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Abstract 12 
To make adaptive decisions, we must actively demand information, but relatively little is known 13 
about the mechanisms of active information gathering. An open question is how the brain 14 
estimates expected information gains (EIG) when comparing the current decision uncertainty 15 
with the uncertainty that is expected after gathering information. We examined this question 16 
using fMRI in a task in which people placed bids to obtain information in conditions that varied 17 
independently by prior decision uncertainty, information diagnosticity, and the penalty for an 18 
erroneous choice. Consistent with value of information theory, bids were sensitive to EIG and its 19 
components of prior certainty and expected posterior certainty. Expected posterior certainty was 20 
decoded above chance from multivoxel activation patterns in the posterior parietal and 21 
extrastriate cortices. This representation was independent of instrumental rewards and 22 
overlapped with distinct representations of EIG and prior certainty. Thus, posterior parietal and 23 
extrastriate cortices are candidates for mediating the prospection of posterior probabilities as a 24 
key step to estimate EIG during active information gathering.  25 
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Introduction 26 
In systems neuroscience, decision-making is modeled as a choice between alternative 27 

options based on the decision makers’ preferences, goals, and knowledge regarding the choice.  28 
Traditional decision-making research has typically applied this framework to simple conditions, 29 
in which decision-makers are assumed to possess the information relevant to their choice; for 30 
example, a participant in a decision-making experiment is typically given a set of relevant 31 
stimuli and asked to make a decision based on the stimuli. However, this differs substantially 32 
from typical real-life situations in which individuals actively seek out the information that they 33 
consider relevant to their choices. When making a natural choice, often one first determines 34 
whether and from which source to obtain information (e.g., to which stimulus to attend) and only 35 
then decides which action to take based on the information (Raiffa and Schlaifer 1961; S. C.-H. 36 
Yang, Wolpert, and Lengyel 2016; Gottlieb 2018; Braunlich and Love 2022). The sampling of 37 
decision-relevant (instrumental) information supports adaptive behaviors in humans and other 38 
animals (Gottlieb and Oudeyer 2018), and its disturbances are linked to psychopathology 39 
(Hauser et al. 2017; Baker et al. 2019), underscoring the importance of understanding its 40 
mechanisms. 41 

In natural settings, information is gathered through active sensing behaviors—for 42 
example, when one attends to or looks at a visual cue (Tatler et al. 2011; S. C.-H. Yang, Wolpert, 43 
and Lengyel 2016)—or, alternatively, through explicit purchase decisions—for example, when a 44 
firm employs a consultant or a physician orders a medical test. Studies of information demand 45 
have primarily tested the latter scenario, using tasks in which participants are given a description 46 
of a situation and are asked to make a decision about whether or how much information to 47 
request in the situation (Furl and Averbeck 2011; Filimon et al. 2020; Kaanders et al. 2021; 48 
Gottlieb 2023). Neuroimaging investigations have focused on the value of information (VOI)—49 
the extent to which obtaining information increases the rewards expected from future actions and 50 
choices (Raiffa and Schlaifer 1961; Howard 1966)—and showed that VOI is encoded in value 51 
and executive areas including the striatum, ventromedial prefrontal cortex, the dorsolateral 52 
prefrontal cortex, and the anterior cingulate cortex (Kobayashi and Hsu 2019; Kobayashi et al. 53 
2021). 54 

An open question, however, concerns the probabilistic computations that precede VOI 55 
estimation. In a decision-theoretic framework, VOI depends on both the rewards of a choice and, 56 
crucially, on the expected information gain associated with information gathering. Expected 57 
information gain, in turn, is the improvement in decision certainty that the decision-maker can 58 
expect to obtain by gathering information. A simple measure of expected information gain is 59 
probability gain (PG), defined as the difference between the decision maker’s prior certainty 60 
(PC)—the certainty about making the correct final choice before gathering information—and 61 
their expected posterior certainty (EPC)—the certainty that is expected after gathering 62 
information (Raiffa and Schlaifer 1961; Fischhoff and Beyth-Marom 1983; Baron 1985; 63 
Braunlich and Love 2022). PG describes humans’ demand for instrumental information in two-64 
alternative inference tasks (Baron 1985; Nelson 2005; Nelson et al. 2010), but its neural 65 
mechanisms are not well understood.  66 

A particularly challenging step in computing PG is the ability to prospectively reason 67 
about EPC—i.e., estimate the certainty that one expects to obtain after gathering information 68 
(Raiffa and Schlaifer 1961; Braunlich and Love 2022). To understand the neural correlates of 69 
EPC and related quantities, we used fMRI in a task in which participants placed bids revealing 70 
their willingness to pay for information relevant to a binary choice. On each trial, participants 71 
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were informed about three quantities that were relevant to the normative bid: the prior 72 
probability that a decision alternative was correct, the diagnosticity of the information (the 73 
probability that it would correctly specify the correct alternative), and the penalty for an incorrect 74 
choice. By independently manipulating the three quantities, we distinguished between reward 75 
value and probabilistic computations of information gains. We show that the participants’ bids 76 
had independent sensitivity to PC and EPC, consistent with normative theories postulating that 77 
these quantities are combined to estimate PG. We also show that EPC was decoded with above-78 
chance accuracy from the multivoxel activity in three regions in the right posterior parietal and 79 
extrastriate cortices. In these areas, the representation of EPC overlapped anatomically with 80 
representations of bids, PC, and PG that involved distinct activity patterns. The findings reveal 81 
candidate neural substrates for encoding expected information gain as a step that precedes but is 82 
distinct from the assignment of instrumental value to information.  83 
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Results 84 
The Willingness to Pay Task 85 

Participants (N = 23) underwent fMRI scanning while performing a task in which they 86 
bid for information relevant to an incentivized choice (Figure 1A). The task was a modified 87 
version of the “beads” task (Huq, Garety, and Hemsley 1988; Furl and Averbeck 2011; van der 88 
Leer et al. 2015; Baker et al. 2019), in which participants were told that each trial had a hidden 89 
state—a portrait gallery containing more pictures of faces than scenes or a landscape gallery 90 
containing more pictures of scenes than faces. Rather than asking participants to infer the 91 
gallery’s identity on each trial, as is customary, we first presented them with 120 trials in which 92 
they bid to receive additional information should they be asked to make the inference. Next, we 93 
randomly selected one trial from those the participants bid, delivered information with a 94 
probability that was proportional to the bid, asked participants to guess the gallery type, and 95 
delivered a payoff that depended on the accuracy of this guess (Figure 1).   96 

97 
Figure 1. Task A: Structure of a bidding trial. On each trial, participants saw the complementary prior 98 
probabilities that the hidden gallery was a portrait or landscape gallery, the diagnosticity of a sample picture from 99 
the gallery (i.e., its evidence strength represented by the ratio of majority to minority pictures in the hidden gallery), 100 
and the amount the participant would be penalized from their endowment if the trial were realized for payment and 101 
they incorrectly guessed the hidden gallery. These quantities could appear in a variety of spatial or temporal orders. 102 
The participant then placed a bid for a sample picture from the hidden gallery, followed by a variable 1–10 s 103 
intertrial interval. B: The distribution of prior probabilities and diagnosticities shown in the scan session (white 104 
dots). The background color indicates PG, which increases with diagnosticity and decreases with PC (i.e., increases 105 
as the prior probabilities approach 0.5).  106 

 107 
Our focus was on how the participants’ willingness to pay for information varied as a 108 

function of the context, as defined by three quantities that were relevant to the normative bid and 109 
were conveyed in words and numbers (Figure 1A). One quantity was the penalty for making an 110 
erroneous guess, a second quantity was the prior probability of a gallery type, and the third 111 
quantity was the diagnosticity of the information (the probability that the information, if given, 112 
would indicate the correct gallery type, conveyed as the ratio of pictures in the majority versus 113 
minority category; see Methods, Baker et al. (2019), and Furl and Averbeck (2011)). 114 
Importantly, the three quantities were statistically dissociated, allowing us to distinguish their 115 
influence on the bids. The penalty was randomly selected to be $10 or $20, while prior 116 
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probability and diagnosticity were randomized independently to tile the probability space as 117 
shown in Figure 1B.   118 

Behavior 119 
Our auction and payoff procedures incentivized participants to place a bid commensurate with 120 
the value of information (VOI), which was positively related to penalty and diagnosticity, and 121 
negatively related to the prior certainty (PC, the greater of the hidden gallery’s complementary 122 
prior probabilities; see Methods, Equation 1). 123 

124 
Figure 2. Participants’ bids are consistent with VOI. A–C: Coefficients from the three models of the bids. A: 125 
Base Model incorporating the variables shown on screen. Symbols show results from different participant 126 
groups. The large black dots show the fixed-effects (group-level) coefficients from the main cohort during the scan 127 
session (N = 23). The small gray dots show the random (individual) effects for the same group. The black triangles 128 
show the fixed effects from the main cohort during the prescan session (N = 23), and the blue and gray triangles 129 
show two additional cohorts that were tested only behaviorally (N = 21 and N = 15, respectively). Error bars 130 
represent 95% confidence intervals. Detailed statistics on the fixed-effects coefficients are in Table 1. B: The 131 
Condensed Model based on PG. Same format as in A. Inset: Visualization of the increase in bids with PG. Each 132 
point is the mean submitted bid across all completed trials, binned by PG. The shaded area shows the Condensed 133 
Model’s predictions of submitted bids for each bin (mean and 95% confidence intervals). Detailed statistics on the 134 
fixed-effects coefficients are in Table 2. C: The Extended Model based on PC and EPC. Same format as in A and135 
B. Detailed statistics on the fixed-effects coefficients are in Table 3. D: Model comparisons using Bayes factors. 136 
The symbols show the Bayes factors (BF) comparing the extended model to the base model (left) and the condensed 137 
model (right) for the cohorts in A–C. For ease of presentation, BF values were divided into categories showing 138 
negative, weak, substantial, strong, and decisive support for the extended model (respectively, BF < 100, 100 ≤ BF < 139 
101/2, 101/2 ≤ BF < 101, 101 ≤ BF ≤ 102 and 102 < BF (Kass and Raftery 1995). All cohorts showed decisive evidence 140 
in favor of the Extended Model over both the Base Model (Main Cohort scan session: 1.30×1076, Main Cohort 141 
prescan session: 1.15×1031, Cohort 2: 1.13×103, Cohort 3: 8.36×1066) and the condensed model (Main Cohort scan 142 
session: 1.69×10109, Main Cohort prescan session: 5.93×1099, Cohort 2: 4.34×10168, Cohort 3: 1.25×1053).  143 
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 144 
At both the group and individual levels, bids had a significant positive relationship with 145 

the normative VOI (Figure S1). A linear mixed-effects model (Equation 14) confirmed this 146 
result, yielding fixed-effects (group-level) coefficients that were negative for PC and positive for 147 
diagnosticity (Figure 2A, Table 1, the “Base Model”). The results were robust at the individual 148 
level, as the vast majority of participants had negative coefficients for PC and positive 149 
coefficients for diagnosticity and penalty (Figure 2A, gray dots; respectively, 22, 21, and 15 out 150 
of 23). These results, which were obtained for the scan session, were consistent with the same 151 
participants’ behavior during the prescan session and were replicated in two different cohorts 152 
who performed the task only outside of the scanner (Figure 2A, triangles, Table 1). The initial 153 
slider position was included as a nuisance regressor and produced negligible effects, ruling out 154 
sensorimotor artefacts (Figure S2A). Thus, participants understood the task and reliably placed 155 
bids that were consistent with normative VOI. 156 
 157 
Table 1. Fixed-effects regression coefficients for the Base Model of participants’ bids (Equation 14) for every 158 
cohort (Main Cohort: N = 23, Cohort 1: N = 21, Cohort 2: N = 15). DF: Degree of freedom (from Satterthwaite 159 
approximation (Luke 2017)). p: p-value. 160 

Regressor Cohort Coefficient Standard error T-statistic DF p 

Prior certainty 

Main, scan −1.29 0.16 −7.88 23.00 < 0.001 
Main, prescan −1.44 0.16 −9.12 23.00 < 0.001 

2 −1.82 0.14 −14.40 21.00 < 0.001 
3 −1.50 0.19 −7.87 15.00 < 0.001 

Diagnosticity 

Main, scan 0.93 0.19 4.88 23.00 < 0.001 
Main, prescan 0.94 0.18 5.34 23.00 < 0.001 

2 0.72 0.18 3.91 21.00 < 0.001 
3 1.17 0.23 5.20 14.99 < 0.001 

Penalty 

Main, scan 0.19 0.11 1.72 23.01 0.098 
Main, prescan 0.40 0.13 3.11 23.01 0.005 

2 0.44 0.10 2.17 20.97 < 0.001 
3 0.37 0.09 4.08 15.00 <0.001 

 161 
 While these results show that participants are sensitive to the information shown on the 162 

screen, VOI depends on several quantities that are derived from this information. Specifically, 163 
VOI scales with probability gain (PG), which is the difference between PC and expected 164 
posterior certainty (EPC) and, in turn, EPC is derived from prior probability and diagnosticity 165 
(Equation 4). To examine if participants estimated these quantities, we fit their bids to two 166 
additional models: the Condensed Model accounting for the effect of PG (Equation 15) and the 167 
Extended Model separately capturing the effects of PC and EPC (Equation 16). Consistent with 168 
the Base Model, the Condensed Model produced positive fixed effects for PG (Figure 2B), and 169 
the Extended Model yielded positive fixed-effects coefficients for EPC and negative fixed-170 
effects coefficients for PC (Figure 2C). All fixed-effects coefficients were highly significant and 171 
robust across groups (see detailed statistics in Table 2 and Table 3), were highly consistent at 172 
the individual level (gray dots in Figure 2B–C) and could not be explained by sensorimotor 173 
artifacts (see Figure S2 for all the coefficients for all three models). 174 
 175 
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Table 2. Fixed-effects regression coefficient for the Condensed Model of participants’ bids (Equation 15) for 176 
every cohort (Main Cohort: N = 23, Cohort 1: N = 21, Cohort 2: N = 15). DF: Degree of freedom (from 177 
Satterthwaite approximation (Luke 2017)). p: p-value. 178 

Regressor Cohort Coefficient Standard error T-statistic DF p 

Probability gain 

Main, scan 1.62 0.23 7.18 23.00 < 0.001 
Main, prescan 1.70 0.19 9.19 22.99 < 0.001 

2 1.79 0.16 11.33 21.00 < 0.001 
3 1.99 0.25 8.01 15.00 < 0.001 

 179 
Table 3. Fixed-effects regression coefficients for the Extended Model of participants’ bids (Equation 16) for 180 
every cohort (Main Cohort: N = 23, Cohort 1: N = 21, Cohort 2: N = 15). DF: Degree of freedom (from 181 
Satterthwaite approximation (Luke 2017)). p: p-value. 182 

Regressor Cohort Coefficient Standard error T-statistic DF p 

Prior certainty 

Main, scan −1.84 0.24 −7.75 23.00 < 0.001 
Main, prescan −1.95 0.20 −9.90 22.99 < 0.001 

2 −2.22 0.16 −13.71 21.00 < 0.001 
3 −2.22 0.26 −8.38 15.00 < 0.001 

Expected posterior 
certainty 

Main, scan 1.15 0.23 5.05 23.00 < 0.001 
Main, prescan 1.16 0.21 5.55 23.00 < 0.001 

2 0.90 0.20 4.46 21.00 < 0.001 
3 1.49 0.26 5.80 15.00 < 0.001 

 183 
Importantly, model comparisons decisively favored the extended model over both the 184 

condensed and base models (Figure 2D) with Bayes factors far exceeding 103 in all the cohorts 185 
(see legend for specific values).  Moreover, in the extended model, the average difference 186 
between the absolute value of each participant’s coefficients for PC and EPC was significantly 187 
positive (scan session: 2.52, T(22) = 2.60, SE = 0.97, p = 0.016, N = 23, paired T-test), 188 
suggesting that participants integrated PC and EPC with unequal weights that relatively 189 
underweighted EPC. Thus, rather than merely combining the quantities presented on the screen, 190 
participants estimated the posterior certainty they expected to have after gathering information 191 
and weighted it separately from their initial uncertainty when they bid for information. This 192 
motivates the investigation of a neural representation of EPC as a neural basis of prospective 193 
Bayesian inference. 194 

 195 
Neural Representations of Probabilistic Variables Relevant for VOI 196 

To identify neural representations of the variables involved in calculating the bids, we applied 197 
multi-voxel pattern analysis (MVPA) to blood-oxygen-level-dependent (BOLD) signals during 198 
the response window of each trial in the bidding phase (Figure 1A). We used support vector 199 
regression and leave-one-run-out (four-fold) cross-validation and measured decoding accuracy 200 
for bid, PG, PC, and EPC as the Fisher z-transformed correlation between the predicted and 201 
actual values of the variable (Fisher 1921; 1915; Görgen and Hebart 2022). 202 

Considering that EPC is a numerical representation of prospective Bayesian inference, we 203 
first used a whole-brain searchlight analysis to identify clusters that showed significantly above-204 
chance decoding of EPC with no cross-decoding of slider displacement or of bid, PG, and PC. 205 
This identified three clusters that met these criteria located, respectively, in the right occipital 206 
fusiform gyrus, right occipital pole, and right intraparietal sulcus (IPS)/extrastriate cortex 207 
(Figure 3A–B, and Table S1). Decoders trained to read out EPC in these clusters produced no 208 
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significant cross-decoding of slider displacement, providing no credible evidence that they 209 
encoded visual or motor events (Figure 3C). Moreover, the decoders produced no significant 210 
cross-decoding of bids (Figure 3D, left) despite the fact that EPC was correlated with bids as a 211 
necessary corollary of good task performance (Figure 2C), suggesting that they represented EPC 212 
independently of information value. The clusters also did not cross-decode PG (Figure 3D, 213 
middle), despite the fact that PG is the difference between EPC and PC (Equation 5). Finally, 214 
the clusters also did not decode PC (Figure 3D, right), which, after excluding a small subset of 215 
high-leverage trials that were high in both variables, was uncorrelated with EPC. Thus, the three 216 
cortical clusters conveyed information about EPC independent of slider position, PG, PC, or the 217 
value of information as reflected in bids.  218 

 219 
Figure 3. Distinct multivoxel representations of expected posterior certainty (EPC), probability gain (PG), 220 
prior certainty (PC), and bid in the posterior parietal and extrastriate cortices. A: Thresholded T-statistic map 221 
of significant clusters of activation in which EPC could be decoded above chance, as identified by a whole-brain 222 
searchlight analysis (cluster-defining height threshold: p < 0.001; cluster-level familywise error rate correction 223 
threshold: p < 0.05). The anatomical template was smoothed at FWHM = 5×5×5 mm for visualization purposes 224 
(Poldrack, Mumford, and Nichols 2011, 173). B: The labeled significant clusters in which EPC could be decoded: 225 
right occipital fusiform gyrus (OFG)/cerebellum, light blue; right occipital pole, green; and right intraparietal sulcus 226 
(IPS) and adjacent extrastriate cortex, red. C–E: Decoding results from the 3 clusters. Each panel shows the 227 
decoding accuracy of ROI-wise decoders that were trained and tested on the quantities noted in the panel title. Each 228 
bar shows the mean decoding accuracy and standard errors across 23 participants. ***: p < 0.001, **: 0.001 ≤ p < 229 
0.01, *: 0.01 ≤ p < 0.05.           230 

 231 
We next asked whether these clusters may have had representations of bid, PG, and PC 232 

that anatomically overlapped with the representation of EPC but involved distinct activity 233 

C 
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patterns. Indeed, when we trained new decoders to decode bid and PG, we found significant 234 
above-chance decoding in all 3 ROIs (Figure 3D, left, middle) and, when we trained new 235 
decoders to decode PC, we found significant above-chance decoding in the right IPS/extrastriate 236 
cluster (Figure 3D, right). The lack of cross-decoding documented in Figure 3C makes it 237 
unlikely that these results merely reflected correlations between these variables and EPC. 238 
Therefore, the clusters encoding EPC multiplex distinct neural representations of bid, PC, and 239 
PG. 240 

Separate whole-brain searchlights identified additional clusters that encoded PC and PG 241 
(Figure S3). These clusters showed no cross-decoding of slider position, showing that they were 242 
unlikely to reflect sensorimotor confounds, nor significant cross-decoding of EPC (Figure S3).  243 
However, the clusters did show significant cross-decoding between PG and PC and between each 244 
variable and the participants’ bids, making it difficult to pinpoint precisely which variable they 245 
encoded toward computing the bid.  246 
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Discussion 247 
We used behavioral testing and fMRI to investigate the mechanisms by which people estimate 248 
expected information gain when assigning value to information. We provide evidence that, 249 
consistent with value of information (VOI) theory, participants’ estimates of VOI were informed 250 
by the difference between expected posterior certainty (EPC) and prior certainty (PC). Moreover, 251 
we show that portions of the right posterior parietal and extrastriate cortex conveyed distinct 252 
multi-voxel representations of EPC and PC, which spatially overlapped with each other, as well 253 
as with distinct representations of PG and the participants’ bids. The results support the 254 
hypothesis that participants prospect about future posterior probabilities and information gains 255 
when estimating the instrumental value of information and reveal neural substrates underlying 256 
this process.  257 

An important feature of our task is that participants did not learn through repeated 258 
experience but made one-shot decisions about the value of information based on quantities 259 
explicitly shown on the screen: prior probability, diagnosticity, and penalty. While this differs 260 
from some studies of Bayesian inference that allow learning based on feedback (Soltani and 261 
Wang 2010; Kira, Yang, and Shadlen 2015; Ting et al. 2015; Soltani et al. 2016), it closely 262 
follows studies of information gathering that have typically relied on one-shot decisions based on 263 
a description of behavioral context (Kobayashi and Hsu 2019; Filimon et al. 2020; Kobayashi et 264 
al. 2021; Gottlieb 2023). A second important task feature is that we limited participants to a 265 
single additional sample rather than allowing them to request multiple samples. While this 266 
distinguishes our approach from studies examining how people terminate sampling (i.e., decide 267 
how much information to gather before making a choice (Edwards 1965; Huq, Garety, and 268 
Hemsley 1988; Roitman and Shadlen 2002; Furl and Averbeck 2011; Hanks, Kiani, and Shadlen 269 
2014; Baker et al. 2019; Kaanders et al. 2021; Ashinoff et al. 2022)), it allowed us to understand 270 
with greater experimental control how participants prospect about information gains over a 271 
single time step (e.g., avoiding systematic distortions and noise that may gradually accumulate 272 
over samples (Ashinoff et al. 2022)).  273 

Our results support the idea that participants prospect about future certainty as noted 274 
above, and also show that, rather than directly comparing PC to EPC with equal weights, they 275 
afforded greater weight to PC relative to EPC. A possible explanation for this differential 276 
weighting is that EPC is derived through more complex computations making it more vulnerable 277 
to probability underweighting, a known phenomenon during judgments from described 278 
probabilities (Gonzalez and Wu 1999; Trepel, Fox, and Poldrack 2005; Garcia, Cerrotti, and 279 
Palminteri 2021). Alternatively, participants may underuse EPC because perhaps prospection 280 
itself is costly. These factors, in turn, may explain why participants prospect over a limited time 281 
horizon when allowed to take sequential samples (Braunlich and Love 2022), as can be 282 
examined in future research.   283 

Our approach also generated new insights into the neural substrates underlying 284 
information gathering. The encoding of probabilistic variables that we found in the posterior 285 
parietal cortex is consistent with multiple studies that have implicated this area in probabilistic 286 
reasoning. In tasks in which participants make Bayesian inferences based on given (exogenous) 287 
information, the human posterior parietal cortex tracks prior probability (Mulder et al. 2012), 288 
likelihood (d’Acremont, Fornari, and Bossaerts 2013; d’Acremont, Schultz, and Bossaerts 2013), 289 
likelihood uncertainty (Ting et al. 2015), and posterior probability (Singletary, Gottlieb, and 290 
Horga 2021), while monkey parietal neurons encode posterior probability or expected rewards 291 
(Huk and Shadlen 2005; Kira, Yang, and Shadlen 2015; T. Yang and Shadlen 2007). In tasks in 292 
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which participants endogenously select information, monkey parietal neurons encode 293 
diagnosticity (Foley et al. 2017) and prior uncertainty (Horan, Daddaoua, and Gottlieb 2019; Li 294 
et al. 2022) and the human parietal cortex tracks the propensity to sample information relevant 295 
for learning a category boundary (Furl and Averbeck 2011).  296 

Our findings extend these reports by showing that the human parietal cortex and 297 
extrastriate areas multiplex information about probabilistic variables—of EPC, PC, and PG—that 298 
are distinct from variables representing information value. Thus, our results support the idea that 299 
information gathering has separate probabilistic and value-based components, as proposed based 300 
on both behavioral (Braunlich and Love 2022) and neural (Silvetti et al. 2023) results. This result 301 
is consistent with studies showing that monkey parietal neurons carry dissociable signals of prior 302 
uncertainty and rewards (Horan, Daddaoua, and Gottlieb 2019; Li et al. 2022). The findings are 303 
also consistent with previous studies proposing that VOI is encoded in areas that are distinct 304 
from the EPC clusters we identified here, and include the human striatum, dorsolateral prefrontal 305 
cortex, and ventromedial prefrontal cortex (Kobayashi and Hsu 2019; Kobayashi et al. 2021). 306 
Moreover, our findings that additional clusters non-specifically encode PC, PG, and bids, 307 
suggesting the possibility, which can be tested in future research, that probabilistic and value 308 
quantities are integrated into a single code for driving the bids. Thus, our results bring granular 309 
insights into the distinct neural mechanisms of probability and reward estimation during active 310 
information gathering. 311 
  312 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.568849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568849
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

Methods 313 
Participants 314 

Forty-four healthy, right-handed participants (17 female) were recruited through fliers posted on 315 
the Columbia University campus and through the recruitment system for the Columbia Business 316 
School Behavioral Research Lab. This pool consisted of Columbia University students, other 317 
Columbia affiliates, and affiliates of other universities in the New York Metropolitan Area, and 318 
they did not report any psychiatric or neurological disorders. Participants first completed a 319 
session outside of the scanner (prescan session); 14 participants were not allowed to advance to 320 
the scan session because their responses during the prescan session reflected disengagement or 321 
lack of comprehension (see “Performance-Based Exclusion Criteria”). Another participant was 322 
excluded because of excessive motion inside the MRI scanner, and 6 participants met the 323 
advancement criteria but withdrew from the scan session. As a result, the Main Cohort consisted 324 
of 23 participants (8 female). 325 

We also recruited 19 participants (13 female) through the same methods to complete the 326 
experiment outside of the scanner. Fourteen participants (10 female) met the comprehension 327 
criteria and were included in the Cohort 2. Added to Cohort 2 were the participant who was 328 
excluded because of excessive motion and the 6 participants who withdrew from scanning in the 329 
Main Cohort. 330 

Before developing the main experimental session, we recruited 23 participants (9 female) 331 
through the same methods for a pilot session to be completed outside of the scanner. Fifteen of 332 
these participants (7 female) met the comprehension criteria and were included in Cohort 3. 333 
Experimental procedures were approved by the Columbia University Institutional Review Board, 334 
and all participants provided signed informed consent. 335 

Experimental Sessions 336 
Prescan Session 337 
The prescan session was administered on a computer outside of the scanner. Participants viewed 338 
a narrated slideshow on the instructions for the Willingness to Pay (WTP) Task, the main task of 339 
the experiment. They were also administered comprehension quizzes on the instructions, which 340 
they had to pass before proceeding (Performance-Based Exclusion Criteria). After passing the 341 
instructions quiz, participants completed 10 practice trials of the WTP Task to familiarize 342 
themselves with the relationship between their bids, the receipt of a sample picture, decision 343 
accuracy, and ultimately, their earnings, all while avoiding overtraining. Each practice trial was 344 
followed by a corresponding mock payout trial to show participants what they could have earned 345 
from that trial in the main task based on their submitted bid and their guess of the identity of the 346 
hidden gallery if the trial had been chosen for payout; however, these practice trials did not affect 347 
the participants’ earnings. Then, participants completed the WTP Task. Lastly, their performance 348 
was evaluated to determine if they met the remaining performance criteria to advance to the scan 349 
session; if not, they were removed from the study. 350 
Scan Session 351 
Participants watched a summarized version of the instructions slideshow before completing the 352 
WTP Task in the MRI scanner. 353 
The Willingness to Pay Task 354 
The Willingness to Pay (WTP) Task was a modified “bookbag-and-poker-chip” (Peterson and 355 
Miller 1965; Phillips and Edwards 1966; Bar-Hillel 1980; Gigerenzer, Hell, and Blank 1988; 356 
Benjamin 2019) (or “beads” (Huq, Garety, and Hemsley 1988; Furl and Averbeck 2011; van der 357 
Leer et al. 2015; Baker et al. 2019; Kobayashi et al. 2021)) task developed to measure people’s 358 
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demand for instrumental information. On the task, people needed to correctly infer the identity of 359 
a hidden state depicted as a museum gallery to avoid a penalty. The task consisted of a Bidding 360 
Stage followed by a Payout Stage. At the beginning of each session, the participant was given a 361 
$30 endowment. Then, during the Bidding Stage, the participant placed bids for a sample picture 362 
from the hidden museum gallery that could increase the accuracy of their inference. During the 363 
Payout Stage, one bidding trial was drawn at random to be realized to determine the participant’s 364 
payout. The bid on the realized trial was applied to a computer-automated auction that ensured 365 
that the probability of receiving a sample increased with the bid such that a higher bid 366 
corresponded to higher demand for the sample (The auction and the expected value–367 
maximizing bid). The bid would be withdrawn from the endowment if the participant won the 368 
auction on the realized trial, and a penalty would be withdrawn if the participant’s inference was 369 
incorrect. 370 
Bidding Stage 371 
The Bidding Stage consisted of 120 trials divided evenly into four runs. On each trial, 372 
participants bid for one sample picture from the hidden gallery that could help them better infer 373 
whether it was a portrait gallery that contained more pictures of faces than scenes or a landscape 374 
gallery that contained more pictures of scenes than faces. Before bidding, participants viewed the 375 
prior probability that the hidden gallery was a portrait or a landscape gallery; the diagnosticity, 376 
or predictive validity, of a sample picture; and the penalty that they would lose if the trial were 377 
realized for payout and they incorrectly guessed the gallery. 378 

To prevent behavioral artifacts from serial trial effects, we truthfully told participants that 379 
each bidding trial was independent from all other bidding trials, and the identity of a bidding 380 
trial’s hidden gallery was never revealed during the Bidding Stage. 381 

Trial display. The prior probability of the hidden gallery was displayed as a percentage 382 
chance for the portrait and landscape options. The diagnosticity was displayed as the majority-to-383 
minority ratio of picture types in the hidden gallery (e.g., 60:40). Participants were also shown 384 
the penalty that they could lose from the endowment if the trial were chosen for payout (Payout 385 
trial). 386 

A trial began with the prior probability, diagnosticity, or penalty appearing (trial 387 
components) over a gray background (Figure 1A). The prior probability, diagnosticity, and 388 
penalty appeared one at a time with the first component appearing at the instant of trial start and 389 
the succeeding components following the previous component by 1 s (Figure 1A). The trial 390 
components’ spatial order of appearance was stable throughout the prescan and scan sessions but 391 
counterbalanced by participant so that participants could expect the information to be in the same 392 
place while allowing us to control for potential effects of spatial order. The trial components’ 393 
temporal order of appearance was randomized by trial to control for potential primacy and 394 
recency effects. 395 

Response. Participants completed a trial by reporting their bid for a sample picture from 396 
the hidden gallery by using a trackball to move a slider that appeared at the bottom of the screen 397 
1 s after the last trial component. The initial slider position was randomized on each trial to 398 
reduce the correlation between slider movement and the bid—facilitating the separation of the 399 
potentially confounding effect of slider movement from the task variables of interest—and to 400 
discourage participants from anchoring to any one reported bid. (Randomizing the initial slider 401 
position reduces the correlation between slider displacement and bid from nearly 1 to 0.58 across 402 
all completed trials in the scan session.) The slider remained on screen for 10 s (“response 403 
window,” Figure 1A). We chose a response window of 10 s because it was the shortest response 404 
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window that captured approximately 80 percent of responses from 80 percent of participants 405 
during piloting. The selected bid was indicated by the amount of the slider from left to right that 406 
was highlighted in orange and by an explicit amount in dollars below the slider. Both these 407 
indicators were updated in real time. The slider was divided into 77 discrete bins, increasing in 408 
steps of $0.13 from $0 on the left to $9.88 on the right. We chose these increments to discourage 409 
participants from anchoring to “round” numbers (e.g., multiples of $1 or $2.50). The participant 410 
confirmed their response by clicking a button on the trackball, after which the highlighted 411 
section of the slider would change colors from orange to green to indicate that the response had 412 
been recorded. The screen remained unchanged until the end of the response window plus 0.5 s. 413 
If the participant did not submit a posterior probability estimate within the 10-s response 414 
window, instead, the slider would freeze for 0.5 s and the percentage below the slider would be 415 
replaced by text reading, “Bid not submitted.” To encourage participants to respond within the 416 
response window, participants were truthfully warned that if a response were missing from a trial 417 
that happened to be chosen for payout, they would automatically lose that trial’s penalty. Across 418 
all participants in the Main Cohort during the scan session, only 23 of the 2,760 presented trials 419 
(0.8%) had omitted responses, with 7 participants missing one trial, 4 participants missing two 420 
trials, 1 participant missing three trials, and 1 participant missing five trials. 421 

Intertrial interval. Each bidding trial was followed by an intertrial interval during which a 422 
small, black fixation cross appeared over the gray background (Figure 1A). To maximize the 423 
efficiency of parameter estimation for the general linear models in the fMRI analysis, the 424 
duration of each intertrial interval was drawn from an exponential distribution with mean 3.5 s, 425 
truncated with a lower bound of 1 s and an upper bound of 10 s (Hagberg et al. 2001). 426 

Selection of parameters for bidding trials. To determine the set of prior probabilities and 427 
majority-minority ratios used for the bidding trials in each session, we randomly sampled 60 428 
trials from discrete bins that we established for prior probability (0.1, 0.4, 0.5, 0.6, and 0.9, 429 
arbitrarily chosen as the prior of the portrait gallery) and majority–minority ratio (60:40, 80:20, 430 
and 90:10). Majority–minority ratios represented diagnosticity �, which was defined on the 431 
interval 0.5 � � � 1 and corresponded to the numerator of the majority–minority ratio divided 432 
by 100. A random jitter (−0.03, −0.02, −0.01, 0, 0.01, 0.02, or 0.03) was then added to each prior 433 
probability and diagnosticity with equal probability. A “true” hidden gallery was assigned to 434 
each trial based on the prior probability of the portrait gallery (e.g., if the prior probability was 435 
0.6, there was a 60% chance the trial’s hidden gallery would be a portrait gallery and a 40% 436 
chance it would be a landscape gallery). If the trial were realized for payout, its sample picture 437 
was assigned to signal the hidden gallery with a probability equal to the trial’s diagnosticity (e.g., 438 
on a trial on which the hidden gallery was a portrait gallery and the diagnosticity was 0.6, there 439 
was a 60% chance that the sample picture would be a face). These 60 trials were duplicated for 440 
each condition of error penalty ($10 or $20). The order of the trials was then randomly permuted, 441 
and the session was separated into four runs of 30 trials each. Figure 1B displays the prior-442 
diagnosticity combinations for the scan session. Every participant within a cohort completed the 443 
same session(s). 444 
Payout trial 445 
After the Bidding Stage was complete, one bidding trial was chosen at random with equal 446 
probability to be realized to determine the participant’s payment. This trial was displayed along 447 
with its submitted bid from the Bidding Stage. If the participant had failed to submit a bid on that 448 
trial, the participant was notified that the error penalty would be automatically subtracted from 449 
their endowment, and the session would end. 450 
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Otherwise, the bid was submitted to an auction for the sample picture. If the participant 451 
had bid enough to win the auction, the bid would be subtracted from their endowment, and they 452 
would receive one sample picture, randomly drawn from the hidden gallery, to help them decide 453 
the hidden gallery’s identity (in addition to the prior probability of the hidden gallery and the 454 
diagnosticity of a sample picture). If the participant had not bid enough to win the auction, the 455 
bid would not be subtracted from their endowment, but they would have to decide using only the 456 
prior probability of the hidden gallery. 457 

After deciding the identity of the hidden gallery, the penalty would be subtracted from 458 
the participant’s endowment if and only if their choice was incorrect. Hence, the payment for the 459 
WTP Museum Task was the endowment minus the bid (if and only if they received a sample) 460 
and minus the penalty (if and only if they chose the incorrect gallery). 461 
The auction and the expected value–maximizing bid 462 
We elicited participants’ valuation of the sample through a first-price auction. On the realized 463 
trial, the computer chose but did not reveal a secret price for the sample picture from  464 
a random uniform distribution between the minimum and maximum possible bids ($0 and $9.88, 465 
respectively). If the participant’s bid on the realized trial was greater than or equal to the secret 466 
price, the participant would receive the sample, but their bid would be subtracted from their 467 
endowment. If the participant’s bid was less than the secret price, the participant would not 468 
receive the sample, but nothing would be subtracted from their endowment. This procedure is 469 
inspired by the Becker-DeGroot-Marschak auction (Marschak, DeGroot, and Becker 1964) and 470 
is similar to a traditional auction for an item in which the highest bidder receives the item in 471 
exchange for their stated price. Hence, the participant must assess the risk of losing the penalty if 472 
they incorrectly guessed the hidden gallery against the potential cost of a sample picture that 473 
could decrease the chance of an incorrect guess. 474 

This cost-benefit analysis for the WTP Task bids is mathematically tractable for an 475 
expected value maximizer. Intuitively, the expected value–maximizing bid in this auction 476 
increases with the expected information gain (EIG), or informativeness, of the sample—the 477 
greater the sample’s EIG, the more an agent should be willing to pay to receive a sample. To 478 
express the expected value–maximizing bid in terms of EIG, we measured EIG using probability 479 
gain, the extent to which the sample picture would increase the probability of correctly guessing 480 
the hidden gallery (Baron 1985; Nelson 2005). We chose probability gain because it has been 481 
shown to modulate people’s demand for instrumental information (Nelson et al. 2010) and 482 
because bids from the auction can be expressed as a simple linear function of it. 483 

To estimate probability gain, one needs to compare the probability of correctly guessing 484 
the hidden gallery without the sample picture to the expected probability of correctly guessing 485 
the hidden gallery with the sample picture. We call the first component of probability gain the 486 
prior certainty of the hidden gallery (Pr
��), which is the maximum of the hidden gallery’s prior 487 
probability distribution (Equation 1). Here, Pr
� is the prior probability of the portrait gallery, 488 
and Pr
�� is the prior probability of the landscape gallery. 489 

Equation 1 490 

Pr
�� � max
Pr
� , Pr
��� , 0.5 � Pr
�� � 1 
We call the second component of probability gain the expected posterior certainty (EPC) 491 

of the hidden gallery. Calculating the expected posterior certainty requires prospecting the future 492 
posterior probability distributions for a gallery type ( for the portrait gallery, � for the 493 
landscape gallery), taking the maximum of these posterior distributions conditional on receiving 494 
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each type of sample picture (� for a face picture, � for a scene picture), and weighting each 495 
maximum by the marginal probability of the respective picture type. 496 

The posterior probability of gallery � conditional on sample picture � is given by Bayes’ 497 
theorem in terms of the prior probability of the gallery (Pr
��), the likelihood of receiving 498 
sample picture � conditional on the gallery (Pr
��), and the marginal probability of the sample 499 
(Pr
��) (Equation 2, where � stands for “hypothesis” and � for “data,” by convention). The 500 
prior probability of each gallery type is explicitly shown on a trial, while the likelihood and 501 
marginal probability of a sample type can be calculated from variables that are shown on a trial. 502 
The prospected likelihood is the diagnosticity (�) if the sample picture is prospected to signal 503 
gallery � (i.e., when gallery � is the portrait gallery and the sample is prospected to be a face, or 504 
when gallery � is the landscape gallery and the sample is prospected to be a scene), while the 505 
likelihood is the complement of the diagnosticity (1 � �) if the sample picture is prospected to 506 
signal the opposite gallery. The prospected marginal probability of sample � is the product of the 507 
diagnosticity of the sample and the prior probability of the gallery signaled by the sample plus 508 
the product of the complement of the diagnosticity and the complement of the prior probability 509 
signaled by the sample (Equation 3). 510 

Equation 2 511 

Pr
�|�� �
Pr
�� Pr
�|��

Pr
��
 

Equation 3 512 

Pr
�� � � Pr
�� � 
1 � ��
1 � Pr
��� 
Therefore, we can use the marginal probability of each sample type and the posterior 513 

probability distribution for each gallery to calculate the expected posterior certainty of the hidden 514 
gallery (Equation 4). 515 

Equation 4 516 

Pr
��� � Pr
�� max
Pr
|�� , Pr
�|��� � Pr
�� max
Pr
|�� , Pr
�|��� 
This is equivalent to the maximum of the prior certainty and the diagnosticity (Pr
��� �517 

max
Pr
�� , ��). 518 
 Therefore, in terms of prospecting the expected certainty after receiving a sample picture, 519 
probability gain � is the EPC minus the prior certainty (Equation 5). 520 

Equation 5 521 

� � Pr
��� � Pr
�� , Pr
��� � Pr
�� 
Probability gain can be equivalently expressed as a rectified function of the sample’s 522 

diagnosticity and the prior certainty of the hidden gallery (Equation 6).  523 
Equation 6 524 

� � max
� � Pr
�� , 0� 
To calculate the bid �� ���  in this auction that maximizes the expected value of a trial, we first 525 
need to calculate the expected value of a trial � in terms of the endowment, the penalty, Pr
��, 526 
and Pr
���. Expected value is the value of the outcome minus its cost. Since the value and cost 527 
of a trial depend on whether the agent receives a sample, which is a random event, let the value 528 
be  ! , a random variable representing the value of the outcome, and let the cost of the outcome be 529 
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�, a random variable representing the price the agent ultimately pays for the sample (Equation 530 
7). 531 

Equation 7 532 

� � �� � � 
To calculate � over all the possible realizations of a trial, let us calculate the probability density 533 
function for receiving a sample. As stated earlier, the computer chooses a random price � in 534 
dollars from a uniform probability distribution on the interval of possible bids 0 
 � 
 9.88. 535 
Thus, the probability density function for the random variable � is 536 

Equation 81 537 

���� � 1
9.88 , 0 
 � 
 9.88 

Now, let us take � over all possible realizations of �:  538 
Equation 9 539 

� � � ������
�.��

�

� ����������� 

Equation 9 can be decomposed into the utility of winning the auction (the left addend in 540 
Equation 10) and the utility of losing the auction (the right addend in Equation 10): 541 

Equation 10 542 

� � � ������
�

�

� ����������� � � ������
�.��

�

� ����������� 

Now let us replace the random variables ��  and � with the exact outcomes that they represent. To 543 
do so, first let us construct the tree of possible outcomes for a realized trial: at the first step, the 544 
agent may win or lose the auction for the sample picture, and at the second step, the agent may 545 
correctly or incorrectly guess the identity of the hidden gallery: 546 

● When the agent wins the auction 547 
o When the agent correctly guesses the hidden gallery 548 

▪ �� � ���� (because they win the full endowment, which is $30) 549 
▪ � � Pr���� � 550 

o When the agent incorrectly guesses the hidden gallery 551 
▪ �� � �1 � Pr������30 � �� 552 
▪ � � �1 � Pr������ 553 

● When the agent loses the auction 554 
o When the agent correctly guesses the hidden gallery 555 

▪ �� � 30 Pr��� 556 
▪ � � 0 557 

o When the agent incorrectly guesses the hidden gallery 558 
▪ �� � �1 � Pr�����30 � �� 559 
▪ � � 0 560 

                                                 
1 Letting � be the agent’s bid for the sample, the probability of receiving a sample is therefore 

�

�.��
 because Pr�� �

9.88=0�����=0�19.88��=�9.88. 
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Replacing �� , �, and ���� in Equation 10 with the above terms yields the expected value of a 561 
trial in terms of the endowment, the penalty, Pr���, and Pr���� (Equation 11). 562 

� � � �Pr���� �30 � �� � �1 � Pr������30 � � � ���
�

�

1
9.88 ��

� � �30 Pr��� � �1 � Pr�����30 � ���
�.��

�

1
9.88 �� 

Equation 11 563 

� � ��Pr���� � � Pr��� �� � ��

9.88 � 30 � ��1 � Pr���� 

To find the expected value–maximizing bid (Equation 12), let us differentiate � with respect to 564 
the bid, set the derivate equal to 0, and solve for the bid �� 	
�: 565 

��
�� � ��Pr���� � Pr���� � 2�

9.88  

��Pr���� � Pr���� � 2�� 	
�

9.88 � 0 

Equation 12 566 

�� 	
� � ��Pr���� � Pr����
2  

Note that the endowment does not affect the expected value–maximizing bid. 567 
Recall that probability gain is the difference between EPC and prior certainty. Therefore, 568 

we can rewrite Equation 12 in terms of probability gain ! (Equation 13). We use both this form 569 
and the form in Equation 12 to model participants’ bids in terms of expected information gain. 570 

Equation 13 571 

�� 	
� � �!
2  

Since the WTP Task only accepts bids in bins (Figure 1A), on the real task, the expected value is 572 
maximized by submitting a bid as close as possible to the expected value–maximizing bid. 573 
Performance-Based Exclusion Criteria 574 
To ensure participant comprehension and engagement during the scan session, we assessed 575 
participants’ performance during the prescan session before we allowed them to advance to the 576 
scan session. Participants had to meet the following criteria pertaining to the WTP Task to 577 
advance to the scan session: 578 

1. Task comprehension: Participants had to correctly answer at least 80 percent of the 579 
questions on a comprehension quiz on the task instructions. 580 

2. Task completion: Participants could miss no more than 5 percent of the trials. 581 
3. Minimal dependence of bids on expected information gain (EIG): Bids must have been 582 

significantly higher (α = 0.05, two-sample t-test assuming unknown and unequal 583 
variances) on trials with high probability gain (≥ 0.33) than on trials with low probability 584 
gain (≤ 0.1). 585 
To measure participants’ intrinsic demand for instrumental information without extensive 586 

training, the criteria were designed to be lenient enough to respect variation in their pre-task 587 
strategies while excluding participants who disengaged from the task or who adopted strategies 588 
clearly consistent with misunderstanding the task. 589 
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Image Sets 590 
Images of faces were selected from the CNBC Faces database by Michael J. Tarr, Center for the 591 
Neural Basis of Cognition and Department of Psychology, Carnegie Mellon University, 592 
http://www.tarrlab.org, funded by NSF award 0339122, used in Righi et al. (2012), and are 593 
available under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported 594 
License. Images of scenes were selected from the database for Konkle et al. (2010)), available 595 
from the Computational Perception and Cognition Lab at MIT 596 
(http://olivalab.mit.edu/MM/sceneCategories.html). 597 
Earnings 598 
Compensation for the prescan session was a show-up fee of $15 on top of their earnings from the 599 
prescan session. Compensation for the scan session was a show-up fee of $20 on top of their 600 
earnings from the scan session. Participants received an extra $50 for completing both sessions. 601 
Therefore, they could earn up to $145 for completing the entire study. 602 

Modeling the Value of (Instrumental) Information 603 
Our general strategy was to implement linear mixed-effects regression to properly account for 604 
between-participant variance (fixed effects) and within-participant variance (random effects), 605 
using the MATLAB function fitlme with maximum likelihood estimation. In all mixed-effects 606 
models, we used the Satterthwaite approximation to calculate degrees of freedom, which has 607 
been shown to reduce Type 1 error compared to residual degrees of freedom (Luke 2017). Unless 608 
otherwise specified, each predictor was z-scored at the group level before the regression model 609 
was fit. 610 
 As a manipulation check, we first modeled participants’ bids � as a function of the 611 
observed variables on a trial: prior certainty (appears on screen as the maximum of the prior 612 
probability distribution, Figure 1A), diagnosticity, and penalty � along with an intercept "� 613 
(Equation 14, Base Model). To account for the potentially confounding effect of slider 614 
movement on participants’ submissions, we included initial slider position as a nuisance 615 
regressors. We used fixed-effects terms for each variable and included random-effects terms for 616 
each variable by participant (Equation 14). 617 

Equation 14 618 

�~"� � "���� Pr��� � "�% � "�� � "�&
� �"� � "���� Pr��� � "�% � "�� � "�&'participant� 

To model bid in terms of expected information gain (EIG), we developed a condensed 619 
model in terms of probability gain and an extended model decomposing probability gain into its 620 
mathematical components of prior certainty and expected posterior certainty. To model bid in 621 
terms of probability gain, we included fixed-effects terms for the intercept, probability gain, 622 
penalty, the interaction between probability gain and penalty (as suggested by the product of 623 
probability gain and penalty in Equation 13), and initial slider position, along with the 624 
corresponding random-effects terms by participant (Equation 15). 625 

Equation 15 626 

�~"� �  "�! � "�� � "��!��"�& � �"� � "�! � "�� � "��!��"�&|participant� 
For the extended model, we replaced probability gain with its mathematical components 627 
(Equation 16), accounting for the possibility that a participant would not weight prior certainty 628 
and expected posterior certainty with equal magnitude when estimating the EIG of a sample. 629 
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Equation 16 630 

�~�� 	 ����	
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� 	 ����	
� Pr�
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� 	 �����	
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�� 	 �

	 ��� 	����	
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� 	 ����	
� Pr�
�
� 	 ���	�����	
�Pr�
� 	 �����	
��Pr�
�� 	��participant� 

When we compared each participant’s coefficient on prior certainty to the coefficient on 631 
expected posterior certainty, we fit the extended model without z-scoring the predictors so that 632 
any difference between the coefficients was not attributable to a difference in the predictors’ 633 
standard deviations. 634 

fMRI Data Acquisition and Preprocessing 635 
Acquisition 636 
Whole-brain fMRI data were acquired on a 3-T Siemens MAGNETOM Prisma scanner with a 637 
64-channel head coil at the Magnetic Resonance Imaging Center at the Zuckerman Mind Brain 638 
Behavior Institute of Columbia University. Functional images were acquired with a T2*-639 
weighted, two-dimensional gradient echo spiral in/out pulse sequence (repetition time (TR) = 640 
1,000 ms; echo time = 30 ms; flip angle = 52°, field of view = 230 mm; 2.4×2.4×2.4 mm voxels; 641 
56 slices; multiband factor = 4). To reduce dropout in central frontal regions, slices were tilted by 642 
10° forward from the AC-PC axis. During the scan session, the behavioral tasks were projected 643 
onto a mirror attached to the scanner head coil for the participant to see (Hyperion MRI Digital 644 
Projection System); participants made responses with the right hand through an MRI-compatible 645 
trackball (Current Design). 646 
Preprocessing 647 
Preprocessing was performed using the fMRIPrep pipeline, Version 1.5.0rc1 (Esteban et al. 648 
2019) (RRID:SCR_016216). fMRIPrep uses a combination of tools from well-known software 649 
packages, including FSL, ANTs, FreeSurfer, and AFNI, and is based on Nipype 1.2.0 650 
(Gorgolewski et al. 2011) (RRID:SCR_002502). For more details of the pipeline, see the section 651 
corresponding to workflows in fMRIPrep’s documentation at 652 
(https://fmriprep.org/en/latest/workflows.html). 653 
Anatomical data 654 
The T1-weighted (T1w) image was corrected for intensity nonuniformity with 655 
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008) 656 
(RRID:SCR_004757). The T1w image was then skull-stripped with a Nipype implementation of 657 
the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. 658 
Brain tissue segmentation of cerebrospinal fluid, white matter, and gray matter was performed on 659 
the brain-extracted T1w using fast (Zhang, Brady, and Smith 2001) (FSL 5.0.9, 660 
RRID:SCR_002823). Volume-based spatial normalization to Montreal Neurological Institute 661 
(MNI) space (MNI152NLin2009cAsym) was performed through nonlinear registration with 662 
antsRegistration (ANTs 2.2.0) (Fonov et al. 2009) (RRID:SCR_008796). 663 
Functional data 664 
A skull-stripped susceptibility distortion–corrected BOLD reference was generated using a 665 
custom methodology of fMRIPrep. The BOLD reference was co-registered to the T1w reference 666 
using bbregister (FreeSurfer), which implements boundary-based registration using six degrees 667 
of freedom (Greve and Fischl 2009). Head-motion parameters (x, y, z, pitch, roll, and yaw) with 668 
respect to the BOLD reference were estimated before spatiotemporal filtering using mcflirt (FSL 669 
5.0.9) (Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 670 
20160207 (Cox and Hyde 1997) (RRID:SCR_005927). 671 
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fMRI Data Acquisition and Preprocessing 672 
We used multi-voxel pattern analysis (MVPA) methods to identify regions in which the task 673 
variables were decodable. To do so, first, we used a whole-brain univariate general linear model 674 
(GLM) to estimate BOLD activation patterns (betas/parameter estimates) associated with each 675 
task variable. Then, we trained and tested a support vector regression decoder on the voxel-wise 676 
activation patterns that had been identified by the GLM. Univariate analyses were conducted 677 
using the GLM framework implemented in SPM12, Version 7487 678 
(https://www.fil.ion.ucl.ac.uk/spm), convolving boxcar functions within the GLM by the SPM 679 
canonical hemodynamic response function. MVPA analyses were conducted using The 680 
Decoding Toolbox (Hebart, Görgen, and Haynes 2015; Görgen and Hebart 2022). Whole-brain 681 
statistical maps from functional data were overlaid on an average of the 23 participants’ 682 
individual T1-weighted (T1w) maps normalized to Montreal Neurological Institute (MNI) space. 683 
Since scanning did not occur during the Payout Stage, fMRI activation was only measured 684 
during the Bidding Stage. 685 
Whole-Brain Analyses to Localize Clusters in Which a Task Variable Was Decodable 686 
Functional images normalized to MNI space were smoothed with a Gaussian kernel with a 687 
FWHM of 5×5×5 mm. Then, a condensed and an extended GLM was estimated for every 688 
participant from this normalized, smoothed functional time series. Both GLMs used a variable-689 
epoch model (Grinband et al. 2008) using boxcar functions to represent each condition for each 690 
task variable during the decision period (the period between the beginning of the response 691 
window and the reaction time on trials that received a response, Figure 1A). The condensed 692 
GLM contained conditions for probability gain, penalty, bid, and slider displacement (i.e., the 693 
difference between the initial slider position and the slider position when the bid was submitted). 694 
The extended GLM replaced the probability gain conditions with conditions for prior certainty 695 
and expected posterior certainty. We fit these GLMs separately because probability gain is 696 
collinear with expected posterior certainty and prior certainty (because probability gain is the 697 
difference between the latter variables). The conditions for each variable were as follows, 698 
yielding one parameter estimate per run (four per participant): 699 

● Probability gain: 0, 0.01–0.08, 0.09–0.17, 0.18–0.26, 0.27–0.35, 0.36–0.43 (nearly 700 
equally spaced bins on the range of probability gains with a separate category for 0, 701 
which was overrepresented) 702 

● Prior certainty: low (0.5–0.53), medium (0.57–0.63), and high (0.87–0.93) (one for each 703 
level of prior certainty, “Selection of parameters”) 704 

● Expected posterior certainty: low (0.57–0.63), medium (0.77–0.83), and high (0.87–0.93) 705 
(one for each level of expected posterior certainty) 706 

● Penalty: $10 and $20 (one for each penalty condition) 707 
● Bid: the bids discretized into 10 equally spaced bins over the available range ($0 to 708 

$9.88) 709 
● Slider displacement: the signed slider displacements discretized into 10 equally spaced 710 

bins over the range of displacements during the scan session across all the participants  711 
If the participant failed to respond to at least one trial during a run of the Bidding Stage, an 712 
additional boxcar function was added to the GLM to model the entire response window for each 713 
trial that they omitted. Finally, both GLMs also contained fixed-body motion-realignment 714 
regressors (x, y, z, pitch, roll, and yaw) and their respective first derivatives. 715 

In the next step, a decoding analysis was performed on the parameter estimates of the 716 
GLM for each participant. A support vector regression was applied to each task variable of 717 
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interest, trained and tested on all the variable’s conditions (across all the runs). Decoders were 718 
cross-validated using leave-one-run-out (four-fold) cross-validation. The label for each condition 719 
was the median value of the variable for the condition within the participant. The support vector 720 
regression was trained and tested on the same variable using a searchlight approach with a sphere 721 
of standard radius of 3 voxels (example: Kahnt et al. (2014)). Decoding accuracy for each voxel 722 
was measured as the Fisher’s z-transformed correlation coefficient between the decoder’s 723 
prediction and the true label for the variable. The searchlight analysis for probability gain used 724 
the condensed GLM. The searchlight analyses for prior certainty, expected posterior certainty, 725 
penalty, bid, and slider displacement used the extended GLM. Searchlight results were broadly 726 
similar for penalty, bid, and slider displacement between the two GLMs.  727 

Finally, we identified significant clusters in which each variable of interest was 728 
decodable by submitting each participant’s accuracy map (across all brain voxels) for a variable 729 
to a second-level T-test, applying a cluster-wise correction for multiple comparisons using non-730 
parametric permutation tests in SnPM13.1.08 (http://nisox.org/Software/SnPM13/) (Nichols and 731 
Holmes 2002), which have been shown to be most robust to false positives (Eklund, Nichols, and 732 
Knutsson 2016; Nichols et al. 2017). Permutation tests were based on a stringent cluster-forming 733 
height threshold of p < 0.001 and considered significant at a cluster-wise familywise error rate 734 
threshold of p < 0.05; we used 10,000 permutations (Holmes et al. 1996; Nichols and Holmes 735 
2002). 736 
Region of Interest (ROI) Analyses 737 
Region-of-interest (ROI) decoding analyses were conducted on each significant cluster. ROI 738 
decoding was conducted the same way as the whole-brain decoding, except that the decoders 739 
were trained on all the voxels within a cluster instead of a searchlight sphere, yielding one 740 
accuracy statistic per ROI. This was done whether the decoder was trained and tested on the 741 
same variable or trained on one variable and tested on another (cross-decoding). All ROI 742 
decoding, including cross-decoding, was done with leave-one-run-out cross-validation. In all the 743 
expected posterior certainty (EPC) clusters, there was “substantial” evidence supporting the null 744 
hypothesis that cross-decoding accuracy of slider displacement from bid was not different from 745 
chance (BF > 101/2). 746 
  747 
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