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'e development of industry is inseparable from the support of steel materials, and the modern industry has increasingly high
requirements for the quality of steel plates. But the process of steel plate production produces many types of defects, such as roll
marks, scratches, and scars. 'ese defects will directly affect the quality and performance of the steel plate, so it is necessary to
effectively detect them. Steel plate surface defects are characterized by their types, shape, and size: the same defect can have
different morphologies, and similarities can exist between different defects. In this paper, industrial steel plate surface defect
samples are analyzed, and a sample set is established by screening the collected defect images. 'en, annotation and classification
are performed. A multilayer feature extraction framework is developed in experiments to train a neural network on the sample set
of defects. To address the problems of low automation, slow detection speed, and low accuracy of the traditional defect detection
methods, the attention graph convolution network (AGCN) is investigated in this paper. Firstly, faster R-CNN is used as the basic
network model for defect detection, and the visual features are jointly refined by combining attention mechanism and graph
convolution neural network. 'e latter network enriches the contextual information in the visual features of steel plates and
explores the semantic association between vision and defect types for different kinds of defects using the attention mechanism to
achieve intelligent detection of defects, thus enabling our method to meet the practical needs of steel plate production.

1. Introduction

Steel is widely used in daily life and industrial production in
a very large number of application areas and is the basic
material for many products. According to statistics, in
people’s daily use of metal, steel accounts for up to 90% and
is involved in most common products (home appliances, cell
phones, etc.). 'e use of steel is essential in many industries,
such as petrochemical, vehicle engineering, aerospace,
military defense, and other fields, and its excellent perfor-
mances have an invaluable role [1]. China’s steel production
in 2019 was as high as 996 million tons, accounting for
53.31% of the world’s total production, far ahead of any
other country [2].

Steel is an important and indispensable material in the
modern construction of the country, and it is used in various
production fields, especially in automotive, construction,

and bridges. 'e production of steel plate is an extremely
long and complicated process, from the raw stone to the final
plate. It undergoes several processing steps, so the finished
steel plate will inevitably have defects, most of them in the
form of iron oxide, holes, cracks, scrapes, scratches, etc., on
its surface. 'ese defects directly affect the compressibility,
toughness, corrosion resistance, and plasticity of the steel
plates, rendering the manufactured products unable to meet
customer requirements and resulting in severe economic
losses for manufacturers. Without a set of effective testing
methods, unqualified steel plate products put into use can
even endanger people’s lives and safety. Although steel
production is high and export volumes are large, China still
suffers from a slight shortage of automation compared to
some developed countries [3]. Surface quality is a very
important performance indicator of steel products, but it has
not received the attention it deserves. According to statistics,
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because of surface quality problems, large steel industrial
groups lose an average of about 6 million U.S. dollars a year
because surface defects lead to the return of the products.
According to the market response, the vast majority of
companies are challenged by the presence of surface defects,
causing huge economic losses and hindering the transfor-
mation and upgrading of enterprises. Hence, controlling
steel surface defects at the source is a very effective measure.
'erefore, steel plate manufacturers need to carry out ef-
fective quality inspection of their products, to screen the
steel plates that do not meet the technical specifications and
improve the yield rate of the delivered products. On the
other hand, analyzing the causes of surface defects will
provide a reliable basis for improving the steel plate pro-
duction technology. However, it is difficult to detect surface
defects on steel plates. Production is made in very harsh
environments, so it is difficult to install and protect in-
spection equipment; furthermore, moisture and impurities
increase the difficulty of inspection [4].

Many researchers have studied defect detection and
proposed several effective methods, mostly based on manual
visual inspection [5], magnetic particle detection, penetra-
tion detection, eddy current detection, ultrasonic detection,
traditional machine vision detection and identification, and
deep learning detection and identification methods. But the
recent developments in artificial intelligence theory and
technology [6], the emergence of high-speed, high-precision
CCD and CMOS industrial cameras, and the tremendous
increase of CPU and GPU computing power and distributed
computing provide the theoretical basis and hardware
conditions for high-speed high-precision detection of steel
surface defects based on computer vision. Deep learning
benefits from the recent progress in computing power and
automation technologies. It is one of the most representative
fields of artificial intelligence, with excellent performance in
image classification, target detection, segmentation, and
target tracking. Deep learning stands out in the field of
related technologies with powerful memory capability,
nonlinear mapping capability, self-learning capability, and
robustness [7]. Training a deep learning network with a large
amount of data enables the low-level network to automat-
ically learn the detailed features in the data and the high-
level network to automatically learn the abstract features. So
far, deep learning techniques have been widely used in
agriculture, medicine, automotive, and aviation. One of its
important applications in industrial production is product
quality estimation, where it efficiently overcomes the
shortcomings of traditional defect detection methods, more
sensitive to human and external environment interference.
Deep learning-based methods can detect products defect
more quickly and accurately.

'e surface quality of a steel strip is an important in-
dicator to evaluate the grade of steel. Surface defects not only
affect its appearance, which is not conducive to sales and
exports but also affect its mechanical properties and quality,
decreasing its stiffness and strength and reducing its cor-
rosion resistance. Defects may also be the cause of serious
safety accidents. Analysis of the steel surface defects shows
that there can be various kinds of defects on the steel surface,

such as cracks, scratches, patches, inclusions, pitting, and
bonds in the oxide skin, etc. In this paper, we propose a novel
steel surface defect detection method (called AGCN) based
on the attention mechanism and graph convolution neural
network. 'e main contributions include the following: (1)
the use of faster R-CNN [8] as the basic network model for
surface defect detection and the combination of attention
mechanism and graph convolution neural network; (2)
exploring the contextual information in the visual features of
steel plates and enhancing the semantic association between
visual features and defect types using the attention mech-
anism and graph convolution neural network. Extended
experiments are conducted on the steel surface dataset, and
the advanced performance and effectiveness of the proposed
method are demonstrated by method comparison and ab-
lation analysis.

2. Related Work

2.1. SteelPlate SurfaceDefectDetection. 'edetection of steel
surface defects began to develop in the 1920s and can be
roughly divided into three families of methods: manual
inspection, traditional photoelectric detection, and machine
vision detection.

Manual inspection method, also known as manual visual
method, was the first to be used. At that time, with the
backward production technology, slow production speed,
and low demand for products, the speed and quality of
product testing were not very demanding. However, with the
improvement in the level of production, the increase in
demand and the disappearance of the demographic divi-
dend, the shortcomings related to low inspection efficiency,
high labor intensity, and nonuniform inspection standards
gradually appeared and the inspection methods were no
longer suitable for the requirements of speed and accuracy
and were gradually abandoned [9].

Traditional photoelectric detection with optical sensors
has been gradually applied in many enterprises, which
improved the detection speed, accuracy, and efficiency [10].
Other methods based on eddy current detection and Far-
aday’s electromagnetic induction principles have been de-
veloped. Common practice is to apply an alternating current
to the strip surface, generating an alternating magnetic field
affecting the detection coil. Measuring the induction current
and impedance changes enables to determine the presence of
defects. 'e main disadvantages are (1) waste of resources
and (2) the method is not suitable for the detection of small
defects. Leakage detection methods are based on the prin-
ciple that when the steel plate is magnetized by a strong
magnetic field, the change in the cross-sectional area of the
steel plate due to the defect affects the magnetic permeability
and reluctance. A part of the magnetic field bypasses the
defective part through the surrounding air, causing the
deformation of the magnetic field, from a straight line to a
curve. 'e corresponding sensor converts the change of
magnetic field into an electrical signal, and the size of the
defect on the surface of the steel plate can be estimated from
the electrical signal size. Leakage detection technology is a
very simple, highly reliable, and fast detection technology,
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subject to small environmental interference factors. But at
the same time, there are simple leakage signal characteristics,
detection of defects, and a limited variety of disadvantages
[11]. Infrared detection methods use the principle that any
object continuously emits infrared waves depending on its
temperature, according to Planck’s law of radiation, Wien’s
displacement law, Stefan–Boltzmann’s law, etc. Infrared
detection is more functional and can be used for defect
detection, stress and fatigue analysis, simulation, image
processing and fault diagnosis, and some other functions.
'e detection device is made of three main parts: the ex-
citation part (signal generator and excitation source), the
infrared camera, and the PC terminal. 'e working process
is roughly to apply the corresponding excitation source to
the steel material to obtain its thermal phase diagram. Since
the temperature of the defective and nondefective parts of
the steel is not the same, this will form areas with different
temperature levels on the steel surface and emit different
infrared waves. However, this method can only detect a few
defect types, so it cannot be widely used. Laser scanning
detection uses a laser as the emitting light source. 'e laser
beam is reflected on the surface of the strip towards a ro-
tating reflector and finally through the optical system
equipped with an electric multiplier tube which converts it
into an electrical signal through the converter, so that it can
ensure the detection of defects at a certain speed. Using
upper and lower lasers, this method enables to scan si-
multaneously both sides of the strip and obtain two-sided
data of the inspected material. 'e final image is then
processed and analyzed by a computer. However, laser
detection technology requires high environmental protec-
tion, allows only slow detection speed, continuous motion of
the laser life and reliability is reduced, and the purchase and
maintenance costs are high. 'e limitations are large, and it
is difficult to make further breakthroughs. So many com-
panies began to look for low cost, high detection efficiency,
and easy maintenance detection equipment.

With the breakthrough of CCD (charge-coupled device)
camera and related hardware, while computer technology
gradually developed and gradually appeared in industries,
online machine vision-based steel plate inspection became
popular. Figure 1 shows the working process and the role of
each part: the steel plate to be inspected moves below the
light source which provides additional light to remove the
influence of background light and provide clear images
collected by the camera which transmits them to the
computer [12]. 'e computer analyzes and processes the
images in real time according to the existing model and
framework to assess the grade or defect situation of the steel
plate surface. 'e use of CCD image sensors and pattern
recognition technology has greatly improved the efficiency
of steel surface defect detection, while various industries
have started to detect surface defects with the help of similar
devices.

Deep learning-based machine vision algorithms are the
core of machine vision surface inspection technology, which
is the key technology of the whole inspection system and one
of the most challenging problems in the whole machine
vision field. For steel surface defect detection, it is a popular

research direction today to study algorithm models that can
be executed with high accuracy, quickly extract the image
features, and accurately identify the defect’s category and
location in real-time using massive image data. Deep
learning is an end-to-end feature extracting algorithm, in
which the model is similar to a black box. 'e process in-
volves entering an image that contains a defect into the black
box of the deep learning model which provides the category
and location of the defect. Compared with traditional
manual feature extraction, deep learning-based feature ex-
traction enables more complete and accurate understanding
of sample defects and features, thus achieving precise
identification. Foreign research in this field began relatively
early, for rail surface defect detection. 'e study and ex-
periments of deep learning network models have concluded
that different regularization methods have a certain impact
on the recognition rate of defects. Sun et al. [13] designed a
device for the identification of casting defects based on the
mask R-CNN target detection model. Domestically, Cai and
Wei [14] improved the YOLO target detection model with
an accuracy of 97.55% in steel surface defect detection. He
et al. [15] gave a multilayer feature fusion network structure
using region proposal net (RPN) to generate regions of
interest (RoI) on feature maps and obtained up to 82.3% of
mAP (mean average precision) value on the dataset of defect
detection at Tohoku University. To address the problem of
insufficient dataset, Cui et al. [16] in foreign countries en-
hanced and expanded the dataset by cropping the original
image, applying horizontal flipping, mirror flipping,
transparency, and other processes. Liu et al. [17] used GAN
(generative adversarial networks) network models to gen-
erate new defective dataset sample by merging original
defect samples and defect-free samples and expand the
dataset and achieve the purpose of sample migration. From
the above analysis, with the increase of steel production, the
defect detection of steel surface has stepped into the era of
intelligent detection.

2.2. Multilayer Feature Extraction. Convolutional neural
networks (CNN) have developed rapidly and caught ev-
eryone’s attention with their powerful modeling capabilities.
Compared with traditional methods, the introduction of
CNN has brought great improvements to areas such as
image processing and natural language processing, for au-
tomatic translation, image, and speech recognition. How-
ever, traditional CNNs can only process Euclidean space
data (e.g., images, text, and speech), which are translation
invariant in these domains [18]. Translational invariance
allows us to define convolution networks by defining
globally shared convolution kernels in the input data space.
Taking image data as an example, a picture can be repre-
sented as a set of regularly spaced pixels in the Euclidean
space, and translation invariance means that a local structure
of the same size can be obtained around any pixel [19]. Based
on this, CNNs model local connectivity by learning con-
volution kernels shared at each pixel, which in turn create
meaningful hidden layer representations for pictures. Al-
though traditional CNNs bring enhancements in text and
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image domains, they can only handle Euclidean space data.
Meanwhile, non-Euclidean spatial data—graph data—are
gradually gaining attention due to its ubiquity [20].

In defect segmentation, the model needs to extract
sufficient and effective semantic information to describe the
difference between foreground (refer to the defects) and
background (refer to the noise). Mahendran and Vedaldi
[21] considered that convolution network feature maps in
different layers contain the characteristics of different
context information abundance. As shown in Figure 2, low-
level feature maps with high resolution have clearer edges
more detail information, which can be used to describe
specific texture feature, but it contains less context infor-
mation. On the contrary, the context information of high-
level features is more abstract, and the semantic information
is more separable after multilayer convolution extraction,
but the texture details cannot be extracted due to low res-
olution. For classification problems, most methods mainly
focus on high-level features, resulting in poor defect seg-
mentation results in complex backgrounds. Inspired by the
multilayer feature fusion method [22], this paper introduces
the boundary refinement module to retain the low-level
texture information.

Besides, the segmentation models need to be non-
deformable for various variations such as defect’s shape,
scale, and texture. Most CNN-based methods try to expand
the receptive field to cover the entire defect for global
perception. In the DeepLab model [23], the receptive field is
extended in the last convolutional layer to enhance the
recognition of feature changes, but this will lead to grid
artifacts [24]. Zhao et al. [25] use pyramid models with
different pooling cores to amplify local features to overcome
intraclass differences. However, excessive pooling in feature
fusion makes the model unable to capture a wider range of
global information, resulting in missing parts when marking
defect masks [26]. To solve the above problems, we propose a
multilayer feature fusion method, which uses multiscale

convolution (receptive fields of different sizes) to weight the
feature maps of all convolutional layers to obtain the context
information. On the premise of fully exploiting defect fea-
tures, grid artifacts and excessive pooling are avoided.

2.3. Graph Convolution Neural Network. Graph data can
naturally represent real-life data structures, such as traffic
networks, World Wide Web, and social networks. Unlike
image and text data, the local structure of each node in graph
data varies, which makes translation invariance no longer
satisfied. 'e lack of translation invariance poses a challenge
to define CNN on graph data. In recent years, due to the
prevalence of graph data, researchers have started to focus
on how to construct deep learning models on graphs. With
the ability of CNNs to model local structures and the
prevalence of node dependencies on graphs, GCN (graph
convolution neural) networks have become one of the most
active and important research fields. Recently, several ar-
ticles have been published to explore deep learning on
graphs, but there is still a gap in the in-depth discussion and
summary of the modeling methods and applications of the
most important branch, graph CNNs. In this paper, we
summarize the development of GCNs and their future
trends [27].

'e challenges faced in the construction of GCNs are
mainly related to the following aspects: (1) graph data are
non-Euclidean spatial data and do not satisfy translation
invariance, i.e., each node has a different local structure.
'e basic operators in traditional CNNs (convolution and
pooling) rely on the translation invariance of the data. At
this point, it becomes a challenging task to define convo-
lution and pooling operators on graph data. (2) A variety of
real-life applications can be naturally represented by
graphs, which give them diverse properties, such as di-
rected connections of users in social networks, heteroge-
neous connections of authors and citations in citation
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Figure 1: Process of computer vision diagnosis of surface defects on steel plates.
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networks, and positive and negative tendency band sym-
bolic connections in political relationship networks. 'e
various graph characteristics bring more information to the
construction of GCNs, but the modeling of multiple
characteristics also requires a more complex and detailed
design of GCNs, which brings new challenges. (3) 'e scale
of graph data is very large: in the era of big data, graphs in
practical applications may be extremely large, with millions
or even tens of millions of nodes, such as user commodity
networks in recommendation systems and user networks in
social networks. It is very challenging to build GCNs on
large-scale graphs in an acceptable range of time and space
[28].

In addition, researchers borrowed knowledge from
graph theory, such as using eigenvalues and eigenvectors of
Laplacian matrices for community analysis or population
clustering. With the rise of deep learning, researchers started
to consider introducing deep learning models into graph
data, and the representative research work is called network
embedding, i.e., learning fixed-length expressions for each
node by constraining the proximity of nodes.'is led to new
methods such as Deep Walk, LINE, and node2vec. During
this period, when solving specific application problems,
researchers usually modeled them as two-stage problems
[29]: taking node classification as an example, the first stage
learns uniform-length expressions for each node, whereas
the second stage uses node expressions as inputs to train
classification models. In recent years, researchers have
gradually shifted their focus from modeling graph data to
how to migrate deep learning models to graphs for end-to-
end modeling, and GCNs are one of the most active fields. In
modeling graph convolution neural networks, researchers
focus on how to build convolution operators on graphs.
Zhang et al. [30] proposed the first graph convolution neural
network in 2013, where they defined graph convolution in
the spectral space based on graph theory using the convo-
lution theorem. 'is branch was later developed as the
spectral approach in the field of graph convolution. 'e
initial spectral methods had the disadvantage of high spatio-
temporal complexity, and Cheb-Net and GCN parametrized
the convolution kernel in the spectral domain to greatly
reduce the spatio-temporal complexity [31]. 'ese two
methods, although categorized as spectral methods, have
started to define the weight matrix of nodes from a spatial
perspective. Inspired by these two methods, spatial methods
were applied and began to consider modeling the weights
between nodes in the node domain with attention mecha-
nisms, serialization models, etc. 'e graph convolution
neural networks of this period did not take too much

account of the characteristics of graphs in the process of
constructing convolution operators. With the gradual im-
provement of convolution operators, people began to
consider various features of graphs, starting with a focus on
how to model higher-order information on graphs, and fine-
grained designs for graphs with features on edges, hetero-
geneous graphs, etc. In addition, the question of how to train
more efficient GCNs has also received much attention.
Researchers have started to train deeper GCNs to enhance
generalization. In addition, the scalability of the models to
large-scale graphs and the training speed are very focused
research directions in GCN. 'e pooling operator, as the
main component of CNNs, enables to expand the perceptual
field and reduce the number of parameters. Recently, some
research has also started to focus on the construction of on-
graph pooling operators [32]. 'e on-graph pooling oper-
ator is mainly used in graph classification problems with the
aim of learning the hierarchical structure of the graph. 'e
broad application scenarios targeted by graph data modeling
makes the tasks handled by graph data modeling diverse. We
divide the downstream tasks into node-level tasks and
graph-level tasks. Node-level tasks include node classifica-
tion and link prediction, such as article classification in
citation networks and inference of user preferences for
products in recommendation systems. Graph-level tasks
include graph generation and graph classification, such as
drug network generation and protein classification in pro-
tein networks [33].

3. Method

3.1. Steel PlateDefect Analysis. Since the original size of each
defect can vary greatly, we will apply scaling to achieve a
uniform size. Figure 3 shows five common steel plate surface
defects: their basic characteristics are as follows. (1) White
iron scale: mainly in the form of strips of varying length, the
color is generally white, mostly in patches of aggregated
distribution, and the size of the defect varies. (2) Roll marks
include three main types of features: defects for the lighter
gray-white distribution of scattered microarcs, with low
contrast to the background; defects for the dark gray arc-
shaped microfolds; and a small number of defects for the
continuous gray-black periodic straight band. (3) Scratches
are generally gray-black, mainly in the width of the con-
tinuous periodic band. When the background color is dark,
the defect looks like it and the contrast is low. (4) Scarring:
mainly in the form of black dots or surfaces of different sizes,
usually aggregated in patches, part of the distribution is
more scattered. 'e background brightness may vary: as the
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Figure 2: Feature extraction from low level to high level.
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background gets darker, the contrast of features gradually
decreases. (5) Rusty skin/embroidery skin. Mainly a certain
width of short gray-black bands, features are more obvious,
usually a single distribution or a very small number of
clustered distributions. 'e above five kinds of defects are
the ones that are the most studied.

'e analysis of a large number of defect images shows
that there are similarities between different types of defects
(such as interrupted parts of rusty skin and scars, shallower,
smaller scars, and white iron scales), and the same type of
defects have a variety of forms and sizes (roll printing defects
have three different forms and sizes). Traditional vision
inspection methods have difficulty solving these problems,
while GNN-based inspection algorithms can effectively
detect these complex forms of defects.

3.2. Model Architecture. 'e proposed model is shown in
Figure 4 and is made of three parts: (1) multilayer feature
extraction network as backbone for steel plate defect de-
tection, to extract visual features and spatial information of
salient regions. (2) Graph CNN: to enrich the contextual
information of visual features. (3) Attention mechanism: to
explore the semantic association between visual features and
fault categories.

3.3. Multilayer Feature Extraction. 'e multilayer feature
extraction module is divided into 4 parts, which is feature
extraction network, RPN (region proposal network) module,
RoI pooling module, and R-CNN module [34]. It mainly
generates candidate regions and performs preliminary
classification and localization through RPN [35]. 'en, it
pools the acquired candidate regions and finally classifies
and again improves the positions of the pooled defect
features.

In this paper, firstly, we establish the global context
attention mechanism into the adjacent resolution feature
map. Secondly, the global context information is extracted
from the low-resolution feature map. 'irdly, the high-
resolution information is weighted to refine the spatial
position of the category pixels, which can ensure the high-
level features are not weakened and achieve a more accurate
classification result without increasing the amount of cal-
culation. Consider RPN network can map the generated
region to the feature map generated by the convolution
network through “anchors,” realizing the connection

between the two and further improving the detection speed
and accuracy [36]. To learn whether a defect is present in the
input image, anchors (rectangular boxes with a certain size
and aspect ratio) are placed on the image for each location
on the output feature map from the RPN network. 'en, the
anchor is matched with the real defect, and the classification
and fine-tuning of the defect location is performed. Figure 5
shows the computational flowchart of the multilayer ex-
traction process, dividing the detection process in two steps
and providing preliminary localization and classification
(proposal). 'e more accurate the proposal is, the smaller
the error of the later redetection. 'e RoI is obtained by
screening a large number of proposals generated by the
predicted anchor during training, and the proposal is di-
rectly used as the RoI during testing. RPN module mainly
consists of five submodules:

(1) Anchor generation: RPN corresponds to nine an-
chors for each point on the generated feature map,
and each anchor has three different area sizes and
three different aspect ratios, corresponding to the
original map covering possible defects.

(2) RPN convolution network: by employing a convo-
lution network, each generated anchor is processed
to obtain its prediction score and offset value.

(3) Calculate RPN loss: this part occurs only during the
training process, matching the anchor with the labels
to distinguish between positive and negative sam-
ples, obtaining the true values of classification and
offset, and calculating the loss with the prediction
score and offset values obtained in the previous step.

(4) Generate proposal: screen the anchor obtained by
the RPN convolution network to get a better set of
proposal for the subsequent network.

(5) Screening proposal to get RoI: screen the proposal
obtained in the previous step to get the final RoI.

3.3.1. Feature Extraction Network. In order to obtain a
better feature map if the image has a low contrast, a 13-layer
convolution network similar to VGG16 is used to extract the
defect features of the scaled image. 'e convolution layers
use a small convolution kernel of size 3× 3 with a small
number of parameters, while the large number of layers gives
it a better nonlinear capability to improve its learning

(a) (b) (c) (d) (e)

Figure 3: Types of defects in the collected data set. (a) White iron scale. (b) Roll printing. (c) Scratch. (d) Scarring. (e) Embroidery skin.
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capacity. 'is part includes five convolution modules, each
outputting feature maps of 64, 128, 256, 512, and 512,
respectively.

3.3.2. RPN Module. Anchor generation is performed on the
feature maps, the category score, and position offset value of
each anchor are predicted, and the binary classification of
defects (i.e., the presence or absence) and their preliminary
location are performed according to the acquired proposals
[37]. 'is module shares the convolution features of the
whole map with the R-CNN detection network, saving time
and providing high quality proposals to the R-CNN de-
tection network, which improves the detection accuracy of

the model.'e number of output feature maps is 512, and 18
and 36 in the later classification and localization parts,
respectively.

3.3.3. RoI Pooling Module. Since the R-CNNmodule behind
the faster R-CNN uses a fully connected layer, a uniform
dimension is required before the defect feature subgraphs
are input to the fully connected layer (the feature subgraph
size in this paper is 7× 7). Since the defect images of steel
plates are of different sizes, their RoI corresponding feature
map sizes are also different. RoI pooling is used to perform
feature scale transformation to enable taking defect images
of arbitrary sizes as input and output a fixed feature map size,
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Figure 4: Model architecture.
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Figure 5: Schematic diagram of the multilayer feature extraction process.
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suitable for detecting the five different defects scales of this
paper. 'e number of feature maps in this part is kept
constant.

3.3.4. R-CNN Module. 'e RoI feature subgraphs obtained
from RoI pooling are mapped to the whole feature map and
output to the fully connected network of the R-CNN
module, which performs the defect class prediction and
location regression. 'is part of the fully connected layer
outputs 2048 feature maps. Faster R-CNN outputs the visual
features of the i-th anchor point as h � hi 

m

i�0 ∈ Rm×2048 and
the spatial information as Si � [xi1, yi1, xi2, yi2], where m
denotes the number of salient regions.

3.4. Graph Convolution Neural Network. A first fully con-
nected graph is constructed and further refined using the
accurate contextual information between multiple salient
regions, to obtain a spatial graph network. We use faster
R-CNN to obtain the visual features and spatial information
of saliency regions, as shown in Figure 6(a). Next, we in-
troduce the construction of the fully connected graph by
considering each object region in the image as a vertex, and
by constructing a relationship graph, we obtain a fully
connected indirect graph as shown in Figure 6(b), where
each edge represents the relationship between two regions.
'e spatial information of the regions representing the
position of the regions in the image is a four-dimensional
spatial vectorSi � [xi1, yi1, xi2, yi2], where (xi1, yi1) is the
coordinate of the upper left corner of the bounding box and
(xi2, yi2) is the coordinate of the lower right corner of the
bounding box.'e identification of the correlations between
regions is done according to the following steps: (1) the
visual features of the two regions are fed into the multilayer
perceptron to obtain feature integration, and the corre-
sponding elements of the two-feature embedding are mul-
tiplied to obtain a correlation score. (2) We determine
whether there is a correlation between two regions based on
the size of the overlap area. If two regions have a large
overlapping area, it means there is a strong correlation
between these two regions. If the two regions do not have
any overlapping part, we consider that these two regions
have weak correlation, which means there is no edge con-
necting these two nodes. In addition, we identified five
different categories of region relationships, such as internal,
overlay, and overlap. Based on the spatial relations, we
removed some irrelevant region relations from the fully
connected graph and obtained a relatively sparse graph as
shown in Figure 6(c).

To enhance the contextual information in the visual
features of each region, we use GCN to update the object
representation. If the image contains m salient regions,
considered as nodes, we use them × m adjacencymatrixA to
represent the structure of the graph, with Aij � 1 if there is
an overlapping region between node i and node j; Aij � 0
otherwise. Given the target node i and neighboring node
j ∈ N(i) in the image, where N(i) is the set of nodes ad-
jacent to node i, the visual feature representations of node i

and node j are hi and hj, respectively. To obtain the

correlation score sij between nodes i andj, by splicing the
visual features of hi and hj, we first train a fully connected
layer.

sij � w
T
aσ Wa hi, hj  , (1)

where wa and Wa are the learning parameters, σ is the
nonlinear activation function, and [hi, hj] denotes the
concatenation operation. We apply the softmax function on
the correlation score sij to obtain the weight αij, as shown in
Figure 6(c).

αij �
exp (sij)

j∈N(i) exp (sij)
. (2)

For the graph convolution, the neighboring nodes of
hj, j ∈ N(i) are first passed through a learned linear
transformation Wb. 'ese transformed representations are
aggregated by the weights αij, and finally the updated node
features hvi are obtained by the activation function σ:

hvi � σ hi + 
j∈N(i)

AijαijWbhj
⎛⎝ ⎞⎠. (3)

'e output feature of the last layer node i in GCN is Hi,
and the set of features of all nodes is H.

3.5. Attention Mechanism. In order to enhance the higher-
order semantic association between visual features and
defect types, to refine and reduce the redundant information
in visual features and highlight the key semantics, we
designed the attention mechanism. First, for the regional
visual representation H obtained by convolution of the
graph neural network, each node’s feature set is updated
using the self-attention mechanism to obtain a new feature
set H:

H � softmax
HHT

��
d

√ H, (4)

where HT is the transpose of H and d is the dimension of H.
To obtain the visual representation associated with the
surface defect representation of the steel plate, we utilize the
design learnable parameter matrices Wm. Wm is used as a
guiding matrix to adjust the visual representation H. 'e
similarity score between Wm and H is calculated as follows:

r �
Wm

H
T

���
dm

 . (5)

For the i-th region, a softmax function is used to nor-
malize the score ri to obtain the defect diagnosis probability
ri.

r � r1, r2 . . . , ri  �
exp ri( 

j∈m exp rj 
. (6)

3.6. Loss Function. We deploy a multitask loss function that
combines classification loss and edge localization regression
loss for unified training and finally outputs the
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corresponding classification and edge locations, which can
improve the detection accuracy and is suitable for detecting
small target defects:

L ri , Si (  �
1

Ncls


i

Lcls ri, r
∗
i( 

+ λ
1

Nreg


i

p
∗
i Lreg Si, S

∗
i( ,

(7)

where i is the index of the anchor; ri is the probability of
anchor being predicted as a target; r∗i is the category label, 1
when a target exists and 0 otherwise; Si is the predicted value
of location regression; S∗i is the label value of location re-
gression; λ is the weight balance value; Ncls and Nreg are the
normalized values of classification loss Lcls and regression
loss Lreg, respectively.

4. Experimentation and Evaluation

4.1. Datasets. We set up a test bench in a steel production
factory and used a line-scan camera to acquire online images
of steel plates and obtained a total of 5,000 defect samples
after screening, 1,000 for each defect type, of which 4,000
were used as training samples and 1,000 were used as test
samples. In the datasets of this paper, each defect image
contains at least one defect, and some images contain
multiple defects of different scales to ensure that the trained
detection model can adapt to complex detection [38]. In this
paper, the defect samples are labeled with defects using
labeling software with rectangular boxes, where the label
name is the first letter of the Chinese pinyin capitalization of
each defect, such as TL for white iron scale, GY for roll
marks, GH for scratches, JB for scars, and XP for rusty/
embroidery skin.

4.2. Experimental Setup and Evaluation Metrics. 'e ex-
periments were completed using the conditions shown in
Table 1. To further demonstrate the effectiveness of the
proposed method, 6 models and the AGCN were trained for

100 epochs (rounds) on the datasets of this paper. 'e
training methods are as follows: the initial learning rate of
the model is set to 0.0001; the Adam optimizer is used; the
learning rate decay is performed once every 5 epochs, and its
decay rate is 0.1; the batch size is set to 8 (the batch size is the
number of samples selected for one training epoch; it is
limited by the GPU of the device, and chosen to obtain the
best optimization and highest training speed). 'e loss value
plot of the proposed model trained on the dataset of this
paper with 100 epochs is shown in Figure 7, where the
vertical coordinate is the loss value (loss) and the horizontal
coordinate is the number of training sessions.'e loss values
converge quickly during the training process and finally sets
to about 0.18.

4.3. Performance Comparison. In this paper, the average
accuracy mIoU (mean intersection over union) and frame
rate are used as the actual metrics for defect detection, and
the final saved optimal network model is taken for testing.
'e average detection accuracies of the five defects on the
test set are shown in Table 2.

In order to avoid overfitting, this paper adopts 5-fold
cross-validation. Compared with the original method
(faster R-CNN) and recent advanced methods, our method
has the highest average mIoU of 0.8580. Among the
existing five categories of defect recognition, our methods
are the most prominent in the 4 categories of defects.
Compared with the most accurate RefineNet model, we are

(a) (b) (c)

Figure 6: Graph generation.

Table 1: Experiments conditions.

CPU Intel Xeon W-2135
Operating system Ubuntu 18.04
RAM 32 GB
GPU GeForce RTX 2080Ti
Video memory 8 GB
Python version 3.6.9
CUDA 10.0
CU DNN 7.4.1

Computational Intelligence and Neuroscience 9



only 0.0092 behind in the defect detection of roll printing. It
is proved that this method is effective for steel plate defect
detection.

On the other hand, the recognition accuracy of each
category of defects is different. Since embroidery skin is
generally reflective which have large contrast with the
background noise, its features are easy to be captured by the
algorithm, and its recognition accuracy is generally higher
than that of other categories. For roll printing, it typically
appears as a long strip. However, the length of such defects
varies in different images. One picture probably has more
than one roll printing defects, which leads to low mIoU.

From Tables 2 and 3, it can be seen that faster R-CNN
obtains a better detection accuracy than YOLOv4 on the test
set; the defect detection accuracy of AGCN is better than that
of faster R-CNN. AGCN improves the average detection
accuracy of embroidery skin defects to 97.67%, which is 7.5%
better compared with faster R-CNN. Compared with faster
R-CNN and YOLOv4 model, the detection time of AGCN
model is increased, but the impact is not significant, and our
model can meet the practical requirements. 'e trained

model is tested on the test set and found to have issues such
as false detection and missed detection. Defect character-
istics vary greatly between classes, and when several types of
defects have similarities, the accuracy is low. If a single
“White iron scale” defect is present in a small area of an
image, after multiple convolutions, the model losses the
defect characteristics and cannot detect it. For “Roll marks”
defects, when the color is light, bright or white, this type of
defect can be misdiagnosed as “White iron scale”; because
when the color is very similar to the background, the
characteristics are not obvious and detection can be missed.
When several small target defects are detected in an image,
such as rusty/embroidery skin defects, the AGCNmodel has
significantly higher average detection accuracy ('e seg-
mentation map are shown inFigure8).

4.4. Ablation Experiments. To verify the role of the proposed
attention module and the graph convolutional neural net-
work, we did some ablation experiments. 'e number of
convolutional layers of the graph convolutional neural

3.0

2.5

2.0

1.5fit
ne
ss

1.0

0.5

AMGCN

0 10 20 30 40 50
Epoch

60 70 80 90 100

Figure 7: Training loss convergence plot.

Table 2: Performance comparison (mIoU).

Model White iron scale Roll printing Scratch Scarring Embroidery skin Average
Faster R-CNN [8] 0.7962 0.7204 0.8386 0.7602 0.8982 0.8027
SegNet [39] 0.8250 0.6835 0.8532 0.8622 0.8824 0.8213
PSPNet [40] 0.8032 0.7282 0.8419 0.8358 0.9047 0.8228
YOLOv4 [14] 0.8068 0.7025 0.8793 0.8524 0.8856 0.8253
DeepLab+ [23] 0.8271 0.7139 0.8748 0.8437 0.8754 0.8270
RefineNet [41] 0.8265 0.7280 0.8786 0.8613 0.8410 0.8271
AGCN (ours) 0.8485 0.7188 0.9098 0.8762 0.9367 0.8580

Table 3: Average detection speed.

Model Testing time in seconds Number of frames per second
Faster R-CNN 0.0621 16.11
SegNet 0.0464 21.54
PSPNet 0.0427 23.42
YOLOv4 0.0340 29.39
DeepLab+ 0.0386 25.92
RefineNet 0.0534 18.73
AGCN (ours) 0.0364 27.46
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network is varied to verify the effect of the model. We set the
number of convolution layers as 1, 2, 3, and 4.'e results are
shown in Table 4. 'e model achieves the best results when
the number of convolution layers is 3, which indicates that
there are deep semantic associations between different sa-
lient regions in the images that require multilevel graph
convolution. 'e effectiveness of the proposed graph con-
volutional neural network is demonstrated.

5. Conclusion

'is paper introduces a AGCN detection method based on
the multilayer feature. We analyze the features of the most
common steel plate defects and the characteristics of the faster
R-CNN network-based model as the visual multifeature
encoder and propose to refine the visual features by com-
bining the attention mechanism and the graph convolution
neural network approaches. 'e graph convolution neural
network enriches the contextual information in the visual
features of steel plates and further explores the semantic
association between vision and defect types using the at-
tention mechanism to achieve intelligent defect detection.
'is method meets the practical needs of defect detection in
steel plate production. In the future, we plan to explore the
dynamic neural network-based steel plate defect detection.
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Figure 8: Partial experimental results—segmentation map.

Table 4: Ablation experiments.

Number of convolutional layers White iron scale (%) Roll printing (%) Scratch (%) Scarring (%) Embroidery skin (%)
1 82.72 72.11 90.87 89.08 90.89
2 82.75 72.24 90.86 89.32 93.82
3 84.85 72.88 90.98 89.62 97.67
4 83.62 72.54 90.76 89.42 95.82
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