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Introduction

In the early 1980s, two research groups described that the 
transferrin receptor of sheep reticulocytes was secreted via 
little-known vesicular forms (Pan and Johnstone 1984). 
The same researchers described the mechanism of small 
vesicle secretion showing that the release of membrane 
vesicles was preceded by inward budding of an intracellular 
endosome forming a multi-vesicular body (MVB), which 
could then fuse with the plasma membrane (Pan et  al. 
1985). Rose Johnstone used the term “exosomes” for the 
first time to describe small membrane vesicles formed in 
MVBs (Johnstone et al. 1987). The original function attrib-
uted to membrane vesicles was the removal of cell debris. 
The thinking about membrane vesicles as “trash cans” of 
the cell was derived from the knowledge about the role of 
lysosomes as degradation centers (Luzio et al. 2007). Since 
the finding that exosomes can modulate the immune sys-
tem, extracellular vesicles gained growing interest (Raposo 
et al. 1996). The enthusiasm was further increased after the 
discovery of mRNA and miRNA inside exosomes (Valadi 
et  al. 2007). These studies opened the door to the new 
research field of exosome functions in intercellular commu-
nication, their biomarkers, and their potential role as thera-
peutic tools.

Classification of Extracellular Vesicles

Cells release different kinds of extracellular vesicles (EVs) 
of varying sizes and biogenesis. Their classification dis-
tinguishes three main subpopulations/classes based on the 
vesicle’s origin. The smallest vesicles are of endocytic 
origin, exosomes, with 40–150  nm in diameter (Baietti 
et  al. 2012; Colombo et  al. 2013). Ectosomes, also called 
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shedding microvesicles, with a diameter of 100–1000  nm 
are produced by outward protrusion or budding from the 
plasma membrane (Muralidharan-Chari et al. 2009; Théry 
et  al. 2009). The most heterogeneous group of vesicles 
ranging from 50 up to 5000  nm in diameter is apoptotic 
bodies. Their biogenesis is based on fragmentation of apop-
totic cells during programmed cell death (Mathivanan et al. 
2010; Théry et al. 2009). A common feature of all vesicle 
classes is their membrane structure, a lipid bilayer with the 
same topological orientation as the plasma membrane (Tra-
jkovic et  al. 2008). Although the origin of microvesicles 
and exosomes is well known, the experimental discrimi-
nation of these vesicles types is difficult, and so the terms 
are sometimes subsumed as extracellular vesicles. In this 
review, we follow the terminology used by the authors.

Exosome Biogenesis

The process of exosome biogenesis is not fully understood. 
It starts within endosomes which are responsible for regu-
lated trafficking of proteins and lipids between subcellu-
lar compartments of the secretory and endocytic pathway 
(Lemmon and Traub 2000). The cargo of endosomes can 
enter recycling circuits to return membrane components 
back to the plasma membrane, or can be sorted into lys-
osomes for degradation (Huotari and Helenius 2011). The 
content of cholesterol is associated with the fate of MVBs; 
cholesterol-poor MVBs are appointed for lysosome fusion 
and degradation (Möbius et  al. 2002). Exosomes formed 
within MVBs are released via exocytosis into the extra-
cellular space when cholesterol-rich MVBs fuse with the 
plasma membrane (Kalra et al. 2012).

During vesicle formation, cellular components, extra-
cellular ligands, and other endocytosed molecules, such as 
receptors, are packed into the vesicles (Gould and Lippin-
cott-Schwartz 2009). Molecules from the early endosomes, 
such as the tetraspanin CD63, or LAMP1 and LAMP2, are 
released through the vesicles (Colombo et al. 2014; Jaiswal 
et  al. 2002; Raposo et  al. 1996). The ESCRT (endoso-
mal sorting complex required for transport) machinery is 
involved in the budding process, as well as in the controlled 
sorting of proteins into exosomes. The ESCRT machin-
ery consists of four complexes, ESCRT-0 (Hrs), ESCRT-I 
(TSG101 and Vps28), ESCRT-II (Vps22), and ESCRT-III 
(Alix and Vps2), which sort ubiquitinylated proteins to 
the late endosomes. The ESCRT-III complex was shown 
to promote intraluminal budding of vesicles in endosomes 
which results in maturation of the cargo-containing vesicles 
(Colombo et al. 2013; Kowal et al. 2014). An ESCRT-inde-
pendent packaging mechanism was also proposed involving 
glycolipoprotein microdomains (lipid rafts) (Trajkovic et al. 
2008). Besides a big range of proteins, also nucleic acids 

like mRNA, miRNA, or DNA can be found in exosomes 
(http://www.exocarta.org) (Thakur et al. 2014; Valadi et al. 
2007). Interestingly, the miRNA contents of exosomes do 
not entirely parallel the miRNA composition inside the 
cell indicating selective loading mechanisms (Rappa et al. 
2013). For the selection of miRNA for exosomal export, 
several potential routes were described, one depending on 
neural sphingomyelinase 2 (Kosaka et al. 2013), a second 
based on uridylation versus adenylation of the 3′end of the 
miRNAs (Koppers-Lalic et  al. 2014), a third one involv-
ing sumoylated heterogeneous nuclear ribonuleoprotein 
(hnRNPA2B1) binding to a GGAG motif in the 3′part of 
miRNA sequences to be packed into exosomes (Villarroya-
Beltri et  al. 2013), and another one related to the RISC 
pathway (Gibbings et al. 2009). For the selective loading of 
mRNA into microvesicles, a 25-nucleotide sequence motif 
in the 3′-UTR of exported mRNAs was described (Boluk-
basi et  al. 2012). In cancer cell-derived exosomes, also 
fragments of chromosomal DNA were identified (Kahlert 
et al. 2014), their sorting mechanism into the vesicles has 
not yet been defined. The analysis of the miRNA content 
of exosomes allows to draw conclusions about the cell type 
from which the exosomes originated. Thus, determining the 
miRNA profile in extracellular vesicles derived from bod-
ily fluids of diseased persons has a huge potential for diag-
nostic purposes (Miller and Grunewald 2015; Verma et al. 
2015).

Cancer’s Immune Escape

The immune system provides a defense against attacks of 
foreign invaders, such as bacteria, viruses, and parasites, 
or the growth of cancer cells. Once it recognizes non-self 
antigens, it activates multiple chemical and physiological 
processes constituting the immune response (Kindt et  al. 
2007). The immune response comprises innate and adap-
tive immunity. The components of the innate response 
include antigen-presenting cells (APCs) like macrophages 
or dendritic cells (DCs) that are responsible for phagocy-
tosis, digestion, and presentation of pathogen-derived anti-
gens on the cell surface, and natural killer (NK) cells that 
directly destroy infected or transformed cells. The innate 
immune response is followed by the adaptive one which 
is based on activation of specific B and T lymphocytes. T 
cells are highly specialized cells that not only coordinate 
(T-helper: Th) or suppress (T-regulatory: Treg) the immune 
response, but also destroy infected cells (T-cytotoxic: 
CTL). B cells secrete antibodies which mark infected cells 
or pathogens to promote their elimination from the organ-
ism. The T-cell and B-cell responses include the produc-
tion of memory cells against the pathogen enabling quicker 
immune response in future challenges (Kindt et al. 2007).

http://www.exocarta.org
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Cancer cells have to express antigens which are rec-
ognized as non-self to elicit an immune response. Such 
tumor-associated antigens (TAA) are either mutated cel-
lular proteins, or molecules with differences in posttrans-
lational modifications (Finn 2012). TAA-derived peptides 
produced by the proteasome are presented through major 
histocompatibility complex (MHC) I complexes on the 
cell surface and recognized by CTLs resulting in tumor 
cell killing. The strategies used by tumors to escape this 
destruction include the impairment of the executory capac-
ity of the immune system, and hiding from recognition by 
immune cells through the loss of target antigen expres-
sion. Defective antigen presentation can be caused by the 
down-regulation of the antigen processing machinery 
which may affect the MHC-I pathway and other involved 
proteins like the proteasome subunits LMP2 (latent mem-
brane protein 2) and LMP7, the transporter associated 
with antigen processing, and tapasin (Garrido et al. 1997; 
Hicklin et al. 1999; Johnsen et al. 1999; Restifo et al. 1993; 
Rotem-Yehudar et al. 1996). When the expression of TAA 
is down-regulated, CTL no longer recognize the tumor 
cells (Maeurer et al. 1996). About 20 years ago, mutations 
in the β2-microglobulin gene have been identified in meta-
static melanoma cells resulting in the absence of HLA class 
I antigens on the cell surface (Benitez et al. 1998).

The production of immune suppressive cytokines by 
cancer cells or non-cancer cells in the tumor microenvi-
ronment exerts a powerful suppression of the anti-cancer 
immune response. Among these cytokines are transform-
ing growth factor (TGF)-β, tumor necrosis factor (TNF)-α, 
interleukin (IL)-1, IL-6, IL-8, IL-10, and type I interfer-
ons (IFNs) (Pasche 2001; Lind et al. 2004; Matsuda et al. 
1994). Furthermore, vascular endothelial growth factor 
(VEGF) has the ability to suppress proper T-cell develop-
ment and function (Ohm et  al. 2003). TGF-β and IL-10 
can shift the balance from a Th1 response executed by 
cytotoxic T cells towards an antibody-based Th2 response 
(immune deviation) (Maeda and Shiraishi 1996). Induction 
of immune tolerance may also occur through down-regula-
tion of co-stimulatory molecules on APCs. Engagement of 
the T-cell receptor (TCR) in the absence of co-stimulation 
induces anergy or tolerance in T cells (Staveley-O’Carrol 
et al. 1998). Tumors even eliminate tumor-specific CTLs by 
expressing ligands to death receptors which trigger T-cell 
apoptosis (Bogen 1996). Advanced cancer-induced immu-
nosuppression results in the induction and activation of 
immune suppressor cells like myeloid-derived suppressor 
cells (MDSCs) and Treg cells. Treg cells generally suppress 
the activity and proliferation of effector T cells (Shevach 
2002), fulfil an important function to maintain immune tol-
erance to self-antigen, and are critical in the suppression 
of autoimmune diseases. It was shown that tumor-derived 
Tregs have comparatively higher suppressive activity than 

naturally occurring Tregs (Yokokaw et al. 2008; Gasparoto 
et  al. 2010). The induction and activation of cancer-anti-
gen-specific Treg cells seem to be the major mechanism of 
tumor immune escape (Vinay et al. 2015).

Specific Features of Cancer Cell‑Derived 
Extracellular Vesicles

Cancer cells release increased amounts of exosomes com-
pared to their non-transformed counterparts (Pap et  al. 
2011). Chemotherapy or photo-dynamic treatment further 
boosts the release of extracellular vesicles (Aubertin et al. 
2016). Cancer-derived exosomes were shown to contrib-
ute to tumor angiogenesis, to transport growth promoting 
proteins, such as mutant KRAS, epidermal growth fac-
tor receptor (EGFR), and SRC family kinases, to induce 
therapy resistance by removal of chemotherapeutic drugs, 
and to prepare metastatic niches for the colonization of cir-
culating cancer cells (reviewed in Miller and Grunewald 
2015). For example, Al-Nedawi et al. (2008, 2009) showed 
that exosomes transferred functional EGFR from cancer 
cells to endothelial cells. Subsequently, VEGF secretion 
was induced which triggered autocrine VEGF signaling 
by binding to the endothelial VEGFR-2 and resulted in 
neovascularization.

Due to their complex structure, exosomes may con-
tribute to both, stimulation and suppression of immune 
responses. Whether cancer-derived exosomes stimulate 
immunity or tolerance seems to also depend on the amount 
of transferred vesicles with a suppressive effect at high ves-
icle concentration (Hellwinkel et al. 2016).

Immune Stimulation

Exosomes can promote immune responses by regulating 
signals for both, adaptive and innate immune responses 
(Zhang et  al. 2014). Cancer exosomes bear MHC class 
I and class II complexes at their surface and were able to 
function as antigen-presenting vesicles to directly activate 
T cells (Raposo et al. 1996). Exosomes derived from both 
human and murine B lymphocytes induced antigen-specific 
MHC class II-restricted T-cell responses. Primed antigen-
specific T cells were efficiently stimulated by MHC II com-
plexes on exosomes secreted from activated B cells, sug-
gesting a role for B-cell-derived exosomes to modulate an 
ongoing immune response or to maintain antigen-specific 
memory T cells. However, T-cell priming was necessary, 
as B-cell-derived exosomes could stimulate primed CD4+ 
T cells, but not naïve T cells (Muntasell et al. 2007; Raposo 
et al. 1996).
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In an indirect, but more efficient pathway of immu-
nostimulation, exosomes transfer tumor antigens to DCs 
and other APCs (Denzer et  al. 2000; Morelli et  al. 2004; 
Wolfers et  al. 2001). Tumor antigens from cancer-derived 
exosomes are captured and presented by APCs to induce 
efficient anti-tumor immune responses (Rao et  al. 2016). 
This pathway has extensively been exploited for cancer 
vaccination and immunization with exosomes isolated from 
ascites in colorectal cancer patients who were explored in 
phase I clinical trials (Dai et al. 2008). Human DCs loaded 
with glioma-derived exosomes activated a tumor-specific 
CTL response in vivo (Bu et al. 2011). Exosome treatment 
stimulated the up-regulation of MHC II molecules and the 
co-stimulatory receptors CD80 and CD86 on the DCs. 
The efficiency of anti-tumor immunity induction could be 
increased by either stimulation of Rab27a over-expression 
to boost exosome secretion (Li et al. 2013), or by express-
ing cytokines, such as TNF-α, in the exosome producing 
cells (Xie et  al. 2010). DCs loaded with tumor-derived 
exosomes were more efficient in vaccination of mice than 
DCs loaded with tumor cell lysates (Gu et  al. 2015; Yao 
et  al. 2013). Furthermore, targeting of tumor antigens to 
exosomes improved the vaccination efficacy (Rountree 
et  al. 2011). Another successful vaccination approach 
employed exosomes loaded with tumor peptide antigen 
and α-galactosylceramide to specifically target and activate 
NKT cells (Gehrmann et al. 2013). Increased levels of heat-
shock proteins on exosomes derived from heat-shocked 
lymphoma cells improved the anti-tumor immune response 
(Chen et  al. 2006). The presentation of tumor antigens to 
DCs by exosomes could also be improved by modification 
of exosomes with immunostimulatory CpG DNA (Morish-
ita et al. 2016).

Dendritic cells not only take up, but also produce vesi-
cles to transfer MHC/peptide complexes to other immune 
cells (André et  al. 2004). Such exosomes derived from 
TAA-loaded DCs were directly used as cancer vaccines 
(Escudier et al. 2005; Mahaweni et al. 2013; Näslund et al. 
2013; Viaud et al. 2010). Théry et al. (2002) showed that 
DC-derived exosomes could stimulate naïve CD4+ T cells 
in  vivo. Incorporation of poly(I:C), a ligand for Toll-like 
receptor 3 (TLR3), into antigen-loaded exosomes was 
demonstrated to improve the vaccination efficiency of DC-
derived vesicles (Damo et  al. 2015). This approach could 
be further improved using exosomes derived from mature 
DCs pulsed with DC-derived exosomes (Hao et al. 2007). 
The usage of DC-derived exosomes for cancer vaccination 
has reached phase I clinical trials which demonstrated the 
safety of this approach (Escudier et al. 2005).

Pro-inflammatory effects of tumor-derived exosomes 
were described for macrophages. Exosomes derived from 
melanoma cells affected the cytokine and chemokine pro-
file in macrophages (Marton et al. 2012). Wu et al. (2016) 

demonstrated that macrophages activated by gastric cancer-
derived exosomes acquired a pro-inflammatory phenotype. 
Exosome uptake by macrophages stimulated the NF-κB 
pathway to increase the expression of pro-inflammatory 
factors, such as IL-6 and TNF-α (Wu et al. 2016). A simi-
lar NF-κB-dependent up-regulation of inflammatory factors 
via TLR2 was found by Chow et al. (2014). Interestingly, in 
this study, the inflammatory response was elicited only by 
exosomes secreted by breast cancer cells but not by vesicles 
from non-cancerous cell lines.

In conclusion, exosomes derived from cancer cells 
or TAA-loaded APCs provide a promising tool for can-
cer immunotherapy and vaccination due to their immu-
nogenicity which can be further increased by innovative 
approaches.

The Functions of Cancer‑Derived Exosomes 
in Immunosuppression

To escape destruction by the immune response, tumors 
avoid to be recognized by cytotoxic cells, directly impair 
the functioning of APCs or cytotoxic cells, or induce sup-
pressor cells which consequently shut down immune reac-
tions. Immune cells are even converted into supporters of 
tumor growth and survival. Exosomes participate in all 
these strategies through proteins exposed at their surface, 
and intra-vesicular cytokines and nucleic acids (Fig. 1).

Defective Antigen Presentation

The body’s own cells are protected from the attack of 
cytotoxic T cells by exposing on their surface MHC 
class I molecules presenting peptides derived from un-
mutated normal proteins. Tumor cells expressing MHC-I/
TAA-peptide complexes instead are destroyed by cyto-
toxic T cells. To escape this destruction, cancer cells may 
down-regulate MHC-I expression. However, according 
to the “missing self” hypothesis, cells lacking MHC-I/
self-peptide expression (“missing self”) are recognized 
and destroyed by NK cells (Ljunggren and Kärre 1990). 
In this way, the immune system counteracts the escape 
strategy of transformed and virus infected cells through 
down-regulation of MHC-I. To avoid destruction by 
NK cells after shutting down MHC-I expression, can-
cer cells have to find a way to inhibit NK-cell cytotox-
icity. One possibility is the shedding of exosomes which 
affect the cytotoxic ability of NK cells (Clayton et  al. 
2008). NK-cell activity is regulated by the interplay of 
activating and inhibitory receptors. One of the activat-
ing receptors is NKG2D (NK group 2, member D) which 
interacts with its human ligands MIC-A and MIC-B 
(MHC class I chain-related proteins A and B) and ULBP 
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(UL-16-binding protein) (Groh et  al. 2002; Raulet and 
Guerra 2009). Hedlund et al. (2011) showed that NKG2D 
ligands (MIC-A/B and ULBP 1 and 2) are expressed and 
secreted on exosomes. The authors demonstrated that 
NKG2D ligand-carrying exosomes impair NKG2D-medi-
ated NK-cell cytotoxicity by acting as a decoy and, thus, 
contribute to the immune evasion of leukemia/lymphoma 
cells (Hedlund et al. 2011). Exosomes exposing NKG2D 
ligands are further able to down-regulate NKG2D expres-
sion on NK cells. This was shown for exosomes produced 
by human prostate cancer cells (Lundholm et  al. 2014) 
and by acute myeloid leukemia blasts (Hong et al. 2014).

Suppression of APCs and Cytotoxic T Cells

Exosomes carry a spectrum of membrane-bound factors 
which have been shown to mediate immune suppres-
sion, representing another mechanism utilized by tumors 
to evade anti-tumor functions of immune cells (Schuler 
et  al. 2014). The prime target of direct immunosuppres-
sion is the cytotoxic T cell. Growth inhibition of CD8+ 
cytotoxic T cells mediated by glioblastoma derived 
exosomes was shown to promote tumor growth in mice 
(Liu et  al. 2013). A similar observation was made with 
microvesicles isolated from the sera of head and neck 
cancer and melanoma patients, which impaired signal-
ing and proliferation of CD8+ CTLs (Wieckowski et  al. 
2009).

Vesicle‑Associated Immunosuppressive Cytokines

One of the major immunosuppressive cytokines is TGF-β 
which can be associated with and exposed at the exosome 
surface. The potency of this vesicular form to influence cell 
differentiation exceeds that of the soluble form (Webber 
et al. 2015). In acute myeloid leukemia, NK cells became 
suppressed by tumor-derived microvesicles via TGF-β1 on 
the exosome surface (Szczepanski et al. 2011), and breast 
cancer-derived exosomes suppressed T-cell proliferation 
through this cytokine (Rong et al. 2016).

Apoptosis Induction

Tumor-derived microvesicles were shown to induce T-cell 
apoptosis through the receptor-mediated pathway (Tay-
lor et al. 2003; Wieckowski et al. 2009). For example, Fas 
ligand (FasL)-containing microvesicles from melanoma 
cells triggered apoptosis of Jurkat and other lymphoid cells. 
Engagement of the death receptor Fas by FasL resulted 
in apoptotic cell death, mediated by caspase activation 
(Andreola et al. 2002). Exosome-like particles derived from 
human colorectal cancer cells expressed FasL and TNF-α 
and triggered T-cell apoptosis in vitro and in vivo (Huber 
et  al. 2005). In addition, exosomes produced by prostate 
cancer cells or human B-cell-derived lymphoblastoid cell 
lines suppressed T-cell responses through FasL-mediated 
induction of apoptosis (Abusamra et al. 2005; Klinker et al. 
2014). Another pathway of apoptosis induction in CD4+ 

Fig. 1   Schematic representa-
tion of the most important 
functions of cancer-derived 
exosomes in immunosup-
pression. Active molecules 
transported by exosomes and 
their effects on immune cells 
are indicated
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Th1 cells was described for exosomes derived from naso-
pharyngeal carcinoma cell. These exosomes carried high 
amounts of galectin-9 which triggered cell death by binding 
to its cellular receptor, Tim-3 (Klibi et al. 2009).

Gene Regulatory Effects

In general, exosomes can modify the transcriptional profile 
of the recipient cells by receptor activation, or by directly 
changing gene expression through delivered nucleic acids 
(Skog et  al. 2008; Valadi et  al. 2007). In a recent study, 
Muller et al. (2016) showed that signals delivered by can-
cer exosomes induced changes in the transcriptional pro-
file of T cells and that immune response-regulating genes 
were preferentially targeted in T lymphocytes, especially in 
activated T lymphocytes. Cancer exosomes co-incubated 
with human CD4+ CD39+ Treg cells, conventional CD4+ 
T cells, or CD8+ T lymphocytes differentially regulated 
the expression of key immune function-related genes. The 
changes in mRNA expression levels were dependent on the 
cell type and the activation status. Incubation with cancer-
derived exosomes increased the levels of critical immune 
inhibitory proteins, such as TGF-β, IL-10, COX-2, CD39, 
and CD73 (Muller et al. 2016).

While a role of exosomal mRNAs in cancer-mediated 
immunosuppression was not yet described, a few publica-
tions found an influence of exosome transported miRNAs. 
Ding et al. (2015) found increased levels of nine miRNAs 
in DCs treated with exosomes isolated from pancreatic 
cancer cells. Consequently, more than 200 mRNAs were 
down-regulated. They further demonstrated that miR-212 
caused a decrease in MHC II expression by targeting regu-
latory factor X-associated protein, an important transcrip-
tion factor for MHC II. In exosomes from nasopharyngeal 
carcinoma cells, five over-expressed miRNAs (hsa-miR-
24-3p, hsa-miR-891a, hsa-miR-106a-5p, hsa-miR-20a-5p, 
and hsa-miR-1908) were identified which reduced MAP-
kinase signaling in T cells thus altering proliferation and 
differentiation behavior (Ye et  al. 2014). Recently, it was 
shown that hypoxia changed the immunosuppressive poten-
tial of extracellular vesicles. Microvesicles isolated from 
hypoxic lung carcinoma cells showed a stronger inhibi-
tion of NK-cell function than those isolated in normoxic 
conditions. The immunosuppressive effect was mediated 
by miR-23a, in addition to TGF-β (Berchem et  al. 2015). 
MiR-4498 showed higher levels in hypoxic exosomes iso-
lated from melanoma cells (own unpublished results) and 
might influence immune responses by targeting CD83, an 
immunostimulatory molecule critical for the activation of T 
cells (Su et al. 2016). In murine tumor models, mir-494 was 
shown to regulate the activity of MDSC (myeloid-derived 
suppressor cells), a major type of immunosuppressive cells 
(Liu et al. 2012).

Other Exosome‑Triggered Direct Immunosuppressive 
Mechanisms

Additional mediators involved in immune suppression 
include CD39 and CD73 present on the surface of cancer-
derived exosomes (Schuler et al. 2014; Smyth et al. 2013). 
CD39 and CD73 initiate an ectonucleotidase cascade that 
generates extracellular adenosine, which has suppressive 
effects on T cells. It is known that adenosine in the extracel-
lular environment is a potent immune regulatory factor pro-
tecting cells and tissues from excessive immune-mediated 
damage and negatively regulates local immune responses. 
Exosomes secreted by cancer cells contributed to extracel-
lular adenosine production and hence indirectly modulated 
immune effector cells (Clayton et  al. 2011). An entirely 
different mechanism was described for melanoma-derived 
exosomes which raised ROS levels in T cells resulting in 
impaired TCR signaling due to zeta-chain inactivation 
(Söderberg et al. 2007).

Tumor exosomes also exerted a direct influence on mes-
enchymal stem cells (MSCs). MSCs are multipotent stro-
mal cells with important function in tissue regeneration. 
MSCs support cancer progression and may create a local 
immunosuppressive microenvironment. Lung tumor cell 
A549-derived exosomes induced a pro-inflammatory phe-
notype of MSCs. Hsp70 on the surface of the exosomes 
triggered signaling through TLR2 leading to activation of 
NF-κB and elevated secretion of IL-6, IL-8 and monocyte 
chemotactic protein 1 by MSCs (Li et  al. 2016). A sum-
mary of immunosuppressive effects elicited by cancer-
derived exosomes is presented in Table 1.

Induction and Activation of Immunosuppressive Cells

Tumor-derived exosomes were found to direct the differ-
entiation of naïve immune cells towards an immunosup-
pressive phenotype and to activate the suppressor cells. 
The generation, expansion, and activation of Treg cells 
can be driven by cancer-derived exosomes (Szajnik et  al. 
2010; Wieckowski et al. 2009). Clayton et al. investigated 
that whether tumor-derived exosomes could modify lym-
phocyte IL-2 responses. Mesothelioma-derived exosomes 
induced human Treg cells (CD4+CD25+Foxp3+) which 
exerted dominant anti-proliferative effects on other T and 
NK lymphocytes in response to IL-2. Due to an exosome-
related mechanism, IL-2 responsiveness was shifted in 
favor of Treg cells and away from cytotoxic cells (Clayton 
et  al. 2007). Exosomes from nasopharyngeal carcinoma 
recruited Treg cells into the tumor through the chemokine 
CCL20, and mediated the conversion of the conventional T 
cells into Treg cells (Mrizak et al. 2014).

Under the influence of exosomes secreted by naso-
pharyngeal carcinoma cells, T-cell proliferation was 
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Table 1   Summary of immunosuppressive effects elicited by exosomes

Source of exosomes Molecule Effect on immune cells References

Jurkat and Raji cell lines NKG2D ligands Decoy for NKG2D receptor function Hedlund et al. (2011)
Mesothelioma and various cancer cell 

lines
TGF-β NKG2D down-modulation Clayton et al. (2008)

Head and neck squamous cell carcinoma; 
melanoma cell lines

FasL Promotion of Treg cell expansion and the 
demise of anti-tumor CD8+ effector T 
cells, induction of TGF-β production 
by Treg

Wieckowski et al. (2009)

Colorectal cancer FasL, TNF-α CD8+ T-cell apoptosis Abusamra et al. (2005)
Ovarian cancer FasL Apoptosis and caspase-3 activation 

within T cells
Taylor et al. (2003)

Melanoma FasL Apoptosis in lymphoid cells Andreola et al. (2002)
Colorectal cancer FasL, TNF-α T-cell apoptosis Huber et al. (2005)
B-cell lymphoma FasL T-cell apoptosis Klinker et al. (2014)
EBV-associated NPC Galectin-9 Apoptosis in EBV-specific CD4+ cells Klibi et al. (2009)
Acute myeloid leukemia Membrane-associated TGF-β Suppression of NK-cell function Szczepanski et al. (2011)
Various cancer cell lines CD39 and CD73 Generation of extracellular adenosine Clayton et al. (2011)
Pancreatic cancer Nd Increased levels of 9 miRNAs, down-

regulation of >200 mRNAs
Ding et al. (2015)

Lung carcinoma miR-23a
TGF-β

Inhibition of NK-cell function Berchem et al. (2015)

Melanoma Nd TCR zeta-chain inactivation through 
ROS

Söderberg et al. (2007)

Head and neck cancer cell line Nd Regulation of immune response-related 
genes in T cells, up-regulation of TGF-
β, IL-10, COX-2, CD39, CD73 and 
adenosine production

Muller et al. (2016)

Pancreatic cancer miR-203 Down-regulation of TLR4 and down-
stream cytokines in DCs

Zhou et al. (2014)

Nasopharyngeal carcinoma miR-24-3p, miR-891a, 
miR-106a-5p, miR-20a-5p, 
miR-1908

T-cell dysfunction through down-regu-
lation of the MAPK1 and JAK/STAT 
pathways

Ye et al. (2014)

Lewis lung carcinoma cell line and 
human embryonic kidney cell line

miR-214 Down-regulation of PTEN and promotion 
of Treg expansion

Yin et al. (2014)

Mesothelioma and various cancer cell 
lines

TGF-β Induction of human Treg cells Clayton et al. (2007)

Nasopharyngeal carcinoma Nd Conversion of the conventional T cells 
into Treg

Mrizak et al. (2014)
Ye et al. (2014)

Colorectal cancer TGF-β Induction of Treg cells Yamada et al. (2016)
Melanoma Nd Generation of CD14+HLA-DR−/low cells 

secreting TGF-β
Valenti et al. (2006)

Murine mammary adenocarcinoma Nd Blockage of myeloid precursor differen-
tiation into DCs

Yu et al. (2007)

B16 mouse model for human melanoma Nd MDSC inducion involving MyD88 Liu et al. (2010)
Mammary carcinoma TGF-β, PgE2 Promotion of MDSC differentiation Xiang et al. (2009)
Multiple myeloma Nd Promotion of MDSC viability and pro-

liferation
Wang et al. (2016)

Renal cancer Hsp70 TLR2 mediated Stat3 activation in 
MDSC

Diao et al. (2015)
Xiang et al. (2010)

Various cancer cell lines Hsp72 Stat3 activation and IL-6 production in 
MDSC

Chalmin et al. (2010)

Murine thymoma Nd Induction of B cells with inhibitory 
function

Yang et al. (2012a)

Esophageal cancer Nd Induction of regulatory B cells express-
ing TGF-β

Li et al. (2015)
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inhibited, while Treg induction was stimulated (Ye et  al. 
2014). Furthermore, the production of IL-2, IL-17, and 
IFN-γ was decreased indicating impaired immune stimula-
tion. Extracellular vesicles from colorectal cancer cells acti-
vated Smad signaling in T cells through exosomal TGF-β1 
changing the phenotype into Treg-like cells (Yamada et al. 
2016). In addition, miRNAs transported via microvesicles 
participated in the induction of the Treg cell phenotype, as 
shown for MiR-214 which mediated reduction of the PTEN 
(phosphatase and tensin homolog) level in mouse periph-
eral CD4+ T cells (Yin et al. 2014). Interestingly, exosomes 
were described to elicit antigen-specific immunosuppres-
sion (Yang et al. 2011, 2012b). The application of tumor-
derived exosomes suppressed a delayed-type hypersensi-
tivity response to a model antigen in an antigen-specific 
manner. The exact mechanism is not known but might 
include modulation of APCs.

Tumor-derived vesicles are able to impair DC devel-
opment and to induce MDSCs (Valenti et al. 2006). The 
presence of cancer exosomes severely impaired the dif-
ferentiation of DCs from murine bone marrow precursors 
or from human monocytes (Yu et al. 2007). The induction 
of IL-6 expression in the precursor cells was partially 
responsible for the observed block in DC differentiation. 
Valenti et  al. (2006) showed that tumor-derived vesicles 
not only inhibited DC differentiation, but actively skewed 
precursors toward the acquisition of a MDSC phenotype. 
These cells mediated negative regulation of effector cells, 
e.g., through the secretion of soluble TGF-β (Valenti 
et al. 2006). Exosomes derived from murine breast carci-
nomas triggered the MDSC differentiation pathway, and 
this activity was dependent on prostaglandin E2 (PgE2) 
and TGF-β (Xiang et  al. 2009). In addition, exosomes 
released by human multiple myeloma cells promoted the 
viability and proliferation of MDSCs (Wang et al. 2016). 
MDSC survival was supported by the activation of Stat3 
(Wang et  al. 2015). Renal cancer cell-derived exosomes 
induced the phosphorylation of Stat3 in MDSCs in a 
TLR2-dependent manner through the transfer of heat-
shock protein 70 (Hsp70) (Diao et al. 2015). Blocking the 
Hsp70/TLR2 interaction with a peptide aptamer reduced 
the ability of tumor-derived exosomes to stimulate 
MDSC activation (Gobbo et  al. 2015). The dependence 
of MDSC expansion on TLR2 was further investigated 
and confirmed by Xiang et al. (2010). In addition, mem-
brane-bound Hsp72 in exosomes derived from human 

and murine cancer cell lines activated MDSCs and stimu-
lated their suppressive function via Stat3 activation and 
IL-6 production (Chalmin et  al. 2010). The involvement 
of MyD88 in the recruitment and activity of MDSC 
after exposure of bone marrow derived cells to tumor 
exosomes was shown in mice (Liu et  al. 2010). MyD88 
is a downstream effector of TLR signaling, and thus the 
findings corroborate the critical involvement of the TLR 
pathway.

In addition, the promotion of B cells with inhibitory 
activity by cancer exosomes was reported (Yang et  al. 
2012a). Mycoplasma-infected murine thymoma and 
melanoma cells released exosomes that induced IL-10 
production in splenic B cells. Another study described 
how under the influence of esophageal cancer-derived 
microvesicles naïve B cells developed into immunosup-
pressive regulatory B cells expressing TGF-β (Li et  al. 
2015).

The conversion of cancer-suppressive cells into sup-
porters of tumor growth and survival by exosomes was 
described for macrophages. Macrophages are the most 
abundant immune cells within the tumor microenvi-
ronment. Macrophages can be polarized into a cancer-
suppressive M1 or a tumor supportive M2 phenotype. 
Exosomes from epithelial ovarian cancer were shown 
to shift macrophages towards the M2 phenotype (Ying 
et al. 2016). The involvement of miR-222 transferred by 
the exosomes was proposed through down-regulation of 
SOCS3. A similar activity was attributed to miR-494 that 
inhibited macrophage polarization and switched them 
towards the immunosuppressive M2 type (Zhao et  al. 
2016). In a co-culture system of murine cell lines, pan-
creatic cancer cell-derived exosomes shifted macrophage 
polarization to the M2 phenotype (Su et al. 2016). Over-
expression of miR-155 and miR-125b-2 in the cancer 
cells reverted this effect and resulted in M1 polarized 
macrophages upon exosome exposure. The differentiation 
of monocytes into macrophages in the presence of colon 
cancer cell-derived EVs revealed increased IL-10 secre-
tion and a mixed M1/M2 polarization status which, after 
longer incubation time, switched to the regulatory M2 
phenotype (Baj-Krzyworzeka et al. 2016).

The great variety of mechanisms to induce immunosup-
pressive cells exemplifies the potential of EVs to modulate 
the function of recipient cells by the transfer of bioactive 
molecules.

Table 1   (continued)

Source of exosomes Molecule Effect on immune cells References

Ovarian cancer miR-222 Conversion of M1 macrophages into the 
M2 phenotype

Ying et al. (2016)

Nd not defined, EBV Epstein–Barr virus, NPC nasopharyngeal carcinoma, ROS reactive oxygen species, PTEN phosphatase and tensin homolog



319Arch. Immunol. Ther. Exp. (2017) 65:311–323	

1 3

Exosomes Derived from Cancer Cells and Normal Cells 
Share Immune Signaling Functions

Recently, a very comprehensive review of the physiological 
roles of EVs was published covering their currently known 
functions in healthy organisms (Yáñez-Mó et  al. 2015). 
This overview confirmed the crucial importance of EVs in 
intercellular signal transduction with effects on coagulation 
and angiogenesis, reproduction, embryonic development, 
tissue repair, organ homeostasis, and immunity. Communi-
cation between immune cells is one of the best character-
ized roles of exosomes and other EVs. Increased release of 
exosomes was observed upon interaction of DCs or B cells 
with T cells (Buschow et al. 2009; Muntasell et al. 2007), 
or when T-cell antigen receptors were engaged (Blanchard 
et al. 2002).

EVs from different sources exert immunosuppressive 
effects. Exosomes released from CD4-positive Th cells 
could suppress the activity of cytotoxic T cells (Zhang 
et al. 2011). Tolerogenic EVs derived from non-malignant 
cells contribute to the establishment and maintenance of 
the immune-privileged status of certain tissues. An impor-
tant example is the human embryo which is protected dur-
ing pregnancy from immune attacks by the exchange of 
EVs at the interface between the maternal placenta and 
the fetus. Placenta-derived exosomes were shown to sup-
press the immune system by carrying NKG2D ligands 
(MIC and the ULBP), which bind and down-regulate the 
NKG2D receptor on NK cells, CD8+, and γδ T cells, con-
sequently reducing the cytotoxicity of these cells (Hedlund 
et  al. 2009; Mincheva-Nilsson et  al. 2006). Furthermore, 
clusters of FasL and TRAIL were identified on placental 
exosomes able to trigger apoptosis in T cells (Stenqvist 
et al. 2013). MSCs are another source of tolerogenic EVs. 
It has been reported that the regenerative effects in tissue 
injury exerted by MSCs are mediated in part by EVs and 
this includes an immunosuppressive component consist-
ing of both RNA and proteins (Arslan et al. 2013; Burrello 
et al. 2016; Cantaluppi et al. 2012).

The immunosuppressive effects of donor-derived 
exosomes were even used to prolong graft survival after 
transplantation. Heart allograft survival in MHC-mis-
matched rats could be prolonged by injection of exosomes 
derived from donor bone marrow DCs before transplan-
tation (Pêche et al. 2006). In addition, in a mouse model, 
exosomes isolated from immature DCs in combination with 
immunosuppressive drugs improved cardiac allograft sur-
vival (Li et al. 2012).

Immunoregulatory functions have been identified for 
several miRNAs transferred by EVs from non-transformed 
cells. Alexander et  al. (2015) reported that exosomes can 
modulate the response to endotoxin-induced inflammation 
by transferring miRNA to antigen presenting cells. Two 

miRNAs that regulate inflammation, miR-146a and miR-
155, were released from DCs within EVs and were taken 
up by recipient DCs. Injection of miR-146a-containing 
exosomes into mice inhibited the inflammatory response 
to endotoxin. A role of miR-146a in modulation of adap-
tive immunity was also suggested by Curtale et al. (2010). 
Up-regulation of miR-146a in T cells after stimulation of 
the TCR resulted in an anti-apoptotic signal counteract-
ing activation-induced cell death. In exosomes derived 
from Foxp3+ Treg cells, let-7d was found to suppress Th1 
cell proliferation and IFN-γ secretion (Okoye et al. 2014). 
A soluble T-cell suppressor factor recognized earlier to 
mediate antigen-specific inhibition of contact sensitivity 
was identified as miR-150. This miRNA was transported 
by exosomes derived from suppressor T cells (Bryniarski 
et al. 2013; Ptak et al. 2015) and the suppressive effect was 
dependent on the presence of macrophages (Nazimek et al. 
2015).

As it is the case with all other mechanisms that support 
tumor growth, survival, and progression, also immunosup-
pression is not specific for cancer, but is abused during the 
disease to escape the immune surveillance program of the 
host.

Conclusion

Tumors are heterogeneous, and different cells within the 
tumor may use different immune-escape mechanisms, 
such as apoptosis induction, impaired antigen presenta-
tion, or secretion of immunosuppressive factors. Moreover, 
multiple mechanisms may develop in a single tumor cell. 
Therefore, it is questionable whether a single, predominant 
immune-escape mechanism can be identified in a tumor. 
Exosomes participate in all kinds of mechanisms by which 
cancer evades immune surveillance and takes control over 
the immune system. Several aspects of the in  vivo activ-
ity of exosomes are still unknown, especially how far they 
spread from the site of secretion and what quantities are 
secreted and captured by target cells. However, it is clear 
that cancer-derived exosomes are able to induce alterations 
of immune cell functions and a deeper insight into the cel-
lular and molecular mechanisms underlying tumor immune 
escape using exosomes may finally lead to novel therapeu-
tic approaches for the benefit of cancer patients.
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