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Abstract

Intra-population heterogeneity is commonly observed in natural and cellular

populations and has profound influence on their evolution. For example, intra-tumor

heterogeneity is prevalent in most tumor types and can result in the failure of tumor

therapy. However, the evolutionary process of heterogeneity remains poorly

characterized at both genotypic and phenotypic level. Here we study the evolution

of intra-population heterogeneities of gene regulatory networks (GRN), in particular

mutational robustness and gene expression noise as contributors to the

development of heterogeneities. By in silico simulations, it was found that the

impact of these factors on GRN can, under certain conditions, promote phenotypic

heterogeneity. We also studied the effect of population bottlenecks on the evolution

of GRN. When the GRN population passes through such bottlenecks, neither

mutational robustness nor population fitness was observed to be substantially

altered. Interestingly, however, we did detect a significant increase in the number of

potential ‘‘generator’’ genes which can substantially induce population fitness,

when stimulated by mutational hits.

Introduction

Living organisms are always exposed to external and internal perturbations. In

most situations, these perturbations do not have observable effects, essentially

because living organisms are robust systems adapted to their environments.

However, in some cases, these perturbations, such as genetic mutation or

nongenetic gene expression noise, create novel phenotypes. The frequency of these
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novel phenotypes may be changed in the population during the process of

evolution, thus changes genotypic and phenotypic heterogeneities within the

population. Change in heterogeneity is universally observed in both natural and

cellular populations. For example, among tumor cells, the most advanced

malignant tumors remain incurable as a result of resistance to therapy, relapse or

metastasis, and the large increase in intra-tumor heterogeneity is cited as the cause

[1, 2]. However, the evolutionary process of such population of heterogeneities

remains poorly characterized. In nature, most genetic variations may be neutral in

a population. Consequently, genotypic and phenotypic heterogeneity of a

population is, in general, not linearly correlated [1]. Therefore, to quantitatively

study heterogeneities, it is necessary to distinguish genotypic from phenotypic

heterogeneities and then connect the two with a measureable model. Several

systems have been used as computational models for this purpose, including RNA

secondary structure, protein structure and gene regulatory network (GRN) [3]. In

this paper, we studied the dynamics of genotypic and phenotypic heterogeneities

in a population of GRNs. Currently, we lack qualified data and tools for

quantitative models of a network, even for small networks. Alternatively, the

qualitative binary model has been proven to be a powerful tool for the study of

complex systems, and many basic evolutionary principles have been revealed

through such systems [4, 5].

In addition to genetic variations, epigenetic variations [6] and stochastic

fluctuation in gene expression, or the so-called gene expression noise [7], can also

contribute to phenotypic variation in a cell population. As such variability is

inheritable between cell generations [8], gene expression noise could be a driving

force for adaptation while under stress [9], and it has also been suggested to play a

role in the development of heterogeneity during the early stages of tumorigenesis

[2, 10]. On the other hand, the effect of both gene expression noise and genetic

perturbations may be buffered by the robustness of the system. The associations

between robustness, gene expression noise and phenotypic variability have been

addressed in a binary GRN system [11], which revealed that mutational

robustness is evolvable in the GRN system [12]. However, in this GRN system, it

remains unclear if interactions occur between mutational robustness and internal/

external perturbations during the evolutionary development of heterogeneities. In

addition, the environmental changes also has effect on the response in

evolutionary process of phenotypic variability. This effect has also be investigated

by the binary GRN system and has been shown with conjoint variability between

phenotypic robustness and phenotypic variability after environmental changes

[11]. However, in nature, a kind of force majeure can occur at any time in the

environment, such as unexpected disasters, resulting in a population bottleneck in

the evolution of a living population. In the context of the present work, we still do

not know how population bottlenecks in the evolution of GRNs can trigger

changes in heterogeneities.

To address these questions, we adopted a simple binary GRN model as a tool to

investigate dynamic changes of heterogeneities. This network model was

developed by A. Wagner [13], and it has been applied to many studies of
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evolutionary biology [13–15]. Briefly, a GRN is a set of genes and their protein

products together with the regulatory relationship between them. A GRN can be

represented by a conjunction matrix M, where each row and column represents a

gene (together with it protein product), and each element represents the

regulatory relationship between the genes in the corresponding row and column.

The expression status of genes, i.e. silenced or expressed, in the network is

represented by a binary vector in which -1 and 1 imply silenced and expressed

genes, respectively. The dynamic of this system is determined by formula (1) (see

the Method and Materials). As the topology of this network is presumably defined

by the promoter sequences of the genes, the topology per se can be regarded as the

genotype of the cell carrying this network, and the steady state of gene expression

pattern in this network can be regarded as the corresponding phenotype

[12, 13, 15]. With this genotype-to-phenotype mapping, a population of networks

was subjected to in silico evolution for an ensemble of parameter settings. The

phenotypic heterogeneity was indexed as the compositional diversity of gene

expression patterns in a network population. We first demonstrated that this

network model is a simple, but powerful, tool for studying the evolution of

heterogeneity in a network population, and with the help of gene expression noise

and high mutational robustness, it was found that a GRN can promote

phenotypic heterogeneity under certain conditions. We then showed that

population bottlenecks do not affect overall phenotypic heterogeneity. However,

when we looked the heterogeneities at another level, i.e., the number of possible

‘‘generator’’ genes, which may be defined as a gene that substantially induces

population fitness while being hit by mutations, we found significant increases in

the number of ‘‘generator’’ genes post-bottleneck.

Results

To investigate the evolutionary process of genotypic (GH) and phenotypic (PH)

heterogeneities, we adopted a simple binary GRN model to map genotype and

phenotype [13]. The heterogeneities were measured as the Shannon entropy in a

population (see details in Method and Materials).

GH and PH of GRN are affected by mutation rate and population

size

By the nature of Shannon entropy, the maximal entropy level of a network

population strongly depends on the maximum number of network states it has. In

a population with a finite number of individuals, when no pair of individuals

carries identical genotypes/phenotypes, the population reaches the upper limit of

heterogeneity. When the total number of all possible network states is larger than

the population size, i.e., the number of individuals in the population, this upper

limit of entropy is the function of population size. For a given binary network

with N genes, when the population size is smaller than 2N2
, the upper limit of
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genotypic heterogeneity solely depends on population size. Thus, to make a fair

comparison of heterogeneities between populations, we only compared the

entropies of populations with identical population size. Since the phenotypic

space is a N-dimensional space embedded in the N2-dimensional genotypic space,

it is possible that no pair of individuals in the population will carry identical

genotypes when the population size is too small, which will make the PH level less

than the upper limit. Even if the population size is larger than 2N , the PH will still

be less than its upper limit. To avoid such situations, we set the gene number N be

20, and we chose population size as 50, 100, and 200 so that both PH and GH

would reach the upper limit in the condition of neutral mutations (S1A Fig.), and

when the mutations are not neutral, both GH and PH will be much less than their

upper limits (S1B Fig.).

When a network population is subjected to stabilizing selection, we asked what

the effect of mutation rate and population size would be toward the dynamic of

genotypic and phenotypic heterogeneity (see Method and Materials). Simulations

were performed with a group of parameter settings (S1 Table). Except for the case

when mutation rate is extremely low (e.g., 0.001), we found GH to slightly

decrease when mutation rate increases, while PH substantially increases (Fig. 1).

This phenomenon can be explained by the metagraph property of networks. The

metagraph (also called metanetwork) was introduced by A. Wagner [12], in a

network metagraph, each node represents a network, and each link between two

nodes indicates that the two connecting nodes differ by only one regulatory

interaction [12]. When mutation rate is extremely low, such as 0.001 in our

simulation, chances are small (i.e., by a factor of 0.2 networks) that a network will

be hit by more than two mutations within a generation. In that case, most

mutations will either be lethal or produce the same phenotype, since it has been

demonstrated that all, or most, networks with the same phenotype form a

connected metagraph in the genotype space [12]. For a few mutations that do

generate new phenotypes, these new phenotypes are also subjected to random

drift. This explains why GH and PH are both low in simulations where mutation

rate is extremely low. However, when the mutation rate is not so low, for example

0.05 in a population with 200 individuals, a 50% chance exists that an individual

could be hit twice in one generation. The double hits could easily be lethal to a

network, and with higher mutation rate, more individuals would be at risk of

multiple hits which would, in turn, reduce GH. On the other hand, the total

number of individuals who experience such multiple hits would be considerably

lower than the population size, thus decreasing the chance of heterogeneity. Since

phenotype space is only a N-dimensional space embedded in a N|N-

dimensional genotype space, the overall PH level is much lower than the GH level.

Under these conditions, more mutations introduced by a higher mutation rate

will result in access to more phenotypes in the phenotypic space and, hence,

higher PH levels.

The Evolution of Heterogeneities in Gene Regulatory Networks

PLOS ONE | DOI:10.1371/journal.pone.0116167 December 26, 2014 4 / 18



Convergent evolution of mutational robustness of GRNs

In all the simulations we examined, the networks will ultimately converge to a

genotype population whose mutational robustness is about 0.6,0.8. Previously, it

has been suggested that 1{d, where d denotes the fraction of genes whose

expression status between S(0) and S(?), could be used as an agent for mutational

robustness [5, 11]. However, we did not find this to be a fine-tuned index. For

example, in the networks we examined with 1{d~0:5, the average actual

mutational robustness was 0.85, while for the networks with larger 1{d~0:9, the

average actual mutational robustness was only 0.81, which is significantly smaller

than 0.85 (Student’s t-test, P-value 5 3.1E-10). The parameter d, however,

indicates the level of converged mutational robustness (Fig. 2 and S2 Fig.). In the

simulation we performed, the final mutational robustness of populations after

stabilizing selection could be clearly classified into groups according to the initial

d value. A common characteristic shared by most members of each group is the d

value in their initial genotype; therefore, d can be used as a proxy for converged

mutational robustness after stabilizing selection. Under the condition of natural

selection, it has been previously shown that a large population with sufficiently

high mutation rates (i.e.,S|mww1, where S denotes population size and m

denotes mutation rate) becomes concentrated at genotypes of higher mutational

robustness than average [16]. In particular, the average mutational robustness of

this large population will converge to an eigenvalue associated with the adjacency

matrix of the metagraph [17]. This result was based on biological macro-

molecules, and it can also be applied to the network model. Given this evolving

nature of the GRN, the term mutational robustness will hereinafter only refer to

the final converged level of mutational robustness, unless otherwise noted.

Fig. 1. Heterogeneity levels when a population is subjected to stabilizing selection. This figure shows the density of converged heterogeneity levels
from 50 replications of simulation for a population with 100 individuals. The colors represent the mutation rates. A) genotypic heterogeneity and B)
phenotypic heterogeneity.

doi:10.1371/journal.pone.0116167.g001
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The interaction between gene expression noise and mutational

robustness as a factor of PH induction

In addition to population size and mutation rate, we asked if the PH could also be

affected by the genetic property of the genotype per se. Mutational robustness is a

widely discussed GRN property. In a large scattered viable network, easy access to

innovative phenotypes during evolution has been suggested by the availability of

highly robust mutations [12, 15]. However, we have not fully elucidated the

likelihood that this innovation could be conserved and spread in a population

[11].

Another factor complicates this picture, the gene expression noise. Gene

expression noise is defined as stochastic fluctuation that results from intrinsic and

extrinsic perturbations which could occur at both transcription and translational

levels. The immediate observation of gene expression noise is a diverse expression

levels in isogenic population under identical experimental conditions. As extrinsic

perturbations are not consistent from condition to condition, we only considered

intrinsic gene expression noise in this study and modeled it as an additive

perturbation (See Methods and Materials). Intrinsic gene expression noise is an

Fig. 2. Convergent evolution of mutational robustness. The dots represent the actual mutational robustness levels of a group of GRNs having identical
initial d50.1. The mutational robustness levels at the initial and final generation are linked by solid lines. The population size is 100, and mutation rates are
A) 0.001, B) 0.05, C) 0.1 and D) 0.2.

doi:10.1371/journal.pone.0116167.g002
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inheritable genetic characteristic of gene expression [18, 19], and can induce

adaptation under certain conditions [9]; however, we still do not know how this

adaptive driving force can influence PH during the process of evolution.

Moreover, as shown by Cilliberti and colleagues [15], mutational robustness is

weakly correlated with robustness to noise. Therefore, key questions emerging

from these observations are whether any interaction exists between mutational

robustness and intrinsic noise, and, if so, how much will such interaction

contribute to the development of PH.

To address these questions, we employed a simple linear regression model in a

series of conditions of given mutation and population size (Table 1). In all

conditions we examined, the final PH that a population reached could be properly

modeled by mutational robustness and gene expression noise, in which the

coefficients for robustness are consistently negative, while the coefficients for

noise are consistently positive. Since a population with highly phenotypic robust

genotype will be less heterogeneous after stabilizing selection, this result may be

considered intuitive. It is also a result that contradicts the notion that networks

with higher mutational robustness have a greater chance of reaching new

phenotypes, as long as the metanetwork of this genotype locus has a sufficiently

large diameter [12, 15]. Nonetheless, this result does agree with that of Espinosa-

Soto, et al. (2011) who showed that PH, as represented by phenotypic variability,

is responsive to nongenetic perturbations, such as those that occur in the

environment, but unresponsive to mutations [11].

To further investigate the landscape of interactions between mutational

robustness and PH, we conducted the following survey. For any given mutation

rate and noise level, we evaluated the likelihood that populations with higher

mutational robustness would be more phenotypically heterogeneous than

populations with lower mutational robustness under stabilizing selection. To

quantify this postulate, we denoted the proportion of simulation pairs satisfying

the above conditions from all pairs of simulations as R, as shown in Fig. 3 and S3

Fig., and R was shown to be small in the following two scenarios, irrespective of

population size: 1) when mutation rate is extremely low (e.g., S|mv1) and the

noise level is not zero and 2) when noise level is zero and mutation rate is not too

low (e.g., S|mw1). Interestingly, when mutation rate is extremely low and no

expression noise is involved, the evolutionary process is similar to a random walk

in the metanetwork whose topology determines the outcome of PH. Therefore, we

observed an approximate 0.5 in R, irrespective of population size. However, when

both mutation rate and gene expression noise levels are considerably larger than

zero, such random walking in the metanetwork is no longer a proper analogue

because the phenotype of a network is less predictable, and the networks are less

likely be viable [12, 15]. Under those scenarios, we observed significantly larger R

than the single factor scenarios we discussed above, and R is also approximately

0.5, irrespective of population size (Fig. 3 and S3 Fig.). These results, in addition

to the linear model (Table 1), imply that PH, at least in the range of parameters

we simulated, cannot be induced by either genetic mutation or gene expression
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Table 1. Coefficients in the linear regression modelsPH~czadzbdzc(d : d).

Population size

m 50 100 200

a b c a b c a b c

0.001 20.023** 0.012 0.020** 20.014** 0.085 0.023* 20.006 0.065 0.043**

0.05 0.020** 0.631** 20.000 0.016** 0.748** 0.006 0.030** 0.850** 20.015*

0.1 20.017** 0.566** 0.010 20.020** 0.629** 0.012 0.015** 0.941** 20.046**

0.2 20.043** 0.408** 0.023** 20.042** 0.601** 0.003 20.012** 0.821** 20.028**

The interaction between gene expression noise (d) and mutational robustness (d) is considered (d:d). The coefficients significantly not zero (F-test) are
marked by * (P-value ,0.01) and ** (P-value ,0.0001).

doi:10.1371/journal.pone.0116167.t001

Fig. 3. The interaction among mutation, mutational robustness and gene expression noise. Each
square represents a set of simulations with identical gene expression noise level and mutation rate. The color
in each square index R was defined as the proportion of simulation pairs indicating that a population with
higher mutational robustness would be more phenotypically heterogeneous than a population with lower
mutational robustness after stabilizing selection. The population size is 100.

doi:10.1371/journal.pone.0116167.g003
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noise alone; instead, it is the the interaction between the two and phenotypic

robustness that can significantly induce PH.

Population bottlenecks do not affect mutational robustness and PH

in network populations

In nature, unforeseen, dramatic events can cause equally dramatic alterations in

the evolutionary paths of populations. To study such effects on populations, we

modeled the events as evolutionary population bottlenecks. A population

bottleneck is an event that, at least for one generation, the size of a population has

be drastically reduced. One type of population bottleneck (type I) randomly

removes individuals, irrespective of their genotypes. This type of population

bottleneck is used to mimic such events as earthquakes which may kill nearly all

animal and plant life in a given region. Another type of population bottleneck

(type II) targets one or more major clones. This type of population bottleneck is

analogous to the effect of chemo- or radiotherapy on tumor cells. To simulate

type I, we randomly removed a given percentage of cells from the population,

while to simulate type II, we removed genotypic clones in the reverse order of size

until a given percentage cells of the population was left.

We then asked if the average mutational robustness and PH of a population

could be altered after passing through such population bottlenecks. In the

parameter space we sampled, we allowed the populations to evolve through both

type I and II population bottlenecks. After the populations passed through these

bottlenecks, we let them continue to evolve with the same number of pre-

bottleneck generations. Average mutational robustness and PH level were

compared at two time points: right before the population bottleneck and after the

last generation simulated. For PH, except for cases of extremely low mutation rate,

we did not observe any significant difference between the two time points (S2

Table). Similarly, although we did not observe any change in mutational

robustness post-bottleneck (S4 and S5 Figs.), an exceptional case arose when a

population passed through a type II population bottleneck without the

involvement of gene expression noise (S5 Fig.). However, even in this case,

although the difference is statistically significant, only weak changes in absolute

numbers were observed, and such a small change in average mutational

robustness post-bottleneck failed to translate into the final PH.

Population bottlenecks induce the generation of novel potential

‘‘generator’’ genes

Entropy measures the overall divergence of a given population. However, the

contributions of mutations found in a population to the evolutionary process are

not identical. Besides viable mutations, nonviable mutations also cause differences

in fitness gain or loss. In the context of cancer, a huge number of mutations have

been reported, e.g., in The Cancer Genome Atlas (https://tcga-data.nci.nih.gov/);

yet, most such mutations are believed to be passengers, while only a few have been
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identified as drivers. Therefore, it is more interesting to investigate the divergence

of those key genes which can substantially influence fitness of a cell after having

been hit by mutations. In this study, we called all those key genes which can reach

maximal fitness gain when hit by mutations as ‘‘generator’’ genes. We sought to

compare the number of unique ‘‘generator’’ genes before and after population

exposure to the two types of population bottlenecks. By definition, each network

contains at least one ‘‘generator’’ gene. In a homologous population, ‘‘generator’’

genes will also be homologous, while in a population with more divergent

potential, the ‘‘generator’’ genes will be heterogeneous. We compared the number

of unique ‘‘generator’’ genes in a population before and after passing through the

population bottlenecks. For both types of population bottlenecks, the number of

unique ‘‘generator’’ genes significantly increased, irrespective of mutation rate,

population size or gene expression noise level (Fig. 4, S6, S7 and S8 Figs.).

To account for this observation, the network from minor clones might have

passed through the bottleneck stochastically, and those networks might have been

located at a distal region in the genotype far from the network of the dominant

clone. Post-bottleneck, however, new start points may arise from this distal

region, resulting in population fitness with a correspondingly better chance to

reach a more adaptive genotype than that of the dominant clone. If this

hypothesis is true, we would expect an increase in the number of unique

‘‘generator’’ genes and the average possible maximal fitness gain post-bottleneck.

To test this, maximal potential fitness gains from all possible mutations in

networks were calculated. For both types of bottlenecks, a significant maximal

fitness gain was observed in most scenarios (Fig. 4, S6, S7 and S8 Figs.). However,

this fitness gain will have no influence over the evolutionary pattern of the model

with fixed population size, as only relative fitness affects the selection process. This

also explains why we did not detect substantial changes in either mutational

robustness or PH post-bottleneck. In an analogous in vivo context, tumor growth

would not be limited by a pre-assigned population number, but rather by the

space or resources it can access. In other words, without any additional genetic or

microenvironmental assumptions, this result demonstrated that a population

could proliferate more aggressively after having passed through a population

bottleneck than before such passage. Moreover, as indicated by the larger number

of unique ‘‘generator’’ genes after passing through population bottlenecks, the

drivers of proliferation post-bottleneck could be more heterogeneous.

Discussion

We studied the evolutionary process of a GRN model of genotype and phenotype

in a cell population and observed interactions among mutation, gene expression

noise, mutational robustness and phenotypic heterogeneities. It was revealed that

gene expression noise and mutational robustness, apart from population size and

mutation rate, are two key factors that drive the evolution of PH. We detected

strong interactions among mutational robustness, gene expression noise and
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mutation rate. By simulation, we also studied the dynamics of bottleneck effect on

phenotypic heterogeneity and detected a strong increase in the number of

potential ‘‘generator’’ genes, when stimulated by mutational hits.

The method presented in this paper highlighted the usefulness of applying the

GRN approach (see A Wagner 1994) to understand the general evolutionary

process of heterogeneities, a subject which has been largely overlooked [20–22]. At

the same time, however, our model has been simplified from the real evolutionary

process of heterogeneities in several respects. First, the total population numbers

we simulated were several orders of magnitude smaller than actual effective

population size in real organisms or cellular populations [23], as a result of the

limitations imposed by computational capacity. Moreover, this work considered a

population with fixed population size. It has been demonstrated that the growth

of populations contributes to the increase of heterogeneities [24]. Because we are

interested in the factors that contribute to PH, other than population growth, we

controlled the effect of growth by setting a fixed population size. Second, we

assumed relatively high mutation rates compared to actual mutation rates

Fig. 4. Fitness gain and number of potential oncogene changes when subjected to type I population
bottleneck. Each boxplots represents median and standard deviation of maximal fitness gain before and after
the bottleneck for 50 simulation repeats. The dots represent the percentage of potential oncogenes before
and after passing through the bottleneck (see main text for definition). Gene expression noise level is 0,
population size is indicated in color, and mutation rates are A) 0.001, B) 0.05, C) 0.1and D) 0.2.

doi:10.1371/journal.pone.0116167.g004
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observed in nature [25, 26]. We did this because population sizes in our

simulations were several orders of magnitude smaller than those seen in nature;

thus, relatively high mutation rates could result in accumulating sufficient

variations in a population to, in turn, affect PH. For example, an analogy might be

found in a cellular population undergoing tumor metastasis in which a very high

mutation rate may exist at certain stages of evolution [27]. Thus, our high

mutation rate scenario could partially mimic this situation. Furthermore, we

assumed an evenly distributed mutation rate for all genes in the networks,

however, it was suggested that mutation rate could vary across genome [28].

Third, we assumed identical gene expression noise level in the entire GRN. In real

living organisms, gene expression noise level has been associated with the

importance of the genes [29]. Because not all genes are equally important, the

gene expression noise level varies between genes [30]. In our simulations, as we

did not specify any particular sequence in the imaginary promoters, and because

of the limited number of genes in the networks, the importance of a gene cannot

be realistically linked to any network property, such as connectivity, in turn, it is

not plausible to have unequal expression noise level assignment. However, this

assumption may not be an oversimplification, as randomly altered a few gene

expression noise levels in the simulations did not substantially change the

conclusions (data not shown). More realistic models to take consider in these

assumptions await further scrutiny.

In the present study, two types of population bottlenecks were discussed, each

one having its analogue in nature. In type I population bottleneck, the

determination of survival individuals is purely by chance, a consequence which

would have profound effects on population structure or even speciation [31].

While in type II population bottleneck, we targeted individuals with particular

geno- or phenotypes for removal. There are many environmental changes which

may be resulted in reducing population size, and physiological response to those

changes may not identical from one to another [32], since we are interested in

common principle of the evolutionary process of heterogeneity and since the

network model is not intended to mimic any particular living organisms, we have

omitted the details of all possible environmental catastrophes.

In this study, we introduced the concept of ‘‘generator’’ genes and defined them

as genes able to reach maximal fitness gain when hit by mutations. ‘‘Generator’’

genes also have analogues in nature. For example, in the context of carcinogenesis,

oncogenes have long been identified as the underlying drivers for clonal expansion

when hit by mutations [33]. The mechanisms by which individual mutant

oncogenes promote carcinogenesis are remarkable variable [33]. On the other

hand, although an enormous number of passenger mutations have been identified

in nearly all tumor types (https://tcga-data.nci.nih.gov/), with the exception of a

few driver mutations, most of these passenger mutations will have no visible

phenotypic consequence. Therefore, the number of mutant oncogenes, repre-

senting the number of altered signaling pathways, provides yet another key layer

of heterogeneity in a tumor cell population.
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The identity of ‘‘generator’’ genes is dependent on the fitness landscape which

was artificially defined in this work. Although the landscape of fitness based on

cumulative mutations in the context of bacteria and viruses has been

experimentally studied [34, 35], few studies have reported on the fitness landscape

of phenotypes in other systems, e.g., mammalian cells. We adapted a fitness

landscape from Espinosa-Soto et al. [11], which assumed an optimal expression

pattern after altering the environment. However, our results do not completely

depend on the specific form of landscape because an alternative fitness landscape

(defined as 1=(N{k) data not shown) generated similar results.

In conclusion, the evolution of heterogeneity in GRN is a complicated process

which depends on a wide range of conditions, including genetic factors, e.g.,

mutational robustness, intrinsic gene expression noise, as well as non-genetic

factors, e.g., population size and the bottlenecks it experiences. Although we based

our observations of a simple GRN model, we noticed similarities to many

biological systems. However, it remains to be elucidated whether such

observations will hold in other systems [3].

Method and Materials

Model description

We adopted a well-studied GRN model introduced by A. Wagner and designed to

link a genotype to a phenotype [13]. Briefly, a network with Nnodes represents

the genotype of an individual with N genes, in which the directional connections

between the nodes represent regulatory relationships between the genes. The

dynamic of this network was then defined by the following equation

Si(tzt)~s
Xn

j~1

wij(Sj(t)z")

" #
: ð1Þ

where S(t) 5 (S1(t),S2(t),S3(t),:::,SN(t)) is the vector which contains all the gene

expression states in the network at time point t, and w is the adjacency matrix of

the network. The elements in this matrix are wi,j[f{1,0,1g,i~1::N,j~1::N . We

introduced gene expression noise as an additive Gaussian white noise "[N(0,d),

where d was used to represent the noise level, and s is the sign function, i.e.,

s(x)~{1 when xv0 and s(x)~1 when xw0. Therefore, the steady state

S(?)defines the phenotype of a given network w, given an initial gene expression

vector S(0). The sample process for network structure and the method of choosing

initial and steady states are identical to [12].

In present work, we considered networks with N~20, and for each d value

(defined as the proportion of nodes in a network showing different expression

level between initial and steady states), we sampled 10 networks. We only

considered mutation hits in the promoter region of a gene, followed by one of the

following consequences: 1) altering its regulatory behavior with equal probability,
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2) gaining a new regulatory connection from a random gene in the network, 3)

losing a random regulatory connection, or 4) changing the attitude of a random

regulatory connection, i.e., switching from an active regulation to a repressive one.

The definition of mutational robustness for a network is from [12], i.e., the

fraction of one-mutant neighbors that is also viable.

Simulation of the evolution process

As described in [12], S(0)~(1,1,:::,{1,{1) is composed of N1 copies of 1 and

N{1 copies of -1, and N1zN{1~N . S(?)~(1,1,::::,1,1) is composed of N copies

of 1. At any given environment, an optimal expression pattern arises, S(opt),
which yields the highest growth rate for an individual with the phenotype.

However, for individuals whose phenotype is different from S(opt), the fitness is

defined as (1{k=N)5, where k denotes the number of genes expressing differently

from S(opt), and the survival probability of this individual was set to the relative

fitness in the whole population [11]. In all simulations, S(opt) was set as

{1|S(0) for stabilizing selection.

For the evolution process, we assumed no overlaps between generations, and we

started with an isogenic population with S individuals, i.e., S copies of initial

networks. Random genes in random individuals were drawn from the previous

generation for S|N|m times, where m denotes mutation rate, and those genes

were subject to mutations. After mutation, new relative fitness was recalculated for

each genotype, including the new genotypes introduced by the mutations. The

number of each genotype in the next generation is then proportional to the new

relative fitness. The entire evolutionary process was implemented by Fortran90.

For each combination of parameters (S1 Table), the simulation was processed for

100,000 generations and repeated for 50 times.

Measures of heterogeneity

Heterogeneity is measured by H~Pilog(Pi), where Pi denotes the probability of

the i-th genotype or phenotype in a population. It was approximated by the

frequency of the i-th genotype or phenotype observed in the population. The

genotype in this study refers to the network topology, in another word, the

N|Ndimensional conjunction matrix of a given GRN. The phenotype refers the

N-dimensional vector of expression states of all genes in a given GRN.

Two types of population bottlenecks

Type I population bottleneck involved an operation in which we randomly

removed a given percentage of networks from the population, irrespective of the

origin of clones. For type II population bottleneck, we removed networks from

genotype clones in the reverse order until a given percentage cells of the

population was removed. After a population passed through a bottleneck, we did

not simulate the exponential growth process; instead, we calculated the relative

fitness of remaining cells and made a new generation with S individuals according

to the relative fitness.
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Supporting Information

S1 Fig. Evolutionary process of genotypic (GH) and phenotypic (PH)

heterogeneities in an in silico simulation. The population size in the simulation

is 100, mutation rate is 0.1, mutational robustness is 0.1 and noise level is 0.1. A).

When no selective constraint was involved, both GH and PH could reach to the

upper limit of heterogeneities for the given population, but when the population

was subjected to stabilizing selection B), the maximal heterogeneities for both

genotype and phenotype were both substantially reduced, and PH was much less

than GH.

doi:10.1371/journal.pone.0116167.s001 (TIF)

S2 Fig. Convergent evolution of mutational robustness of GRNs. The dot pairs

linked by solid lines represent the actual mutational robustness at the beginning

and end of simulations for a group of GRNs with identical population sizes. The

population size is 50, and mutation rates are A) 0.001, B) 0.05, C) 0.1 and D) 0.2.

Population size is 200, and mutation rates are E) 0.001, F) 0.05, G) 0.1 and H) 0.2.

doi:10.1371/journal.pone.0116167.s002 (TIF)

S3 Fig. The interaction among mutation, mutational robustness and gene

expression noise. Each square represents a set of simulations with identical gene

expression noise level and mutation rate. The color in each square index R was

defined as the proportion of simulation pairs indicating that a population with

higher mutational robustness would be more phenotypically heterogeneous than a

population with lower mutational robustness after stabilizing selection. The

population size is A) 50 and B) 200.

doi:10.1371/journal.pone.0116167.s003 (TIF)

S4 Fig. The effect of type I population bottleneck on the evolution of

mutational robustness of GRNs. The dots linked by solid lines represent the

actual mutational robustness at the beginning generation, before introduction of

the bottleneck and after finishing simulations for a group of GRNs with identical

population sizes. Population size is 50, and mutation rates are A) 0.001, B) 0.05,

C) 0.1 and D) 0.2. Population size is 100, and mutation rates are E) 0.001, F) 0.05,

G) 0.1 and H) 0.2. Population size is 200, and mutation rates are I) 0.001, J) 0.05,

K) 0.1 and L) 0.2.

doi:10.1371/journal.pone.0116167.s004 (TIF)

S5 Fig. The effect of type II population bottleneck on the evolution of

mutational robustness of GRNs. The dots linked by solid lines represent the

actual mutational robustness at the beginning generation, before introduction of

the bottleneck and after finishing simulations for a group of GRNs with identical

population sizes. The population size is 50, and mutation rates are A) 0.001, B)

0.05, C) 0.1 and D) 0.2. Population size is 100, and mutation rates are E) 0.001, F)

0.05, G) 0.1 and H) 0.2. Population size is 200, and mutation rates are I) 0.001, J)

0.05, K) 0.1 and L) 0.2.

doi:10.1371/journal.pone.0116167.s005 (TIF)
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S6 Fig. Fitness gain and number of potential oncogene changes before and after

passing through type II population bottleneck. Each boxplots represents median

and standard deviation of maximal fitness gain before and after the bottleneck for

50 simulation repeats. The dots represent the percentage of potential oncogenes

before and after the bottleneck (see main text for definition). Gene expression

noise level is 0, population size is indicated in color, and mutation rates are A)

0.001, B) 0.05, C) 0.1 and D) 0.2.

doi:10.1371/journal.pone.0116167.s006 (TIF)

S7 Fig. Fitness gain and number of potential oncogene changes before and after

passing through population bottlenecks. Each boxplot represents median and

standard deviation of maximal fitness gain before and after the bottleneck for 50

simulation repeats. The dots represent the percentage of potential oncogenes

before and after the bottleneck (see main text for definition). Gene expression

noise level is 0.01, and population size is indicated in color. For type I bottlenecks,

the mutation rates are A) 0.001, B) 0.05, C) 0.1 and D) 0.2. For type II bottlenecks,

the mutation rates are E) 0.001, F) 0.05, G) 0.1 and H) 0.2.

doi:10.1371/journal.pone.0116167.s007 (TIF)

S8 Fig. Fitness gain and number of potential oncogene changes before and after

passing through population bottlenecks. Each boxplot represents median and

standard deviation of maximal fitness gain before and after the bottleneck for 50

simulation repeats. The dots represent the percentage of potential oncogenes

before and after the bottleneck (see main text for definition). Gene expression

noise level is 0.5, and population size is indicated in color. For type I bottlenecks,

the mutation rates are A) 0.001, B) 0.05, C) 0.1 and D) 0.2. For type II bottlenecks,

the mutation rates are E) 0.001, F) 0.05, G) 0.1 and H) 0.2.

doi:10.1371/journal.pone.0116167.s008 (TIF)

S1 Table. The parameters used in the simulations. All the networks were

generated with 20 genes, and for each combination of parameters, the simulation

was processed for 100,000 generations and repeated 50 times.

doi:10.1371/journal.pone.0116167.s009 (DOCX)

S2 Table. PH Difference between pre- and post-bottlenecks in GRN networks.

P-values were given by t-test.

doi:10.1371/journal.pone.0116167.s010 (DOCX)
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