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Abstract: Tuberculosis remains a significant infectious lung disease that affects millions of patients
worldwide. Despite numerous existing drug regimens for tuberculosis, drug-induced liver injury is a
major challenge that limits the effectiveness of these therapeutics. Two drugs that form the backbone
of the commonly administered quadruple antitubercular regimen, that is, pyrazinamide (PZA) and
isoniazid (INH), are associated with such hepatotoxicity. Yet, we lack safe and effective alternatives
to the antitubercular regimen. Consequently, current research largely focuses on exploiting the
hepatoprotective effect of nutraceutical compounds as complementary therapy. Silibinin, a herbal
product widely believed to protect against various liver diseases, potentially provides a useful solution
given its hepatoprotective mechanisms. In our study, we identified silibinin’s role in mitigating PZA-
and INH-induced hepatotoxicity and elucidated a deeper mechanistic understanding of silibinin’s
hepatoprotective ability. Silibinin preserved the viability of human foetal hepatocyte line LO2 when
co-administered with 80 mM INH and decreased apoptosis induced by a combination of 40 mM
INH and 10 mM PZA by reducing oxidative damage to mitochondria, proteins, and lipids. Taken
together, this proof-of-concept forms the rational basis for the further investigation of silibinin’s
hepatoprotective effect in subsequent preclinical studies and clinical trials.

Keywords:  drug-induced liver injury (DILI); silibinin; oxidative stress; tuberculosis;
pyrazinamide; isoniazid

1. Introduction

Tuberculosis is an infectious lung disease caused by Mycobacterium tuberculosis, with one in four
people affected globally [1]. While new and current drug regimens have been tailored to shorten
treatment duration and increase therapeutic efficacy [2], drug-induced liver injury (DILI) caused by
anti-tubercular therapy (ATT) still warrants the most concern. ATT has been reported to cause severe
hepatotoxicity [3,4], which leads to discontinuation of therapy in 11% of patients [5]. Hence, the DILI
arising from ATT is a pressing problem that needs to be addressed in tuberculosis.

The most prevalent ATT, known as the HRZE regimen, involves the use of four drugs in
combination: pyrazinamide (PZA), isoniazid (INH), ethambutol (EMB), and rifampicin (RMP). Among
them, PZA and INH are the most commonly implicated in DILL. PZA increases the risk of DILI
by 3.5 times [6]. In HepG2, PZA-induced hepatotoxicity has been reported to invoke damage to
cellular and mitochondrial membranes, leading to increased apoptotic activity in vitro [7]. Similarly,
INH-induced hepatotoxicity occurs in approximately 25% of patients [8], and severe INH-induced
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hepatotoxicity occurs in 1 per 1000 patients [9]. At the same time, rat studies have also been conducted
on PZA, INH, and RMP, as well as various combinations of these drugs. Administration of these
combinations has led to increased membrane lipid peroxidation levels [10], increased serum levels of
liver enzymes [11,12], and reduced antioxidant protein levels [12,13]. Notably, the search for strategies
to reduce PZA- and INH-induced hepatotoxicity is further underscored by the first-line status of the
HRZE regimen in ATT with few safer and equally efficacious alternatives [14,15].

The two main mechanisms through which PZA and INH injure hepatocytes are both associated
with oxidative stress [16]. First, PZA and INH can be converted to reactive metabolites by drug
metabolizing enzymes. PZA is oxidized to 5-hydroxypyrazinamide via xanthine oxidase; and
both PZA and 5-hydroxypyrazinamide are further bioactivated by xanthine oxidase to the toxic
metabolites, pyrazinoic acid and 5-hydroxypyrazinoic acid [17,18]. Between pyrazinoic acid and
5-hydroxypyrazinoic acid, 5-hydroxypyrazinoic acid may be the more toxic metabolite [18]. In contrast,
INH can be activated to toxic metabolites via N-acetyltransferase [8,19,20], amidases [8,19,20], and
CYP2E1 [8,19]. Notably, INH also induces CYP2E1 [21,22], thus increasing the rate at which INH is
metabolised. These metabolites of INH increase the levels of intracellular reactive oxygen species
(ROS) [8,23,24], which consequently damage vital cellular targets. The subcellular consequences
include the following: deoxyribonucleic acid (DNA) fragmentation [24], lipid peroxidation [24-26],
and protein carbonylation [20,26]. Therefore, given that the multifactorial nature of DILI arising
from ATT includes interindividual variability in metabolic processes, patients may exhibit features of
idiosyncratic toxicity.

Second, PZA and INH suppress the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant
response element (ARE) pathway that protects cells from oxidative damage [27,28]. Consequently, both
INH [27] and PZA [28] increase cellular susceptibility to oxidative stress by decreasing the expression
of downstream antioxidant proteins; the antioxidant proteins affected include glutamate-cysteine ligase
catalytic subunit (Gclc), NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygenase-1 (HO-1), and
sulfiredoxin 1 (Srxnl). Indeed, RMP, INH, and PZA have been shown to potentiate the hepatotoxic
effects of one another in in vitro assays involving HepG2 [29], though the underlying mechanisms of
hepatotoxicity caused by these antitubercular drugs remain poorly understood to date. Seen in totality,
the broad strokes illustrated by these studies denote the need for hepatoprotective strategies to counter
the increase in oxidative stress induced by these drugs.

The most well-researched strategy to reduce HRZE-induced hepatotoxicity involves the use
of antioxidant nutraceuticals to reduce oxidative stress and liver inflammation [30]. Among the
nutraceuticals that have been explored for their hepatoprotective potential, silibinin is the gold
standard [31]. Silibinin is a herbal product derived from milk thistle that has been postulated to protect
against liver injury caused by various chemotherapeutic [32] and toxic agents [14,33-35]. Two factors
contribute to silibinin’s popularity over other chemical drugs in liver disease: it has low toxicity [36] and
exhibits a broad spectrum of hepatoprotective mechanisms [37-41]. Many of silibinin’s mechanisms of
action can be attributed to its antioxidant, anti-inflammatory, immunomodulatory, and antifibrotic
actions [42]. Silibinin’s anti-inflammatory and immunomodulatory effects are manifested through
silibinin’s actions on pathways involving tumor necrosis factor-alpha (TNF-o) [43] and NF-kB [44], as
well as its modulation of lipopolysaccharide-induced NO production [44] and NOD-like receptor pyrin
domain-containing-3 (NLRP3) inflammasome activation [45]. At the same time, silibinin’s antioxidant
effect has been attributed to its ability to inhibit ROS-producing enzymes, directly scavenge free
radicals, prevent the absorption of ions by the intestine through chelation, and promote the expression
of protective molecules and enzymes that mitigate oxidative stress [31,42]. Therefore, silibinin may be
uniquely placed to mitigate the principal mechanisms implicated in oxidative stress responsible for
HRZE-induced hepatotoxicity.

Unfortunately, despite the extensive and rigorous research on the basis for silibinin’s
hepatoprotective effect in recent years [5,31,46], the in vivo and in vitro biological markers that
silibinin modulates have not been conclusively linked to the reduction of DILI [47]. Furthermore,
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the exact biochemical mediators behind silibinin’s hepatoprotective effect have also not been
identified [48]. Silibinin’s hepatoprotective nature remains nebulous to date, making it especially
challenging to clarify and optimise silibinin’s role in mitigating HRZE-induced hepatotoxicity.
Consequently, silibinin’s reduction of HRZE-induced hepatotoxicity has neither been definitively
proven nor characterised [49-51]. Therefore, a deeper mechanistic understanding of silibinin’s
hepatoprotective ability must be elucidated before silibinin can be widely used as an adjuvant to
ameliorate HRZE-induced hepatotoxicity.

In this study, we sought to investigate the role of silibinin in mitigating PZA- and INH-induced
hepatotoxicity. We hypothesised that silibinin reduces PZA- and INH-induced hepatotoxicity through
its anti-oxidative mechanisms. Indeed, our results showed that silibinin preserved cell viability
when co-administered with INH. We also determined that the co-administration of silibinin with a
combination of INH and PZA (I/P) led to a reduction in oxidative damage to intracellular targets and
apoptotic activity. Together, these findings supported our hypothesis that silibinin reduces PZA- and
INH-induced hepatotoxicity through its modulation of oxidative stress.

2. Results

2.1. Silibinin Mitigated Hepatotoxicity Induced by INH When Administered as a Rescue Adjuvant

As silibinin’s hepatoprotective role is often discussed in conjunction with its anticancer and
antiproliferative properties [52-54], we first optimised silibinin’s treatment duration and established a
suitable range of concentrations of silibinin that could be used safely without precipitating adverse
effects. By testing the effects of various concentrations of silibinin on cell viability over 72 h,
we determined silibinin’s maximum non-toxic concentration to be 50 uM (Figure S1). Consequently,
subsequent experiments focused on testing silibinin’s hepatoprotective effect at the concentrations of
25 uM and 50 uM. Similarly, to optimise the concentration windows of INH and PZA, we determined
their half maximal inhibitory concentration (IC50) to be 73 and 60 mM, respectively (Figure S2),
observations consistent with reports in those made in HepaRG [47] and HepG2 [29]. We define these
observations as the “Goldilocks zone” (i.e., synonymous to a zone that is neither too high nor too
low)—in which we expected to observe silibinin’s hepatoprotective effect.

Having established the optimal concentrations of silibinin, PZA, and INH to be used in our
experiments, we then profiled silibinin’s orthogonal roles as a preventive, rescue, or recovery adjuvant in
reducing PZA- and INH-associated hepatotoxicity. This approach was based on differential sequencing
of the toxicant and silibinin exposure (Figure 1). In our exploration of silibinin as a recovery adjuvant,
we investigated silibinin’s ability to mitigate hepatocyte toxicity in vitro after hepatotoxic induction.
We set up a pair of experiments to demonstrate this in vitro. In the first experiment, the hepatocytes
underwent a washout procedure, where we replaced the toxicant media with fresh media after 24 h. In
the second experiment, there was no washout and the toxicant remained in the culture medium. By
comparing silibinin’s in vitro hepatoprotective ability between this pair of experiments, we simulated
silibinin’s potential ability to mitigate further liver injury in patients who either discontinue or stay on
the hepatotoxic regimen.
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Figure 1. Treatment scheme involving silibinin’s role as a prophylactic, rescue, and recovery adjuvant.
To simulate silibinin’s role as a preventive agent, silibinin was administered 24 h before the treatment
with toxicants. To simulate silibinin’s role as rescue adjuvant, silibinin was co-administered with
the toxicant regimen. To simulate silibinin’s role as a recovery adjuvant, silibinin was added 24 h
after the toxicant regimen. The recovery experiments were further subdivided into two conditions:
the first had a washout step, while the second did not have a washout step. In the simulation with
washout, the toxicant regimen was replaced with silibinin alone and then treated for a further 24 h
to investigate silibinin’s ability to aid patients in recovery after stopping the hepatotoxic regimen. In
the simulation without washout, the toxicant regimen was replaced with a combination of silibinin
and toxicant and treated for a further 24 h to investigate silibinin’s ability to mitigate further liver
injury in patients who stay on the toxicant regimen. PZA, pyrazinamide; INH, isoniazid; MTT,
3-(4,5-dimethylthiazol-2-yl1)-2,5-diphenyltetrazolium bromide.

Three major observations can be made about our experiments that serve to identify silibinin’s role
in protecting against DILI. First, silibinin was effective in rescue (Figure 2A), but not in prevention
and recovery (Figure 2B,C). The co-administration of 25 uM silibinin with 80 mM INH moderately
protected against INH-induced hepatotoxicity, raising the mean hepatocyte viability from 53% to
63% (Figure 2A). Second, when hepatotoxicity was induced by a higher concentration of INH at
100 mM, the magnitude of silibinin’s hepatoprotective effect decreased slightly and silibinin’s optimal
hepatoprotective concentration rose to 50 uM (Figure 2A). Inducing hepatotoxicity using a lower
concentration of INH at 50 mM also appeared to negate silibinin’s hepatoprotective effect (Figure 2A).
Third, silibinin’s hepatoprotective effect was independent of PZA-induced hepatotoxicity in vitro
(Figure 2A-C). Interestingly, silibinin’s protection against INH-induced hepatotoxicity also seemed to
decrease when silibinin was administered together with a combination of 50 mM INH and 50 mM
PZA (Figure 2A). This observed combinatorial toxic effect between INH and PZA is reminiscent
of the synergistic toxicity between the four drugs found in the HRZE regimen, which has been
reported in vitro [29,55,56], in vivo [57,58], and in humans [59,60]. Everything considered, these results
suggest that most of silibinin’s hepatoprotective effect may be the most apparent at moderate levels of
INH-mediated toxicity.
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Figure 2.

Silibinin mitigated isoniazid (INH)-induced hepatotoxicity, but not pyrazinamide

(PZA)-induced hepatotoxicity. (A) Co-administration of silibinin at 25 uM reduced hepatotoxicity
induced by 80 mM (one-way analysis of variance (ANOVA), p = 0.0231). Similarly, co-administration of
silibinin at 50 pM reduced hepatotoxicity induced by 100 mM INH (one-way ANOVA, p = 0.0201).
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Co-administration of silibinin at either 25 or 50 uM, but did not reduce hepatotoxicity induced
by 50 mM INH, 50 mM PZA, or a combination of INH and PZA (I/P) at 50 mM each (I/P 50/50).
(B) Pre-administration of silibinin for 24 h, followed by the co-administration of silibinin with INH or
PZA for a further 24 h, did not prevent hepatotoxicity induced by 50 mM INH, 80 mM INH, or 50 mM
PZA. (C) Administration of INH or PZA for 24 h, followed by the administration of silibinin alone
(with washout) or silibinin with INH or PZA (without washout) for a further 24 h, did not aid in the
recovery of LO2 from 50 mM INH, 80 mM INH, or 50 mM PZA. Data represent mean + S.E.M. of at
least two replicates. * p < 0.05 vs. respective vehicle controls.

2.2. Silibinin Reduced Oxidative Damage of INH and PZA on Classical Intracellular Targets

After establishing silibinin’s role as a rescue adjuvant in INH-induced hepatotoxicity,
we characterised silibinin’s ability to reduce intracellular ROS levels and oxidative damage to proteins,
lipids, and DNA. We assessed these intracellular indicators of oxidative stress for two reasons: they
play critical roles in cellular function and survival, and their measurements have been widely studied
and are well-established [61]. These experiments showed that 50 uM silibinin mitigated the increase in
intracellular ROS levels when co-administered with I/P 40/10 over 24 h (Figure 3A).
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Figure 3. Silibinin reduced reactive oxygen species (ROS) levels and oxidative damage when
co-administered with a combination of isoniazid (INH) and pyrazinamide (PZA). Positive controls
were treated with the oxidising agent tert-butyl hydroperoxide (TBHP) 200 uM for 2 h. To avoid
excessive hepatocyte death, the concentrations of INH and PZA were limited to 40 mM and 10 mM,
respectively, when treated in combination (I/P 40/10) over 24 h. (A) 50 uM silibinin reduced intracellular
ROS levels (t-test, p = 0.0466). (B) Silibinin decreased carbonylation levels, a marker of oxidative
damage in proteins, at 25 uM (one-way ANOVA, p = 0.0015) and 50 uM (one-way ANOVA, p = 0.0023).
(C©) Silibinin reduced lipid peroxidation levels as measured by the thiobarbituric acid reactive substances
(TBARS) assay at 25 uM (one-way ANOVA, p < 0.0001) and 50 uM (one-way ANOVA, p = 0.0007).
(D) Silibinin’s reduction of ROS levels at 50 uM was independent of DNA oxidative damage reduction as
visually assessed, and as measured quantitatively by tail moment and olive moments. Administration
of silibinin alone did not trigger DNA fragmentation. Data represent mean + S.E.M. of at least two
replicates. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. vehicle control co-administered with I/P 40/10.

To assess whether the attenuation of intracellular ROS production translated into a reduction in
damage to important biomolecules, we then quantified the corresponding oxidative damage incurred
on proteins, lipids, and DNA. Specifically, we quantified the oxidative damage through protein
carbonylation levels, lipid peroxidation levels, and DNA fragmentation. These experiments revealed
that 25 and 50 pM silibinin significantly reduced protein carbonylation and lipid peroxidation levels
(Figure 3B,C). Importantly, silibinin’s reduction of oxidative stress was independent of DNA oxidative
damage induced by I/P 40/10 (Figure 3D), as measured using the Comet assay, which is especially useful
for detecting genotoxicity because it paints a holistic picture of overall DNA damage by accounting for
multiple genotoxic mechanisms [62]. Overall, silibinin’s reduction of ROS levels led to a reduction in
protein carbonylation and lipid peroxidation, but not in DNA fragmentation.

2.3. Silibinin Protected against Apoptosis by Maintaining Mitochondrial Membrane Potential

As oxidative stress has been reported to trigger apoptosis via caspase-9 and, subsequently,
caspase-3 activation in the intrinsic pathway [63], the drug-induced ROS levels would likely result in
an increase in cell death as well. Indeed, silibinin has been reported to reduce caspase-3 activation [40].
Therefore, we measured silibinin’s ability to reduce apoptotic activity in LO2 to further reinforce
the association between the observed decrease in cell viability and the increase in ROS levels. The
use of caspase-3 activity to gauge apoptosis yielded two key observations (Figure 4A). First, the
co-administration of silibinin significantly mitigated the induction of caspase-3 activity by I/P 40/10.
As caspase-3 is the final mediator of both the intrinsic and extrinsic apoptotic pathways, silibinin’s
mitigation of caspase-3 induction suggests that it reduces the overall apoptotic activity induced by I/P
40/10 administration. Second, the administration of silibinin alone did not affect caspase-3 activity.
This suggests that the observed decrease in cell viability is solely attributed to the exposure of LO2 to
1/P 40/10.
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Figure 4. Silibinin reduced apoptosis when co-administered with a combination of INH and
PZA by maintaining mitochondrial membrane potential. Various concentrations of silibinin were
co-administered with I/P 40/10 over 18 h. (A) The administration of I/P 40/10 significantly increased
caspase-3 activity (one-way ANOVA, p < 0.0001). The co-administration of silibinin with I/P 40/10
reduced the activity of caspase-3 when silibinin was administered at 25 pM (one-way ANOVA,
p < 0.0001) and 50 uM (one-way ANOVA, p < 0.0001), suggesting that there was a reduction in apoptotic
activity. The positive control was treated with camptothecin (CPT) 5 uM for 24 h. (B) The administration
of I/P 40/10 negatively affected LO2 cells’ membrane potential (one-way ANOVA, p < 0.0001). Silibinin
of 50 uM reduced the percentage of cells whose membrane potential was negatively affected by 1/P
40/10 (one-way ANOVA, p = 0.0234). Positive control was treated with the oxidising agent TBHP
200 uM for 1 h. Data represent mean + S.E.M. of three replicates. * p < 0.05, *** p < 0.001 vs. vehicle
control co-administered with I/P 40/10, ™" p < 0.001 vs. respective vehicle controls.

Oxidative mitochondrial stress has been identified as the key driver of INH-induced apoptotic
activity; the increase in ROS levels promotes megamitochondria formation, consequently triggering
cytochrome c release and upregulating apoptotic signalling [23,64]. Thus, having observed that silibinin
attenuated apoptotic activity, we then interrogated silibinin’s effect on preserving mitochondrial
function. We observed that silibinin indeed slightly attenuated the proportion of cells with
mitochondrial membrane potential transition induced by I/P 40/10 (Figure 4B). This may suggest
that silibinin’s reduction of oxidative stress may ameliorate mitochondrial dysfunction and, in turn,
apoptotic activity.

2.4. Silibinin Restored HO-1 Expression and Induced Srxnl Expression in Transforming Growth Factor-a
Transgenic Mouse Hepatocytes (TAMH)

Another aspect of INH's hepatotoxic effect arises from its suppression of proteins expressed in the
Nrf2-ARE pathway [27,28]. However, this effect has not been reported for PZA. To evaluate whether
silibinin’s hepatoprotective effect entails the induction of Nrf2-ARE-related protein expression, we
first profiled the individual effects of INH and PZA in LO2. In these preliminary tests, INH, but not
PZA, suppressed the expression of HO-1. However, other ARE responsive genes, such as Gcle, NQO1,
and Srxnl, were not suppressed by INH (Figure S3). Silibinin was then co-administered with I/P 40/10
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to test our hypothesis that silibinin’s utility in the HRZE regimen arises from its induction of these
antioxidant enzymes. Because the expressions of these four antioxidant proteins may differ across cell
lines, we tested our hypothesis in both LO2 and TAMH.

While silibinin has been reported to exhibit an indirect antioxidative effect by upregulating the
Nrf2-ARE pathway [65], we found that silibinin’s hepatoprotection in LO2 was independent of Gclc,
HO-1, NQO1, and Srxnl induction (Figure 5A). Silibinin alone did not induce the expression of Gclc,
HO-1, NQO1, and Srxn1, suggesting that it does not perturb endogenous oxidative stress response,
a finding indicative of silibinin’s safety. As the Nrf2-ARE pathway in LO2 may not be sensitive to
suppression by I/P compared with other cell lines, we further verified our observation in TAMH, in
which the administration of silibinin alone induced Srxn1 expression. Moreover, when co-administered
with 40 mM INH, silibinin restored HO-1 expression to normal levels, though these effects were
independent of Gclc and NQO1 induction (Figure 5B).
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g
S < + -+ -+ UP4o0M0 H NQO-1
o
'8 < 1.54 [ Gclc
T S — — — — — — I Gele (73 kDa) » % B Srxn1
——— - - | HO-1 (32 kDa) g 310
=g
---——--—I NQO1 (31 kDa) 2 30.5_
l—-———-—-———-. | Srxn1 (16 kDa)
0.0-
S S S ——— . —_| . p-actin (42 kDa) Control CA - + - + - +
(control)
Vehicle Sil 25 Sil 50
(B) TAMH
Silibinin 16
5 3 Vehicle H HO-1
£ 3 25uM 50 M = NQO-1
8 3 + -+ -+ INH4OmM 'u:1§
o o0 A m Gcle
N = [
e p—— O I c= YY) = A * B Srxn1
[ . v - o] 0.1 (32KDa) g g
D& = B e e NQO1 (31 kDa) 2 z
(@~ == == =] smn(16kDa)
’ 0
[ | Fon o Control SU - + - + E +

Vehicle Sil 25 Sil 50

Figure 5. Silibinin induced expression of proteins in the nuclear factor (erythroid-derived 2)-like 2
(Nrf2)-antioxidant response element (ARE) pathway and restored protein expression. Vehicle control
was treated with 0.05% v/v dimethyl sulfoxide (DMSO). ‘" denotes conditions without toxicant
cotreatment; ‘+’ denotes conditions with toxicant cotreatment. (A) In LO2, silibinin’s reduction of ROS
levels when co-administered with I/P 40/10 was independent of heme oxygenase-1 (HO-1) protein
restoration. The administration of I/P 40/10 significantly reduced HO-1 levels without silibinin (one-way
ANOVA, p = 0.0150), or with silibinin at 25 uM (one-way ANOVA, p = 0.0051) and 50 uM (one-way
ANOVA, p = 0.0022). Positive controls were treated with the Nrf2-ARE inducer trans-cinnamaldehyde
(CA) 50 uM for 24 h. Data represent mean + S.E.M. of three replicates. * p < 0.05, ** p < 0.01 vs.
negative control. (B) In transforming growth factor-« transgenic mouse hepatocytes (TAMH), 50 uM
silibinin alone induced sulfiredoxin 1 (Srxnl) expression (one-way ANOVA, p = 0.0237), but the
co-administration of silibinin with 40 mM INH did not restore Srxnl expression to pre-suppression
levels (one-way ANOVA, p = 0.0551). In contrast, 50 pM silibinin restored HO-1 expression (one-way
ANOVA, p = 0.0333), but did not induce HO-1 when was administered alone (one-way ANOVA,
p = 0.0564). This effect did not extend to glutamate-cysteine ligase catalytic subunit (Gclc) and NAD(P)H
quinone dehydrogenase 1 (NQO1) restoration. Positive controls were treated with the Nrf2-ARE
inducer sulphoraphane (SU) 10 uM for 24 h. Data represent mean + S.E.M. of two replicates. * p < 0.05
vs. vehicle control, " p < 0.05 vs. vehicle control co-administered with hepatotoxic regimen.
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3. Discussion

DILI is the most frequently cited reason for the withdrawal of drugs, especially when the
manifestations of the hepatotoxicity are complex and require a better understanding of the underlying
mechanisms [66]. Therefore, we have simulated silibinin’s clinical roles in prophylaxis, rescue, and
recovery of HRZE-induced hepatotoxicity using an in vitro model with the respective pre-, co-, and
post-administration of silibinin with the hepatotoxic regimens. As a prophylactic agent, silibinin would
be taken before starting the HRZE regimen to protect patients from future hepatotoxicity; as a rescue
agent, silibinin would be co-administered with the HRZE regimen to mitigate hepatotoxicity; and as a
recovery agent, silibinin would be prescribed after the onset of HRZE-induced hepatotoxicity to aid
in the healing process. We found that silibinin was mainly useful as a rescue adjuvant (Figure 2A)
and ascertained that silibinin’s hepatoprotective effect arises from two aspects. First, silibinin reduces
intracellular levels of oxidative stress and oxidative damage to intracellular targets (Figure 3A-D)
and mitochondria (Figure 4B), leading to decreased apoptotic activity (Figure 4A). This observation
is consistent with silibinin’s ability to reduce in vivo markers of direct oxidative damage in human
hepatocytes, such as DNA fragmentation levels, lipid peroxidation, and mitochondrial dysfunction, also
reported by other authors [31,32,39,67]. Second, silibinin induces Nrf2-ARE-related protein expression
(Figure 5B). This also coincides with silibinin’s ability to increase levels of endogenous proteins that
protect cells from oxidative damage [68], including various mediators along the mitogen-activated
protein kinase (MAPK) pathway [69], thioredoxin [38], and superoxide dismutase (SOD) [70].

When used as a rescue adjuvant, silibinin was the most significantly hepatoprotective within INH's
“Goldilocks zone” (Figure 2A). Specifically, the “Goldilocks zone” is a range of toxicant concentrations
around its IC50, the toxicant concentrations that trigger DILI to approximately 50% cell viability: the
IC50 of PZA and INH is 60 and 73 mM respectively (Figure S2A,B). This implies that silibinin may be
the most efficacious within a specific window of INH concentrations that are neither too severe nor too
mild. This observation is consistent with other in vitro findings, which involve the characterisation of
silibinin’s hepatoprotective effects at toxicant concentrations around the IC50 values of their respective
assays [29,47]. The existence of INH’s “Goldilocks zone” has two clinical implications in discussing
silibinin’s role as a rescue adjuvant. First, it suggests that silibinin may be the most efficacious at
moderate levels of DILI, and correspondingly less hepatoprotective in very early or late stages of DILL
Thus, depending on a patient’s liver function, silibinin’s dose can be carefully titrated to optimise the
magnitude of hepatoprotection, while reducing silibinin’s potential side effects. The optimal silibinin
concentration from our viability experiments was determined to be 25 pM when DILI was induced
with 80 mM INH (Figure 2A). This may be explained by silibinin’s pro-oxidative and pro-apoptotic
effects at higher concentrations (i.e., beyond 100 uM) (Figure S1B), an observation that corroborates
experiments conducted by other research groups in rats [71] and other in vitro cell lines [31,47,72]. Our
results and literature reports [31,47,71,72] thus suggest that increasing silibinin’s concentration may
not always lead to increased hepatoprotection.

At the same time, silibinin was not useful as an adjuvant in prophylaxis and recovery (Figure 2B,C).
The lack of prophylactic effect may suggest that silibinin may not prevent HRZE-induced hepatotoxicity
(Figure 2B). We also observed that silibinin did not promote the recovery process (Figure 2C), suggesting
that silibinin may also not help patients recover from HRZE-induced hepatotoxicity. While these two
observations suggest that silibinin may not be involved in the protective or regenerative mechanisms
that restore normal hepatocyte function after DILI has occurred [73], silibinin has been shown to reduce
stellate cell migration [57,65,74], which plays an important role in mediating liver diseases involving
fibrotic activity, liver injury, and liver regeneration [75].

Therefore, future directions to better characterise silibinin’s role in recovery may centre around the
use of co-cultures, which can mimic paracrine responses. These studies will help clinicians personalize
regimens to patients’ conditions rapidly and accurately; instead of using a one-size-fit-all approach [76],
regimens may be tailored to patients depending on their risk of DILI from genetic polymorphisms [68].
Ethical considerations in clinical practice often require investigators to exclude moderate-to-high-risk
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patients in their study [51], and consequently, investigators may not recruit enough patients to power
their study more effectively [49]. Our finding that silibinin was most effective in moderate-to-high
DILI (Figure 2A) may establish the moral basis for further clinical trials investigating silibinin’s
hepatoprotective effect.

Silibinin also protected against apoptosis induced by I/P (Figure 4A) independently of viability
restoration (Figure 2A) by reducing intracellular oxidative stress. This reduction in I/P-induced
oxidative stress manifested in two ways: decreased oxidative damage to classical intracellular targets,
as measured by protein carbonylation (Figure 3B) and lipid peroxidation (Figure 3C), and in the
restoration of mitochondrial membrane potential (Figure 4B). Interestingly, though silibinin has been
reported to protect against doxorubicin-induced DNA oxidative fragmentation in mice [32], silibinin
did not appear to protect against oxidative DNA damage induced by I/P 40/10 in our study (Figure 3D).
Our observations on these four hallmarks of oxidative damage corroborate existing in vitro and in vivo
studies on silibinin’s antioxidant effect in showing that silibinin mitigates the elevated lipid peroxidation
and protein carbonylation levels in DILI [77], and further imply that silibinin may not protect against
all forms of INH- and PZA-induced oxidative damage. At the same time, our Comet assay results
lend credence to silibinin’s safety at the concentrations used in our study. Our observation that there
was no difference in the magnitudes of the tail moment and olive moment between the control and
silibinin-treated samples (Figure 3D) suggests that silibinin did not induce DNA damage in our study.
Coupled with the observation that silibinin did not induce caspase-3 activity (Figure 4A), this reinforces
silibinin’s clinical safety profile [51,78] and supports silibinin’s development in further studies.

Other than functioning as a direct antioxidant, silibinin and its analogues have also been reported to
induce the levels and activities of various endogenous antioxidants in hepatocytes [46,65]. Therefore, we
chose to investigate Nrf2-ARE, a major antioxidant pathway. Silibinin’s hepatoprotective effect in LO2
was independent of Nrf2-ARE pathway activation or restoration after suppression by INH (Figure 5A),
agreeing with our earlier observation that silibinin did not function as a preventive agent in vitro
(Figure 2B); if silibinin had adequately induced the protective Nrf2-ARE pathway, the upregulation of
antioxidant enzymatic systems would serve to protect against INH- or PZA-induced hepatotoxicity.
The observation that INH suppressed HO-1 expression in LO2 when used in combination with PZA
(Figure 5A) is consistent with the current paradigm in which INH reduces both the mRNA transcription
levels and the activity of HO-1 [27,28]. By suppressing HO-1 expression, INH increases LO2 cells’
susceptibility to oxidative stress mediated by the increase in intracellular ROS levels (Figure 3A).

In contrast, silibinin induced Srxn-1 expression and restored HO-1 expression in TAMH (Figure 5B).
Interestingly, though we found that this was independent of silibinin’s hepatoprotection in TAMH
(Figure S4), our findings corroborate evidence in rats [65] and mice [79] that silibinin’s induction of the
Nrf2-ARE pathway may contribute towards its hepatoprotective effect in rodents. Moreover, because
INH suppressed Gcelc, NQO1, and Srxnl expression in TAMH, but not in LO2, the observed decrease
in viability in LO2 (Figure 2A) is likely independent of the expression levels of these three proteins.
This also suggests that Gcle, NQO1, and Srxnl may play a smaller role in mitigating oxidative stress
induced in LO2 by I/P.

The differences in observations made in LO2 and TAMH can be ascribed to possible
Nrf2-independent mechanisms of hepatoprotection. Indeed, apart from exhibiting a direct
hepatoprotective effect, silibinin may modulate pathways other than Nrf2-related upregulation of
antioxidant enzymes. In fact, the hepatoprotective effect of tert-butylhydroquinone has been ascribed
to its effects on autophagy [80], and a similar effect may exist in LO2. In contrast, the Nrf2-independent
modulation of HO-1 expression has also been reported in cases of muscular atrophy [81]. Taken
together, these observations suggest that ARE expression may also be controlled by less understood
constitutive pathways besides the well-established induction by Nrf2 activation [82].

An alternative explanation for this interesting phenomenon is that the Nrf2-ARE pathway is
activated by silibinin’s metabolites, rather than silibinin itself. As TAMH is metabolically active [83], it
may convert silibinin to metabolites that structurally resemble the analogue 2,3-dehydrosilydianin,
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which has been reported to upregulate NQO1 activity [46]. The differences between our results
and previous findings [46,65] may thus be attributed to innate metabolic, transporter-related, and
physiological differences between various cell lines. Our choice of LO2 has its distinct advantages;
not only is LO2 more representative of human liver physiology than HepG2 [84], but LO2 also
expresses higher levels of CYP2E1 than HepaRG that enable LO2 to convert INH to its toxic metabolite
hydrazine [85]. Notably, HepaRG’s poor expression of CYP2E1 has cast doubt on its relevance in
INH-induced hepatotoxicity models [86]. Concurrently, our in vitro experiments using human cell
lines serve as useful cross-references for other in vitro [7,47], animal in vivo [11], and human [49-51]
studies on silibinin’s protection against HRZE-induced hepatotoxicity.

At the same time, we observed that silibinin was more hepatoprotective against INH than PZA
or I/P. This observation appears to suggest that silibinin may not mitigate mechanisms involved in
PZA-induced hepatotoxicity in vitro. Therefore, silibinin may need to be used carefully as a rescue
adjuvant in the overall HRZE regimen, which combines the use of INH and PZA. In fact, silibinin may
be more useful in triple ATT regimens that exclude the use of PZA, which are often used in patients who
suffer from hepatotoxicity [87]. Indeed, PZA-induced hepatotoxicity is complex and poorly understood.
Despite PZA’s greater association with hepatotoxicity than INH, research on hepatotoxicity has mostly
centred on the latter, and the mechanisms responsible for INH-induced hepatotoxicity are becoming
more well understood in recent years [88]. Specifically, oxidative stress arising from the toxic INH
metabolite hydrazine has been validated as a major mechanism in INH-induced hepatotoxicity using
pharmacodynamic and pharmacokinetic evidence [64,88,89]. In contrast, while several of PZA’s
metabolites have been identified [18], research characterising their toxicities has only just started
emerging [25]. Recently, 5-hydroxypyrazinoic acid, a metabolite of PZA, was proposed to be primarily
responsible for PZA’s toxicity [18,25]. However, while the conversion of PZA to 5-hydroxypyrazinoic
acid is mediated by xanthine oxidase, silibinin did not protect against PZA-induced hepatotoxicity in
our study (Figure 2A-C), despite being a xanthine oxidase inhibitor [31,90]. One potential limitation of
our study may lie with our finding that silibinin did not protect against PZA-induced hepatotoxicity,
which may be attributed to other injury pathways [50]. Because these alternative pathways may only
become apparent in vivo, they lie beyond the scope of our study.

4. Materials and Methods

4.1. Cell Culture and Reagents

LO2 is a human foetal hepatocyte cell line that has been previously characterised [91]. TAMH
was a kind gift from the late Prof. Nelson Fausto (University of Washington, Seattle, WA, USA); the
isolation of TAMH was previously described [92]. LO2 was cultured in Dulbecco’s minimum essential
medium (DMEM) (Sigma Aldrich, St. Louis, MO, USA) containing 10% v/v foetal bovine serum (FBS).
TAMH was cultured in DMEM-F12 (Sigma Aldrich, St. Louis, MO, USA). Cells were incubated at 37 °C
in a humidified incubator with 5% CO,. Stocks of 100 mM silibinin (Sigma Aldrich, St. Louis, MO,
USA), 10 mM sulphoraphane (SU) (Sigma Aldrich, St. Louis, MO, USA), 50 mM trans-cinnamaldehyde
(CA) (Sigma Aldrich, St. Louis, MO, USA), and 5 M tert-butyl hydroperoxide (TBHP) (Sigma Aldrich,
St. Louis, MO, USA) were prepared in dimethyl sulfoxide (DMSO) (Sigma Aldrich, St. Louis, MO,
USA). Stocks were diluted with culture medium into different concentrations, ensuring that the final
concentration of DMSO never exceeded 0.1% v/v.

4.2. Cell Viability Assay

First, 10,000 cells per well were seeded in a clear 96-well plate overnight and treated accordingly.
At each timepoint, 0.5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
solution in fresh media was added to the cells and incubated for 3 h at 37 °C. Thereafter, the MTT
solution was removed, the formazan crystals formed dissolved in 200 uL DMSO, and the absorbance
was measured at 570 nm using Hidex sense microplate reader (Hidex, Turku, Finland). Stocks of
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100 mM silibinin (Sigma Aldrich, St. Louis, MO, USA) were prepared in dimethyl sulfoxide (DMSO)
(Sigma Aldrich, St. Louis, MO, USA).

In measuring the toxicity of silibinin, INH, and PZA on cells, a series of concentrations was
prepared in media and administered to silibinin for 24 h, after which the cell viability was measured.
To simulate silibinin’s role as a preventive agent, the cells were treated with silibinin for 24 h, then
with both silibinin and the toxicants for a further 24 h, before cell viability was assessed. To simulate
silibinin’s role as a rescue adjuvant, the cells were treated with both silibinin and the toxicant for 24 h
before cell viability was assessed. To simulate silibinin’s role as a recovery adjuvant without washout,
the cells were treated with the toxicant for 24 h, then with silibinin and the toxicants for a further 24 h,
before cell viability was assessed. To simulate silibinin’s role as a recovery adjuvant with washout, the
cells were treated with the toxicant for 24 h, then with only silibinin for a further 24 h, before the cell
viability was assessed.

4.3. Direct ROS Quantitation

First, 10,000 cells per well were seeded in a black 96-well plate overnight and treated accordingly.
At each timepoint, cells were washed with phosphate-buffered saline (PBS) and incubated for 30 min
with 10 uM 6-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) and 1 mg/L Hoechst
33342 dye (Sigma Aldrich, St. Louis, MO, USA) diluted in media. Then, 100 pL of PBS was added and
fluorescence was measured at Aex/Aem = 350/461 nm (Hoescht) and 485/535 nm (DCFDA), respectively,
using a Hidex sense microplate reader (Hidex, Turku, Finland).

4.4. Lipid Peroxidation Quantitation

First, 20,000 cells/cm? were seeded onto a 100 mm dish overnight and the respective treatment
media was added. Thiobarbituric acid reactive substances (TBARS) were quantified using the TBARS
assay kit (Cayman Chemical, Ann Arbor, MI, USA) following the manufacturer’s instructions. Briefly,
both the adhered live cells and floating dead cells were harvested, resuspended in 150 uL PBS, and
sonicated for 5 min. Then, 100 pL of resuspended pellet and 100 puL sodium dodecyl sulfate (SDS)
solution were added to test tubes and mixed with 4 mL of colour reagent solution, which constituted
530 mg of 2-thiobarbituric acid dissolved in 50 mL of a 1:1 mixture of 20% v/v acetic acid and 10%
w/v sodium hydroxide. The tubes were boiled for 1 h, immersed in ice for 10 min to quench further
reaction, centrifuged at 2000x g for 10 min at 4 °C, warmed to room temperature, and added to a
96-well black plate. Fluorescence intensity was measured at Aex/Aem = 520/560 nm using a Hidex
sense microplate reader (Hidex, Turku, Finland). Lipid peroxidation levels were normalised against
total protein quantitated using the Pierce bicinchoninic acid (BCA) Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA).

4.5. Protein Carbonylation Quantitation

First, 20,000 cells/cm? were seeded onto a 100 mm dish overnight and treated accordingly.
Both live and dead cells were harvested and resuspended in 150 puL MilliQ Grade I water. Then,
100 pL of this suspension was added to 500 uL 10% v/v trichloroacetic acid (TCA) solution and
centrifuged at 13,000 rpm for 2 min. The cell pellet was collected and incubated with 100 pL 0.02% w/v
2,4-dinitrophenylhydrazine (2,4-DNPH) hydrochloride (Tokyo Chemical Industries, Tokyo, Japan) for
1 h with constant vortexing. Then, 50 uL 100% v/v TCA was added and the suspension was centrifuged
at 13,000 rpm for 5 min. The cell pellet was washed with cold acetone and dissolved in 200 uL 6M
guanidine HCl (Sigma Aldrich, St. Louis, MO, USA). The absorbance of the solution was measured at
375 nm in a Hidex sense microplate reader (Hidex, Turku, Finland) to determine carbonyl levels, which
were normalised against total protein quantitated using the Pierce BCA Protein Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA).
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4.6. Comet Assay

First, 400,000 cells per well were seeded on a 12-well plate overnight, treated accordingly, harvested,
and resuspended in 100 puL PBS. Then, 20 uL of this suspension was mixed with low-melting agarose
(Trevigen, Gaithersburg, MD, USA), spread evenly over CometSlides (Trevigen, Gaithersburg, MD,
USA), left to congeal, and then kept in lysis solution (Trevigen) at 4 °C overnight. Thereafter, the
slides were immersed in unwinding solution for 30 min at room temperature before gel electrophoresis
was run for 25 min. The slides were washed, dried at 37 °C overnight, and stained with SYBRGold
(Qiagen, Hilden, Germany). Fluorescence images were taken with Olympus Fluoview FV1000 confocal
microscope (Olympus, Tokyo, Japan) and analysed using OpenComet [93]. The tail moment and the
olive moment were calculated as follows:

Tail Moment = Tail Length X Tail DNA% 1

Olive Moment = Tail DNA% X distance between head and tail means (2)

4.7. Mitochondrial Membrane Potential Measurement

First, 20,000 cells/cm? were seeded onto a 60 mm dish overnight and treated accordingly. They
were then incubated with tetramethylrhodamine-methyl-ester (TMRM) (Thermo Fisher Scientific,
Waltham, MA, USA) for 30 min, harvested, centrifuged, and reconstituted in 400 uL PBS. The percentage
of cells within a defined range of fluorescence intensity was determined with Beckman Coulter CyAn
Advanced Digital Processing (ADP) flow cytometer (Beckman Coulter, Jersey, NJ, USA).

4.8. Apoptosis Detection

First, 20,000 cells/cm? were seeded onto a 60 mm dish overnight and treated accordingly. Cell
lysates were extracted with radioimmunoprecipitation assay (RIPA) buffer containing 0.1% w/v SDS,
1% w/v NP-40, and 0.5% w/v sodium deoxycholate in PBS. Then, 300 uL of protease assay buffer (2 mM
dithiothreitol (DTT), 10% v/v glycerol, 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), and 20 mM Ac-DEVD-AMC caspase-3 fluorogenic substrate (BD Pharmingen, Franklin Lakes,
NJ, USA) was added and the samples were incubated at 37 °C in the dark for 1 h. Then, 100 pL of each
sample was added to a 96-well black plate and the fluorescence intensity was measured at Aex/Aem =
390/444 nm using a Hidex sense microplate reader (Hidex, Turku, Finland).

4.9. Western Blot

Cell lysates were extracted using RIPA buffer and protein concentrations were normalised using
the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Proteins were mixed
with loading dye, boiled at 100 °C for 5 min, separated on SDS-polyacrylamide gel (PAGE) using
12% v/v polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA), and then transferred onto
polyvinylidene difluoride (PVDF) membrane (Thermo Fisher Scientific, Waltham, MA, USA) at 4 °C
with 100 V for 2 h. Membranes were washed with tris-buffered saline (1st Base, Singapore) containing
0.1% v/v Tween, blocked with 5% w/v bovine serum albumin (BSA), and then incubated overnight
at 4 °C with the following primary antibodies in 2% w/v BSA: rabbit anti-Gclc antibody (Abcam,
Cambridge, UK; 1:1000); rabbit anti-NQO1 antibody (Cell Signalling, Danvers, MA, USA; 1:1000);
rabbit anti-HO-1 antibody (Cell Signalling; Danvers, MA, USA; 1:1000); mouse anti-Srxnl antibody
(Santa Cruz, Dallas, TX, USA; 1:500); and mouse anti-p-actin antibody (Cell Signalling, Danvers, MA,
USA; 1:10,000). Bound antibodies were detected using horseradish peroxidase-conjugated secondary
antibodies and visualized by chemiluminescence using Western Lightning Plus-ECL reagent (Perkin
Elmer, Waltham, MA, USA). Band intensities were analysed using Image] (National Institutes of Health,
Bethesda, MD, USA) and normalised using (3-actin.
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4.10. Statistical Analysis

Statistical analysis was conducted using GraphPad Prism. The results were expressed as
means + S.E.M. Differences in mean values were analysed by t-tests or one-way analysis of variance
(ANOVA) with Dunnett’s correction. A p-value < 0.05 was considered statistically significant.

5. Conclusions

In summary, we have assessed and characterised silibinin’s various roles as an adjuvant in
protecting against PZA- and INH-induced hepatotoxicity. Our in vitro experiments suggest that
silibinin may be safe and efficacious as a rescue adjuvant, both fundamental considerations in the use
of any drug. Further optimisation of our in vitro model may also enhance silibinin’s hepatoprotective
effect in rescue, prophylaxis, and recovery. Using this model, we have gleaned important mechanistic
insights into its hepatoprotective effect and identified novel antioxidant targets in ameliorating
HRZE-induced hepatotoxicity. Future directions will involve exploring the two main mechanisms by
which silibinin may ameliorate hepatotoxicity; the proof-of-concept demonstrated in this project will
inform subsequent in vitro and in vivo preclinical studies. Given the lack of alternative treatments in
tuberculosis, the need to preserve our remaining antibiotics is paramount. These high stakes necessitate
future efforts to support our preliminary work, making silibinin more clinically relevant to patients
and healthcare professionals alike.
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Abbreviations

ADP Advanced digital processing

ARE Antioxidant response element

ATT Antitubercular therapy

BCA Bicinchoninic acid

CA Trans-cinnamaldehyde

CAT Catalase

CPT Camptothecin

DCFDA 6-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate
DILI Drug-induced liver injury

DMEM Dulbecco’s minimum essential medium

DNA Deoxyribonucleic acid

DIT Dithiothreitol

EMB Ethambutol

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IC50 Half maximal inhibitory concentration

I/P A combination of isoniazid and pyrazinamide

INH Isoniazid
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MAPK Mitogen-activated protein kinase

MTT 3-(4,5-dimethylthiazol-2-yl1)-2,5-diphenyltetrazolium bromide
NLRP3 NOD-like receptor pyrin domain-containing-3

Nrf2 Nuclear factor (erythroid-derived 2)-like 2

NQO1 NAD(P)H quinone dehydrogenase 1

PAGE Polyacrylamide gel

PZA Pyrazinamide

ROS Reactive oxygen species

SDS Sodium dodecyl sulfate

SOD Superoxide dismutase

SU Sulphoraphane

TAMH Transforming growth factor-« transgenic mouse hepatocytes

TBARS Thiobarbituric acid reactive substances

TBHP Tert-butyl hydroperoxide

TCA Trichloroacetic acid

TMRM Tetramethylrhodamine-methyl-ester
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