elements
of the data set used for Fig. 1 (all RNA-only structures of
the PDB database) is represented on Figure 8, for input
treewidth values of up to 7. It shows that our tree-diet
method is applicable with reasonable run-times ( � 1 h)
for all structures of width ≤ 7 . The proofs-of-concepts
presented in this section involve however instances with
treewidth of up to 9, in the case of RNA design, for which
the run-time also stays reasonable.

Memory‑parsimonious unbiased sampling of RNA designs
As a first use case for our simplification algorithm, we
strive to ease the sampling phase of a recent method,
called RNAPond [22], addressing RNA negative design.
The method targets a set of base pairs S, representing
a secondary structure of length n, and infers a set D of
m disruptive base pairs (DBPs) that must be avoided. It
relies on a �(k · (n+m)) time algorithm for sampling
k random sequences (see Additional file 1: Section C
for details) after a preprocessing in �(n ·m · 4tw) time
and �(n · 4tw) space. Here, the input consists of a graph
G = ([1, n], S ∪D) and a tree decomposition T of G,
having width tw. In practice, the preprocessing largely
dominates the overall runtime, even for large values of k,
and its large memory consumption represents the main
bottleneck.

This discrepancy in the complexities/runtimes of the
preprocessing and sampling suggests an alternative
strategy: relaxing the set of constraints to (S′,D′) , with
(S′ ∪D′) ⊂ (S ∪D) , and compensating it through a rejec-
tion of sequences violating constraints in (S,D) \ (S′,D′) .
The relaxed algorithm would remain unbiased, while the
average-case time complexity of the rejection algorithm
would be in �(k · q · (n+m)) time, where q represents
the relative increase of the partition function ( ≈ the
sequence space) induced by the relaxation. The preproc-
essing step would retain the same complexity, but based
on a (reduced) treewidth tw′

≤ tw for the relaxed graph
G′

= ([1, n], S′ ∪D′).
These complexities enable a tradeoff between the rejec-

tion (time), and the preprocessing (space), which may
be critical to unlock future applications of RNA design.
Indeed, the treewidth can be decreased by removing

relatively few base pairs, as demonstrated below using
our algorithm on pairs inferred for hard design instances.

We considered sets of DBPs inferred by RNAPond over
two puzzles in the EteRNA benchmark. The EteRNA22
puzzle is an empty secondary structure spanning 400 nts,
for which RNAPond obtains a valid design after inferring
465 DBPs. A tree decomposition of the graph formed
by these 465 DPBs is then obtained with the standard
min-fill-ordering heuritic [18], giving a width of 6. The
EteRNA77 puzzle is 105 nts long, and consists in a col-
lection of helices interspersed with destabilizing inter-
nal loops. RNApond failed to produce a solution, and its
final set of DBPs consists of 183 pairs, for which the same
heuristic yields a tree decomposition of width 9. We fur-
ther make both tree decompositions binary through bag
duplications (see Supplementary Section A), giving an
FPT runtime to our algorithm, while potentially lowering
the number of lost edges.

Executing the tree-diet algorithm (Theorem 7) on both
graphs and their tree decompositions, we obtained sim-
plified graphs, having lower treewidth while typically
losing few edges, as illustrated and reported in Fig. 9.
Remarkably, the treewidth of the DBPs inferred for
EteRNA22 can be decreased to tw′

= 5 by only remov-
ing 5 DBPs/edges (460/465 retained), and to tw′

= 4 by
removing 4 further DBPs (456/465). For EteRNA77, our
algorithm reduces the treewidth from 9 to 6 by only
removing 7 DBPs.

Rough estimates can be provided for the tradeoff
between the rejection and preprocessing complexities, by
assuming that removing a DBP homogeneously increases
the value of Z by a factor α := 16/10 (#pairs/#incomp.

Fig. 8  Run-time of the tree-diet algorithm on all RNA-only structures
of the PDB database, versus the size (length of the RNA string)
of these structures. The data set is the same as Fig. 1, limited to
structures of treewidth ≤ 7 . Structures are colored by their original
treewidth. Here, we have asked the algorithm to reduce the
treewidth by 2

https://gitlab.inria.fr/amibio/tree-diet

Page 13 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

pairs). The relative increase in partition function is then
q ≈ αb , when b base pairs are removed. For EteRNA22,
reducing the treewidth by 2 units (6→4), i.e. a 16 fold
reduction of the memory and preprocessing time, can
be achieved by removing 9 DBPs, i.e. a 69 fold expected
increase in the time of the generation phase. For
EteRNA77, the same 16 fold ( tw′

= 9 → 7 ) reduction of
the preprocessing time/space can be achieved through an
estimated 4 fold increase of the generation time. A more
aggressive 256 fold memory gain can be achieved at the
expense of an estimated 1 152 fold increase in genera-
tion time. Given the large typical asymmetry in runtimes
and implementation constants between the computa-
tion-heavy preprocessing and, relatively light, generation
phases, the availability of an algorithm for the tree-diet
problem provides new options, especially to circumvent
memory limitations.

Structural alignment of complex RNAs
Structural homology is often posited within functional
families of non-coding RNAs, and is foundational to algo-
rithmic methods for multiple RNA alignments [13], con-
sidering RNA base pairs while aligning distant homologs.
In the presence of complex structural features (pseudo-
knots, base triplets), the sequence-structure alignment
problem becomes hard, yet admits XP solutions based
on the treewidth of the base pair + backbone graph. In
particular, Rinaudo et al. [12] describe a �(n.mtw+1) algo-
rithm for optimally aligning a structured RNA of length
n onto a genomic region of length m. It optimizes an
alignment score that includes: (i) substitution costs for
matches/mismatches of individual nucleotides and base
pairs (including arc-breaking) based on the RIBOSUM

matrices [45]; and (ii) an affine gap cost model [46]. We
used the implementation of the Rinaudo et al. algorithm,
implemented in the LicoRNA software package [47, 48].

Impact of treewidth on the structural alignment
of a riboswitch
In this case study, we used our tree-diet algorithm to
modulate the treewidth of complex RNA structures, and
investigate the effect of the simplification on the qual-
ity and runtimes of structure-sequence alignments. We
considered the Cyclic di-GMP-II riboswitch, a regulatory
motif found in bacteria that is involved in signal trans-
duction, and undergoes conformational change upon
binding the second messenger c-di-GMP-II [49, 50]. A
2.5Å resolution 3D model of the c-di-GMP-II riboswitch
in C. acetobutylicum, proposed by Smith et al. [51] based
on X-ray crystallography, was retrieved from the PDB
[24] (PDBID: 3Q3Z). We annotated its base pairs geo-
metrically using the DSSR method [52]. The canonical
base pairs, supplemented with the backbone connec-
tions, were then accumulated in a graph, for which we
heuristically computed an initial tree decomposition T4 ,
having treewidth tw = 4.

We simplified our the initial tree decomposition T4 ,
and obtained simplified models T3, and T2, having width
tw′

= 3 and 2 respectively. As controls, we included
tree decompositions based on the secondary structure
(max. non-crossing set of BPs; T2D ) and sequence ( T1D ).
We used LicoRNA to predict an alignment aT ,w of each
original/simplified tree decomposition T onto each
sequence w of the c-di-GMP-II riboswitch family in the
RFAM database [13] (RF01786). Finally, we reported the
LicoRNA runtime, and computed the Sum of Pairs Score

Fig. 9  (Left) Target secondary structure (blue BPs), full set of disruptive base pairs (DPB; top) inferred by RNAPond on the Eterna77 puzzle, and
subsets of DBPs (bottom) cumulatively removed by the tree-diet algorithm to reach prescribed treewidths. (Right) Number of BPs retained by our
algorithm, targeting various treewidth values for the EteRNA22 and EteRNA77 puzzles

Page 14 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

(SPS) [53] as a measure of the accuracy of aT ,w against a
reference alignment a⋆w:

the alignment a⋆w between the 3Q3Z sequence and w
induced by the manually-curated RFAM alignment of the
RF01786 family.

The results, presented in Fig. 10, show a limited impact
of the simplification on the quality of the predicted
alignment, as measured by the SPS in comparison with
the RFAM alignment. The best average SPS (77.3%) is
achieved by the initial model, having treewidth of 4, but
the average difference with simplified models appears
very limited (e.g. 76.5% for T3 ), especially when consider-
ing the median. Meanwhile, the runtimes mainly depend
on the treewidth, ranging from 1h for T4 to 300ms for
T1D . Overall, T2D seems to represent the best compromise
between runtime and SPS, although its SPS may be arti-
ficially inflated by our election of RF01786 as our refer-
ence (built from a covariance model, i.e. essentially a 2D
structure). Finally, the difference in number of edges (and
induced SPS) between T2D and T2 , both having tw = 2 ,
exemplifies the difference between the Tree-Diet and
Graph-Diet problems, and motivates further work on
the latter.

Exact iterative strategy for the genomic search of ncRNAs
In this final case study, we consider an exact filtering
strategy to search new occurrences of a structured
RNA within a given genomic context. In this setting,
one attempts to find all ε-admissible (cost ≤ ε ) occur-
rences/hits of a structured RNA S of length n within
a given genome of length g ≫ n , broken down in
windows of length κ .n, κ > 1 . Classically, one would
align S against individual windows, and report those

SPS(aT ,w; a
⋆
w) =

∣

∣MatchCols(aT ,w) ∩MatchCols(a⋆w)
∣

∣

∣

∣MatchCols(a⋆w)
∣

∣

,

associated with an ǫ−admissible alignment cost.
This strategy would have an overall �(g · ntw+2) time

Fig. 10  Impact on alignment quality (SPS; Left) and runtime (Right) of simplified instances for the RNA sequence-structure alignment of the
pseudoknotted c-di-GMP-II riboswitch. The impact of simplifications on the quality of predicted alignments, using RFAM RF01786 as a reference,
appears limited while the runtime improvement is substantial

complexity, applying for instance the algorithm of
[12].

Our instance simplification framework enables an
alternative strategy, that incrementally filters out unsuit-
able windows based on models of increasing granularity.
Indeed, for any given target sequence, the min alignment
cost cδ obtained for a simplified instance of treewidth
tw − δ can be corrected (cf Additional file 1: Section D)
into a lower bound c⋆δ for the min alignment cost c⋆0 of the
full-treewidth instance tw. Any window such that c⋆δ > ε
thus also obeys c⋆0 > ε , and can be safely discarded from
the list of putative ε-admissible windows, without having
to perform a full-treewidth alignment. Given the expo-
nential growth of the alignment runtime for increas-
ing treewidth values (see Fig. 10, right) this strategy is
expected to yield substantial runtime savings.

We used this strategy to search occurrences of the
Twister ribozyme (PDBID 4OJI), a highly-structured
( tw = 5 ) 54nts RNA initially found in O. sativa (Asian
rice) [54]. We targeted the S. bicolor genome (sorghum),
focusing on a 10kb region centered on the 2,485,140
position of the 5th chromosome, where an instance of the
ribozyme was suspected within an uncharacterized tran-
script (LOC110435504). The 4OJI sequence and structure
were extracted from the 3D model as above, and included
into a tree decomposition T5 (73 edges), simplified into T4
(71 edges), T3 (68 edges) and T2 (61 edges) using the tree-
diet algorithm.

We aligned all tree decompositions against all windows
of size 58nts using a 13nts offset, and measured the score
and runtime of the iterative filtering strategy using a cost

Page 15 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

cutoff ε = −5 . The search recovers the suspected occur-
rence of twister as its best result (Fig. 11C), but produced
hits (cf Fig. 11D) with comparable sequence conservation
that could be the object of further studies. Regarding the
filtering strategy, while T2 only allows to rule out 3 win-
dows out of 769, T3 allows to eliminate an important pro-
portion of putative targets, retaining only 109 windows,
further reduced to 15 windows by T4 , 6 of which end up
as final hits for the full model T5 (cf Fig. 11A). The search
remains exact, but greatly reduces the overall runtime
from 24 h to 34 min (42 fold!).

Conclusion and discussion
We have established the parameterized complexity of
three treewidth reduction problems, motivated by appli-
cations in Bioinformatics, as well as proposed practical
algorithms for instances of reasonable treewidths. The
reduced widths obtained by our proposed algorithm
can be used to obtain: (i) sensitive heuristics, owing to
the consideration of a maximal amount of edges/infor-
mation in the thinned graphs; (ii) a posteriori approxi-
mation ratios, by comparing the potential contribution
of removed edges to the optimal score obtained of the
thinned instance by a downstream FPT/XP algorithm;
(iii) substantial practical speedups without loss of cor-
rectness, e.g. when partial filtering can be safely achieved
based on simplified input graphs.

Open questions
Regarding the parameterized complexity of Graph-
Diet and Tree-Diet, some questions remain open (see
Table 1): an FPT algorithm for Tree-Diet (ideally, with
2O(tw)

· n running time), would be the most desirable, if

possible satisfying the backbone constraints. The exist-
ence of such an algorithm is not trivial. In particular, it is
perhaps worth noting that it is not implied by the exist-
ence of an FPT algorithm for graph-diet with the input
treewidth as a parameter (1). Indeed, in comparison to
the latter, tree-diet subtly restricts the search space to
tree decompositions that are subsets of the input tree
decomposition. It follows that the result of graph diet
for a graph G may substantially differ from the result of
tree-diet given a tree decomposition T of G as input.
We also aim at trying to give efficient exact algorithms
for graph diet in the context of RNA (we conjecture
this is impossible in the general case). Finally, we did not
include the number of deleted edges in our multivariate
analysis: even though in practice it is more difficult a pri-
ori to guarantee their small number, we expect it can be
used to improve the running time in many cases.

Backbone preservation
In two of our applications, the RNA secondary structure
graph contains two types of edges: those representing
the backbone of the sequence (i.e., between consecutive
bases) and those representing base pair bonds. In prac-
tice, we want all backbone edges to be visible in the
resulting tree-decomposition, and only base pairs may
be lost. This can be integrated to the Tree-Diet model
(and to our algorithms) using weighted edges, using the
total weight rather than the count of deleted edges for
the objective function. Note that some instances might
be unrealizable (with no tree-diet preserving the back-
bone, especially for low tw′ ). In most cases, ad-hoc bag
duplications can help avoid this issue. The design of pre-
processing methods, involving bag duplications or other

Fig. 11  Corrected costs associated with the search for structured homologs of the Twister ribozyme in chromosome 5 of S. bicolor, using simplified
instances of various treewidth (A). Gray areas represent scores which, upon correction, remain below the cutoff, and have to be considered for
further steps of the iterated filtering. Canonical base pairs of the ribozyme (PDBID 4OJI; B, mapped onto to the best hit (C) and second best hit (D)
found along the search colored depending on their support in the target sequence (Red: incompatible; Purple: unstable G-U; Blue: stable)

Page 16 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8

operations on tree decompositions, and aimed at ensur-
ing the existence of a backbone-preserving tree-diet will
be the subject of future work.

From a theoretical perspective, weighted edges may
only increase the algorithmic complexity of the problems.
However, a more precise model could consider graphs
which already include a hamiltonian path (the backbone),
and the remaining edges form a degree-one or two sub-
graph. Such extra properties may, in some cases, actu-
ally reduce the complexity of the problem. As an extreme
case, we conjecture the Path-Diet problem for tw′

= 1
becomes polynomial in this setting.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​022-​00213-z.

Additional file 1. Supplementary sections: A Editing Trees before the
Diet; B Pseudo-code;C Correctness of the rejection-based sampling of
RNA designs;D Lower bound for the min. alignment cost from simplified
models.

Acknowledgements
The authors would like to thank Julien Baste for pointing out prior work on
treewidth modulators, and providing valuable input regarding vertex deletion
problems.

Author’s contributions
All authors contributed equally. All authors read and approved the final
manuscript.

Availability of data and materials
Source code of tree-diet method available at:https://gitlab.inria.fr/amibio/
tree-diet

Declarations

 Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2021 Accepted: 1 March 2022

References
	1.	 Weller M, Chateau A, Giroudeau R. Exact approaches for scaffold-

ing. BMC Bioinformatics. 2015; 16(S14). https://​doi.​org/​10.​1186/​
1471-​2105-​16-​s14-​s2

	2.	 Xu J. Rapid protein side-chain packing via tree decomposition. In:
Research in Computational Molecular Biology (RECOMB 2005). Lecture
Notes in Computer Science. 2005; vol. 3500, pp. 423–439. Springer, Cam-
bridge, USA. https://​doi.​org/​10.​1007/​11415​770_​32.

	3.	 Bulteau L, Fertin G, Jiang M, Rusu I. Tractability and approximability of
maximal strip recovery. Theor Comput Sci. 2012;440:14–28.

	4.	 Baste J, Paul C, Sau I, Scornavacca C. Efficient FPT algorithms for
(strict) compatibility of unrooted phylogenetic trees. Bull Math Biol.
2017;79(4):920–38. https://​doi.​org/​10.​1007/​s11538-​017-​0260-y.

	5.	 Bulteau L, Weller M. Parameterized algorithms in bioinformatics: an over-
view. Algorithms. 2019;12(12):256. https://​doi.​org/​10.​3390/​a1212​0256.

	6.	 Waterman MS. Secondary structure of single stranded nucleic acids. Adv
Math Suppl Stud. 1978;1(1):167–212.

	7.	 Xayaphoummine A, Bucher T, Thalmann F, Isambert H. Prediction and
statistics of pseudoknots in RNA structures using exactly clustered sto-
chastic simulations. Proc Natl Acad Sci USA. 2003;100(26):15310–5.

	8.	 Akutsu T. Dynamic programming algorithms for RNA secondary structure
prediction with pseudoknots. Discrete Appl Math. 2000;104(1–3):45–62.
https://​doi.​org/​10.​1016/​S0166-​218X(00)​00186-4.

	9.	 Lyngsø RB, Pedersen CNS. RNA pseudoknot prediction in energy-based
models. J Comput Biol. 2000;7(3–4):409–27.

	10.	 Sheikh S, Backofen R, Ponty Y. Impact Of The Energy Model On The
Complexity Of RNA Folding With Pseudoknots. In: Kärkkäinen, J., Stoye, J.
(eds.) CPM - 23rd Annual Symposium on Combinatorial Pattern Matching.
Combinatorial Pattern Matching.2012; vol. 7354, pp. 321–333. Springer,
Helsinki, Finland . https://​doi.​org/​10.​1007/​978-3-​642-​31265-6_​26. Juha
Kärkkäinen.

	11.	 Blin G, Denise A, Dulucq S, Herrbach C, Touzet H. Alignments of RNA
structures. IEEE/ACM Trans Comput Biol Bioinformat. 2010;7(2):309–22.
https://​doi.​org/​10.​1109/​tcbb.​2008.​28.

	12.	 Rinaudo P, Ponty Y, Barth D, Denise A. Tree decomposition and param-
eterized algorithms for rna structure-sequence alignment including
tertiary interactions and pseudoknots. In: Raphael B, Tang J, editors. Algo-
rithms in Bioinformatics. Ljubljana, Slovenia: Springer; 2012. p. 149–64.

	13.	 Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K,
Marz M, Griffiths-Jones S, Toffano-Nioche C, Gautheret D, Weinberg Z,
Rivas E, Eddy SR, Finn RD, Bateman A, Petrov AI. Rfam 14: expanded cover-
age of metagenomic, viral and microRNA families. Nucleic Acids Res.
2020;49(D1):192–200. https://​doi.​org/​10.​1093/​nar/​gkaa1​047.

	14.	 Sarrazin-Gendron R, Yao H-T, Reinharz V, Oliver CG, Ponty Y, Waldispühl J.
Stochastic sampling of structural contexts improves the scalability and
accuracy of RNA 3d module identification. In: Lecture Notes in Computer
Science. 2020; pp. 186–201. Springer, Padua, Italy. https://​doi.​org/​10.​
1007/​978-3-​030-​45257-5_​12.

	15.	 Leontis NB, Westhof E. Geometric nomenclature and classification of RNA
base pairs. RNA. 2001;7(4):499–512.

	16.	 Reinharz V, Soulé A, Westhof E, Waldispühl J, Denise A. Mining for recur-
rent long-range interactions in RNA structures reveals embedded hierar-
chies in network families. Nucleic Acids Res. 2018;46(8):3841–51. https://​
doi.​org/​10.​1093/​nar/​gky197.

	17.	 Gogate V, Dechter R. A complete anytime algorithm for treewidth. 2012;
arXiv preprint arXiv:​1207.​4109.

	18.	 Bodlaender HL, Koster AM. Treewidth computations i. upper bounds.
Informat Comput. 2010;208(3):259–75.

	19.	 Song Y, Liu C, Malmberg R, Pan F, Cai L. Tree decomposition based fast
search of RNA structures including pseudoknots in genomes. In: Com-
putational Systems Bioinformatics Conference, 2005. Proceedings. 2005;
2005 IEEE, pp. 223–234 . IEEE.

	20.	 Han B, Dost B, Bafna V, Zhang S. Structural alignment of pseudoknotted
RNA. J Comput Biol. 2008;15(5):489–504. https://​doi.​org/​10.​1089/​cmb.​
2007.​0214.

	21.	 Vucinic J, Simoncini D, Ruffini M, Barbe S, Schiex T. Positive multistate
protein design. Bioinformatics. 2019;36(1):122–30. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​btz497.

	22.	 Yao H-T, Waldispühl J, Ponty Y, Will S. Taming disruptive base pairs to
reconcile positive and negative structural design of RNA. In: Research
in Computational Molecular Biology. 25th International Conference on
Research in Computational Molecular Biology (RECOMB 2021), Padova,
France.2021.

	23.	 Hammer S, Wang W, Will S, Ponty Y. Fixed-parameter tractable sampling
for RNA design with multiple target structures. BMC Bioinformatics
.2019;20(1). https://​doi.​org/​10.​1186/​s12859-​019-​2784-7.

	24.	 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res.
2000;28:235–42. https://​doi.​org/​10.​1093/​nar/​28.1.​235.

	25.	 Lu X-J, Bussemaker HJ, Olson WK. Dssr: an integrated software
tool for dissecting the spatial structure of rna. Nucleic Acids Res.
2015;43(21):142–142.

	26.	 van Dijk T, van den Heuvel J-P, Slob W. Computing treewidth with libtw.
Citeseer. http://​cites​eerx.​ist.​psu.​edu/​viewd​oc/​downl​oad. 2006.

	27.	 Bodlaender HL. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J Comput. 1996;25(6):1305–17.

	28.	 Downey RG, Fellows MR. Parameterized complexity. Berlin: Springer;
2012.

https://doi.org/10.1186/s13015-022-00213-z
https://doi.org/10.1186/s13015-022-00213-z
https://doi.org/10.1186/1471-2105-16-s14-s2
https://doi.org/10.1186/1471-2105-16-s14-s2
https://doi.org/10.1007/11415770_32
https://doi.org/10.1007/s11538-017-0260-y
https://doi.org/10.3390/a12120256
https://doi.org/10.1016/S0166-218X(00)00186-4
https://doi.org/10.1007/978-3-642-31265-6_26
https://doi.org/10.1109/tcbb.2008.28
https://doi.org/10.1093/nar/gkaa1047
https://doi.org/10.1007/978-3-030-45257-5_12
https://doi.org/10.1007/978-3-030-45257-5_12
https://doi.org/10.1093/nar/gky197
https://doi.org/10.1093/nar/gky197
http://arxiv.org/abs/1207.4109
https://doi.org/10.1089/cmb.2007.0214
https://doi.org/10.1089/cmb.2007.0214
https://doi.org/10.1093/bioinformatics/btz497
https://doi.org/10.1093/bioinformatics/btz497
https://doi.org/10.1186/s12859-019-2784-7
https://doi.org/10.1093/nar/28.1.235
http://citeseerx.ist.psu.edu/viewdoc/download

Page 17 of 17Marchand et al. Algorithms for Molecular Biology (2022) 17:8 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	29.	 Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipc-
zuk M, Saurabh S. Parameterized algorithms, vol. 5. Cham: Springer; 2015.

	30.	 El-Mallah ES, Colbourn CJ. The complexity of some edge deletion prob-
lems. IEEE Trans Circ Syst. 1988;35(3):354–62.

	31.	 Crespelle C, Drange PG, Fomin FV, Golovach PA. A survey of parameter-
ized algorithms and the complexity of edge modification.2020; arXiv
preprint arXiv:​2001.​06867.

	32.	 Cai L. Parameterized complexity of vertex colouring. Discrete Appl Math.
2003;127(3):415–29.

	33.	 Lovász L. Graph minor theory. Bull Am Math Soc. 2006;43(1):75–86.
	34.	 Robertson N, Seymour PD. Graph minors. xiii. the disjoint paths problem.

J Combinat Theo Ser B. 1995;63(1):65–110.
	35.	 Cygan M, Lokshtanov D, Pilipczuk M, Pilipczuk M, Saurabh S. On the hard-

ness of losing width. In: International Symposium on Parameterized and
Exact Computationl. 2011; pp. 159–168. Springer

	36.	 Baste J, Sau I, Thilikos DM. Hitting minors on bounded treewidth graphs. i.
general upper bounds. SIAM J Discret Math. 2020;34(3):1623–48. https://​
doi.​org/​10.​1137/​19M12​87146.

	37.	 Courcelle B. The monadic second-order logic of graphs iii: Tree-decompo-
sitions, minors and complexity issues. RAIRO-Theoretical Informatics and
Applications-Informatique Théorique et Applications. 1992;26(3):257–86.

	38.	 Arnborg S, Lagergren J, Seese D. Easy problems for tree-decomposable
graphs. J Algo. 1991;12(2):308–40.

	39.	 Saitoh T, Yoshinaka R, Bodlaender HL. Fixed-treewidth-efficient algo-
rithms for edge-deletion to interval graph classes. In: Algorithms and
Computation-15th International Conference and Workshops (WALCOM
2021). Lecture Notes in Computer Science. 2021; vol. 12635, pp. 142–153.
Springer, Yangon, Myanmar. https://​doi.​org/​10.​1007/​978-3-​030-​68211-8_​
12.

	40.	 Tan J, Zhang L. The consecutive ones submatrix problem for sparse
matrices. Algorithmica. 2007;48(3):287–99.

	41.	 Proskurowski A, Telle JA. Classes of graphs with restricted interval models.
Discret Math Theor Comput Sci. 2006; 3(4)

	42.	 Bodlaender HL, Koster AM. Combinatorial optimization on graphs of
bounded treewidth. Comput J. 2008;51(3):255–69.

	43.	 Bodlaender HL. Discovering treewidth. In: International Conference on
Current Trends in Theory and Practice of Computer Science. 2005; pp.
1–16. Springer

	44.	 Jakob W, Rhinelander J, Moldovan D. pybind11–Seamless operability
between C++11 and Python. https://​github.​com/​pybind/​pybin​d11.​
2017.

	45.	 Klein RJ, Eddy SR. Rsearch: finding homologs of single structured RNA
sequences. BMC Bioinformat. 2003;4(1):44.

	46.	 Rivas E, Eddy SR. Parameterizing sequence alignment with an explicit
evolutionary model. BMC Bioinformat. 2015;16(1):406.

	47.	 Wang W. Practical sequence-structure alignment of rnas with pseu-
doknots. PhD thesis, Université Paris-Saclay, School of Computer
Science.2017.

	48.	 Wang W, Denise A, Ponty Y. LicoRNA: aLignment of Complex RNAs v1.0.
2017; https://​licor​na.​lri.​fr.

	49.	 Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR.
Riboswitches in eubacteria sense the second messenger cyclic di-gmp.
Science. 2008;321(5887):411–3. https://​doi.​org/​10.​1126/​scien​ce.​11595​
19.https://​scien​ce.​scien​cemag.​org/​conte​nt/​321/​5887/​411.​full.​pdf.

	50.	 Tamayo R. Cyclic diguanylate riboswitches control bacterial pathogenesis
mechanisms. PLOS Pathogens. 2019;15(2):1–7. https://​doi.​org/​10.​1371/​
journ​al.​ppat.​10075​29.

	51.	 Smith KD, Shanahan CA, Moore EL, Simon AC, Strobel SA. Structural
basis of differential ligand recognition by two classes of bis-(3’-5’)-cyclic
dimeric guanosine monophosphate-binding riboswitches. Proc Nat
Acad Sci. 2011;108(19):7757–62. https://​doi.​org/​10.​1073/​pnas.​10188​
57108.https://​www.​pnas.​org/​conte​nt/​108/​19/​7757.​full.​pdf

	52.	 Lu X-J, Bussemaker HJ, Olson WK. DSSR: an integrated software
tool for dissecting the spatial structure of RNA. Nucleic Acids Res.
2015;43(21):142–142. https://​doi.​org/​10.​1093/​nar/​gkv716.https://​acade​
mic.​oup.​com/​nar/​artic​le-​pdf/​43/​21/​e142/​17435​026/​gkv716.​pdf.

	53.	 Thompson JD, Plewniak F, Poch O. BAliBASE: a benchmark alignment
database for the evaluation of multiple alignment programs. Bioinformat-
ics. 1999;15(1):87–8.

	54.	 Liu Y, Wilson TJ, McPhee SA, Lilley DM. Crystal structure and mechanistic
investigation of the twister ribozyme. Nat Chem Biol. 2014;10(9):739–44.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2001.06867
https://doi.org/10.1137/19M1287146
https://doi.org/10.1137/19M1287146
https://doi.org/10.1007/978-3-030-68211-8_12
https://doi.org/10.1007/978-3-030-68211-8_12
https://github.com/pybind/pybind11.2017
https://github.com/pybind/pybind11.2017
https://licorna.lri.fr
https://doi.org/10.1126/science.1159519.
https://doi.org/10.1126/science.1159519.
https://science.sciencemag.org/content/321/5887/411.full.pdf
https://doi.org/10.1371/journal.ppat.1007529
https://doi.org/10.1371/journal.ppat.1007529
https://doi.org/10.1073/pnas.1018857108.
https://doi.org/10.1073/pnas.1018857108.
https://www.pnas.org/content/108/19/7757.full.pdf
https://doi.org/10.1093/nar/gkv716.
https://academic.oup.com/nar/article-pdf/43/21/e142/17435026/gkv716.pdf
https://academic.oup.com/nar/article-pdf/43/21/e142/17435026/gkv716.pdf

	Tree diet: reducing the treewidth to unlock FPT algorithms in RNA bioinformatics
	Abstract
	Introduction
	Statement of the problem(s) and results
	Parameterized complexity in a nutshell
	Our results

	Algorithmic limits: parameterized complexity considerations
	Graph-diet: practical solutions seem unlikely
	Lower bounds for tree-diet

	FPT algorithm
	For general tree-decompositions
	Coloring formulation
	Decomposition of the search space and sub-problems

	For path decompositions

	Proofs of concept
	Memory-parsimonious unbiased sampling of RNA designs
	Structural alignment of complex RNAs
	Impact of treewidth on the structural alignment of a riboswitch
	Exact iterative strategy for the genomic search of ncRNAs

	Conclusion and discussion
	Open questions
	Backbone preservation

	Acknowledgements
	References

