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Abstract Human immunodeficiency virus (HIV) remains
among the most significant public health threats worldwide.
Despite three decades of research following the discovery of
HIV, a preventive vaccine remains elusive. The study of HIV
elite controllers has been crucial to elaborate the genetic and
immunologic determinants that underlie control of HIV repli-
cation. Coordinated studies of elite control in humans have,
however, been limited by variability among infecting viral
strains, host genotype, and the uncertainty of the timing and
route of infection. In this review, we discuss the role of non-
human primate (NHP) models for the elucidation of the im-
munologic correlates that underlie control of AIDS virus rep-
lication. We discuss the importance of major histocompatibil-
ity complex class I (MHC-I) alleles in activating CD8+ T-cell
populations that promote control of both HIV and simian im-
munodeficiency virus (SIV) replication. Provocatively, we
make the argument that T-cell subsets recognizing the HIV/
SIV viral infectivity factor (Vif) protein may be crucial for
control of viral replication. We hope that this review demon-
strates how an in-depth understanding of the MHC-I gene
products associated with elite control of HIV/SIV, and the
epitopes that they present, can provide researchers with a
glimpse into the protective immune responses that underlie
AIDS nonprogression.
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Introduction

HIV remains among the most significant public health threats
worldwide. In 2015, there were 1.1 million AIDS-related
deaths and the number of people living with HIV exceeded
35 million (UNAIDS 2016). This year alone, the USA will
spend tens of billions of dollars on efforts to fight HIV domes-
tically and internationally. Although drug regimens have been
developed to decrease transmission and morbidity, only half
of HIV-infected individuals are aware of their infection status
and less than half are receiving treatment. Further, access to
anti-retroviral therapy (ART) is challenging in resource-poor
settings, such as sub-Saharan Africa, where approximately
two thirds of all HIV-positive individuals live and the vast
majority of all new cases are diagnosed. More than 30 years
into the epidemic, the need for an HIV vaccine has never been
greater.

The major histocompatibility complex (MHC) is a highly
polymorphic region of the vertebrate genome that plays a
critical role in autoimmunity and host immune response to
infection (Horton et al. 2004). The MHC, which lies on chro-
mosome 6, has typically been divided into three regions: class
I, class II, and class III. The class I gene products are
expressed on virtually all nucleated cells and complex with
β2 microglobulin to form a functional MHC class I (MHC-I)
molecule. TheMHC-I molecule is expressed on the cell mem-
brane, where its highly variable peptide-binding domain pre-
sents peptides of approximately 9–11 amino acids in length.
These peptides are normally derived from intracellular

This article is published in the Special Issue MHC Genes and Their
Ligands in Health and Disease with Editor Prof. Ronald Bontrop.

* Zachary A. Silver
zas11@med.miami.edu

1 Medical Scientist Training Program, University of Miami Miller
School of Medicine, Miami, FL, USA

2 Department of Pathology, University of Miami Miller School of
Medicine, Miami, FL, USA

Immunogenetics (2017) 69:511–519
DOI 10.1007/s00251-017-0997-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00251-017-0997-3&domain=pdf


proteins that have been degraded by the proteasome. The pre-
sentation of pathogen-derived peptides by MHC-I molecules,
however, provides a mechanism for CD8+ T-cells to survey
and destroy cells that have been infected by viruses or para-
sites (Bontrop 2006).

Factors involved in the development of HIV elite
control

In the absence of treatment, HIV-1 infection progresses to
AIDS in >99% of cases (Muenchhoff et al. 2016; Sabin and
Lundgren 2013). Elite controllers represent a remarkable mi-
nority of individuals who maintain normal CD4+ T-cell
counts and low or undetectable viral loads in the absence of
ART (Gaardbo et al. 2012). The study of HIVelite controllers
has provided in-depth knowledge of the viral, genetic, and
immunologic correlates of HIV control. Such phenotypes
have been instrumental in guiding our understanding of HIV
biology and therapy. For example, the host genetic determi-
nant ccr5Δ32 has been shown to facilitate elite control by
modifying the HIV co-receptor on T lymphocytes in a way
that precludes virus binding and entry to the cell. The discov-
ery of the remarkable ccr5Δ32 phenotype led to the first and
only case of a curative HIV treatment (Allers et al. 2011). The
so-called Berlin patient has shown no signs of HIV infection
since receiving a bone marrow transplant from a homozygous
ccr5Δ32 donor (Hutter et al. 2009; Yukl et al. 2013).

In the early 1990s, Ronald C. Desrosiers’ laboratory ob-
tained a blood sample from an elite controller in central
Massachusetts and discovered that this patient’s virus remark-
ably displayed a deletion in the auxiliary gene nef (Kirchhoff
et al. 1995; Mariani et al. 1996). Generation of an SIVmac239
mutant containing a similar deletion in nef and subsequent
infection of rhesus macaques with this strain revealed a similar
degree of attenuation and phenotype of infection in the non-
human primate model (Kestler et al. 1991). The observation
that deletions in HIV nefwere associated with elite control led
to a number of studies aimed at dissecting the functional role
of Nef in the progression toward AIDS. In 1998, Kathleen
Collins and colleagues demonstrated that CD8+ T-cells inef-
ficiently lyse HIV-infected primary T lymphocytes (Collins
et al. 1998). In contrast, lymphocytes infected with an
HIVΔnef strain could readily be lysed in the presence of cy-
totoxic T lymphocytes (CTLs). The group showed that cells
infected with the wild-type HIV strain managed to escape
recognition and lysis by CD8+ T-cells by decreasing the den-
sity of MHC-I, and its bound peptide, on the surface of the
cell. In the absence of Nef, CTLs efficiently lysed HIV-
infected target cells.

The evolutionary relationship between HIV Nef, CTL re-
sponses, and elite control is striking (Collins and Baltimore
1999). HIV Nef serves to downregulate MHC-I and limit

CTL activation, and in the context of a nef-deficient virus, an
individual does not progress to AIDS. The two experiments
highlight the importance of MHC-I gene products for the acti-
vation of CTLs to control HIV infection. It is therefore not
surprising that cohorts of elite controllers are often enriched
with genetic variants that influence immunological outcomes,
such as CD8+ T-cell recognition (HLA-B*27, B*57) and
natural killer cell function (KIR-3DS1) (Alter et al.
2011; Martin and Carrington 2013; Mendoza et al. 2012;
Wang et al. 2009). Indeed, although HLA-B*57 has a fre-
quency of approximately 11% in the Caucasian US popula-
tion, one study demonstrated that this allele was present in 11
of the study’s 13 elite controllers (85%) (Migueles 2000). In
contrast, genotyping of the 200 HIV progressors in this study
revealed an HLA-B*57 prevalence of only 9.5%. Taken to-
gether, these findings emphasize the relative importance of
MHC-I gene products for the control of HIV replication.

Importance of Vif-specific T-cells for spontaneous
control of SIV replication

Development of a successful vaccine will require in-depth
knowledge of the genetic and immunologic correlates under-
lying HIV control. To this end, researchers have investigated
the immune responses of elite controllers and compared them
to those of progressors to gain insight into the nature of pro-
tective immunity against HIV (Ahlers and Belyakov 2010).
Coordinated studies of elite control in humans have, however,
been limited by variability among infecting viral strains, host
genotype, and the uncertainty of the timing and route of in-
fection (Deymier et al. 2015; Loffredo et al. 2007a; Weintrob
et al. 2003). It should not be surprising, therefore, that re-
searchers have turned their attention to the study of nonhuman
primate (NHP) models. Humans and rhesus macaques have
similar immune systems, and SIV, the causative agent of
AIDS in macaques, has a similar pathogenesis and sequence
homology to HIV (Nathanson et al. 1999; Regier and
Desrosiers 1990). Thus, tightly controlled experiments using
rhesus macaques have become an essential tool to model con-
trol of the immunodeficiency virus in humans.

Studies in NHPs have suggested that allelic variation in the
MHC-I genes and the CD8+ T-cells that bind to their gene
products play a critical role in controlling SIV and HIV
(Carrington and O’Brien 2003; Goulder and Watkins 2008).
Our laboratory and others have demonstrated that depletion of
CD8+ T-cells in elite controller rhesus macaques is associated
with a rise in viral loads, which subsequently wanes as SIV-
specific CD8+ T-cell subsets re-emerge (Friedrich et al. 2007).
The presence of SIV-specific T-cells has also been associated
with reduced peak viremia and a slower rate of disease pro-
gression (Borrow et al. 1994). Further, high frequencies of
CD8+ T-cells can exert strong selective pressure on replicating
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viruses and cause viral escape and persistent infection (Goulder
et al. 1997, 2001). Such escape mutants, however, can exact a
toll on viral fitness andwill revert in the absence of CD8+T-cell
pressure (Friedrich et al. 2004; Leslie et al. 2004). Given the
importance of CD8+ T-cells in the control of viral replication,
efforts have been made to characterize the MHC-I-restricted
epitopes associated with CD8+ T-cell responses that control
infection.

The characterization of rhesus macaqueMHC-I alleles, their
peptide-binding motifs, and the SIV epitopes that they present
have helped elucidate the mechanisms involved in control of
AIDS virus replication (Allen et al. 1998; Dzuris et al. 2000;
Loffredo et al. 2004, 2005, 2009). Our laboratory and others
havemade a significant effort to map the SIVepitopes restricted
by different MHC-I alleles and identify the epitopes associated
with control of viremia. The immunodominance hierarchy of
protective CD8+ T-cell responses, however, is complex and
their efficacy depends on activation, potency, viral fitness, and
an individual’s expressed MHC-I alleles. Knowledge of a
macaque’s MHC-I alleles and the SIV peptides they pres-
ent is crucial to elaborate the characteristics of effective
CD8+ T-cell responses. The use of tetramers, ELISpot,
and intracellular cytokine staining (ICS) has allowed re-
searchers to describe the relative frequencies of SIV-specific
T-cells and establish correlations between frequencies of T-
cell subsets and SIV viral loads.

The mapping of MHC-I alleles and the epitopes they
bind in the context of elite controller macaques has shown
that CD8+ T-cells in these monkeys appear to focus on
the SIV viral infectivity factor (Vif) protein. Epitopes
from Vif are presented by numerous MHC-I alleles
(Table 1), including those that are associated with spontaneous
elite control of SIV (Mamu-B*17 and Mamu-B*08). In 2002,

a study by Mothe et al. found that Mamu-B*17 binds 50
peptides from 7 different SIV proteins (Mothe et al. 2002).
Only 16 of these peptides, however, proved capable of
eliciting IFN-γ production by cytotoxic T lymphocytes
in vitro. Of these 16 peptides, 5 were epitopes derived from
Vif, which is surprising given the relatively small size of Vif
(214 amino acids) compared to other SIV proteins. Half of all
rhesus macaques expressing Mamu-B*08 will spontaneously
become elite controllers after infection with SIVmac239
(Loffredo et al. 2007b). Loffredo et al. mapped the Mamu-
B*08-restricted CD8+ T-cell responses to 13 epitopes across
Gag, Vpr, Env, Vif, Nef, and Rev. The strongest and most
frequent immune responses were against epitopes in Vif,
Nef, and Rev, and sequence analysis of SIV quasispecies
from these animals predominantly demonstrated mutations
in Vif and Nef epitopes. In a set of follow-up experiments,
we made clear the importance of Vif-specific T-cells by dem-
onstrating that escape mutations in the Vif RL8 epitope differ-
entiate Mamu-B*08+ progressors from elite controllers
(Mudd et al. 2012a).

The remainder of this review will focus on the nature of the
antigen-specific T-cell responses that may be responsible for
HIV and SIV control in the context of protective MHC-I al-
leles in humans and the NHPmodel of AIDS. Specifically, we
will focus on Vif as a target for CD8+ T-cells that effectively
control viral replication. We will first describe Vif’s function,
protein targets, and relationship to MHC-I presentation of
peptides. We will then present evidence that Vif-specific
CD8+ T-cells are an important component of an effective im-
mune response to SIV. Finally, we will describe studies that
provide evidence suggesting that Vif-specific T-cell responses
are an important component for the prevention and control of
HIV infection in humans.

Table 1 The minimal optimal SIV Vif epitopes required for CD8+ T-cell recognition

MHC-I protein Amino acid positions Length Short name Amino acid sequence Reference

Mamu-B*08 123–131 9 RL9 RRAIRGEQL Loffredo et al. (2007b)

172–179 8 RL8 RRDNRRGL Loffredo et al. (2007b)

Mamu-B*17 44–52 9 HW9 HFKVGWAWW Mothe et al. (2002)

66–73 8 HW8 HLEVQGYW Mothe et al. (2002)

135–143 9 CY9 CRFPRAHKY Mothe et al. (2002)

Mamu-A*01 100-109 10 VL10 VTPNYADILL Sidney et al. (2000)

144–152 9 QA9 QVPSLQYLA Allen et al. (2001)

Mamu-A*02 89–97 9 IW9 ITWYSKNFW Loffredo et al. (2004)

97–104 8 WY8 WTDVTPNY Loffredo et al. (2004)

104–113 10 YY10 YADILLHSTY Loffredo et al. (2004)

Mamu-A*07 145-153 9 VL9 VPSLQYLAL Reed et al. (2011)

Amino acids from SIV Vif are presented across a wide-range of MHC-I molecules. CD8+ T-cell responses against these epitopes have been associated
with IFN-γ production, control of viral replication, and/or selection of viral escape mutants.
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An unusual relationship between HIV/SIV Vif,
APOBEC3G, and MHC-I epitope presentation

In 1998, the Desrosiers Laboratory published a study showing
that a vif-deficient mutant of SIVmac239 has decreased repli-
cative capacity and is weakly infectious in rhesus macaques
(Desrosiers et al. 1998). In line with these findings, several
other groups made the observation that vif-deficient HIV-1
strains can only complete one round of replication. After that,
the progeny virus is predominantly non-infectious (Chowdhury
et al. 1996). The inability of vif-deficient HIV-1 strains to un-
dergo productive replication triggered a widespread search for
the host targets of Vif and ultimately led to the discovery of the
viral restriction factor APOBEC3G (A3G) (Sheehy et al. 2002).
A3G’s importance as a viral restriction factor quickly became
clear, with studies demonstrating that knockdown of A3G in
non-permissible cells could render them permissible to HIV-1
infection (Sadler et al. 2010).

A3G belongs to a family of proteins called activation-
induced cytidine deaminases (Harris and Liddament 2004).
In the case of lentiviruses, A3G and other family members
target the single-stranded DNA generated by reverse tran-
scription of the viral genome. Through removal of an amine
group, a cytosine in the DNA negative strand is converted into
a uracil, thereby leading to a G➔Amutation upon generation
of the positive DNA stand. These mutations have major con-
sequences for the viral genome, as 20% of all A3G-induced
mutations result in stop codons. Stop codons can lead to an
abundance of truncated proteins in the endoplasmic reticulum
and thereby maintain a plentiful supply of peptides for MHC-I
binding and the induction of CD8+ T-cell responses
(Casartelli et al. 2010). A3G-induced mutations can also re-
strict HIV replication in other ways, for example, by interfer-
ing with HIV integration into the host genome and triggering
host DNases to degrade the mutated viral DNA.

The role of HIV Vif, therefore, is to prevent the incorpora-
tion of A3G into viral particles by targeting it for proteasomal
degradation. To achieve this, Vif hijacks the T-cell transcrip-
tion factor CBF-β, which stabilizes Vif and promotes its bind-
ing to Elongin B/C and Cullin-5 to form the Cul5-RING ubiq-
uitin ligase (Donahue et al. 2008; Yu et al. 2003). This E3
ubiquitin ligase complex, with Vif and A3G attached, recruits
E2 ubiquitin conjugating enzyme, thus allowing for
ubiquitination of A3G. By targeting A3G to the proteasome,
the virus can prevent the inclusion of damaging amounts of
A3G into its capsids and continue its lifecycle.

Vif-specific T-cells are associated
with vaccine-induced control of SIV replication

The expression of Vif is clearly important for effective HIV
replication. However, in targeting A3G to the proteasome, Vif

may inadvertently be degraded and peptide sequences from
the protein might be presented in the context of MHC-I gene
products (Dang et al. 2008). Given the importance of Vif for
enabling viral replication, it is tempting to speculate that the
most important cellular reservoirs of HIV/SIV would consist
of cells where Vif is either moderately or highly expressed.
Although these cells would produce replication-competent
HIV, the proteasomal degradation of Vif could ultimately lead
to an increased presentation of Vif epitopes in the context of
MHC-I proteins. This increased density of Vif epitopes on the
surface of the cell could serve as a potent target for Vif-
specific CTLs to control infection and limit the production
of replication-competent virus (Fig. 1).

Given the relative abundance of Vif peptides that are bound
and presented by MHC-I molecules, it is not surprising that
many rhesus macaques develop Vif-specific CD8+ T-cell re-
sponses. Our laboratory and others have associated several of
these unique Vif-specific T-cell subsets with control of SIV
infection (Table 1). In 2007, we depleted CD8+ T-cells from
elite controllers, which abruptly triggered a resurgence of plas-
ma viral loads (Friedrich et al. 2007). The reemergence of
CD8+ T-cells recognizing the Vif HW8 epitope, a Mamu-
B*17-restricted epitope, coincided with a decrease in viral
load and subsequent reestablishment of control. In another
set of experiments, depletion of CD8+ T-cells in elite control-
lers led to expansion of CTLs recognizing the Mamu-B*08-
restricted Vif RL8 epitope (Loffredo et al. 2007a).
Interestingly, these CD8+ T-cell responses selected for muta-
tions that facilitated escape from Vif RL8-specific CD8+ T-
cells, demonstrating the considerable pressure that these CTLs
exert on SIV replication.

Although single subsets of epitope-specific CTLs can po-
tently kill SIV-infected cells, it has become clear that broad
CD8+ T-cell responses are important for the control of SIV.
Data from our laboratory demonstrated that a Mamu-B*08+
rhesus macaque with high viral loads in the chronic phase
mounted 87% of their CTL responses against a single epitope,
Vif RL8 (Loffredo et al. 2008). The controllers, on the other
hand, showed high frequencies of RL8-specific CTLs (∼54%),
but also subdominant frequencies of CTLs that recognized Vif
RL9, Env, and Nef. In another experiment, Martins et al. dem-
onstrated that broad T-cell responses after vaccination and het-
erologous challenge with SIVsmE660 are associated with
markers of delayed disease progression (Martins et al. 2010).
In particular, the number of different Vif epitopes recognized by
CTLs in vaccinees was associated with reduced peak viremia
and higher CD4+ T-cell counts during the chronic phase of
infection. These data suggest that control of viral replication
requires pressure from multiple CTL populations to maintain
low viral loads, perhaps in order to minimize the chances of
evolutionary escape. Therefore, increasing the breadth of
vaccine-induced Vif-specific T-cell responses could provide
an important means to control SIV replication.
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The range of CTL breadth required for successful control
of SIV infection is not completely clear. Our laboratory previ-
ously demonstrated that escape mutants in Mamu-B*08-re-
stricted Vif epitopes differentiate elite controller macaques
from progressors (Loffredo et al. 2007a; Mudd et al. 2012a).
Given this intriguing data, Mudd et al. tested whether vaccina-
tion with three Mamu-B*08-restricted CD8+ T-cell epitopes—
Vif RL8, Vif RL9, andNef RL10—using a recombinant yellow
fever 17D prime with a recombinant adenovirus serotype 5
boost was sufficient to induce control of SIV (Mudd et al.
2012b). Strikingly, all of the vaccinated macaques controlled
viral replication during acute infection, and 6 of 8 became elite
controllers. The vaccinees demonstrated early robust CTL re-
sponses to Vif RL9 and Nef RL10 when compared to the un-
vaccinated macaques. CTL responses against Vif RL8 were
present but equal between the two groups, suggesting that Vif
RL8-specific CTLs may not differentiate elite controllers from
progressors. In vaccinees that progressed, viral sequencing re-
vealed the presence of escape mutations in all three targeted
epitopes. A set of follow-up experiments that used a monotypic
Nef RL10 vaccination demonstrated that Nef RL10-specific

CTLs, alone, are insufficient to induce elite control
of SIVmac239 (Martins et al. 2015). These data, taken together,
suggest that vaccine-induced Vif-specific T-cells are key for
mediating control of SIV in the context of Mamu-B*08.

These results raise the question as to whether vaccine-
induced viral control will be as effective in macaques whose
MHC alleles do not dominantly present Vif epitopes. The
Matano laboratory shed light on this question in a recent ex-
periment studying the vaccination of macaques with anMHC-
I haplotype associated with dominant Nef-specific CD8+ T-
cell responses (Iwamoto et al. 2014). They used a DNA prime/
SeV-VifNef boost vaccination to determine whether Vif- or
Nef-specific CTLs could be induced to control SIV infection.
Indeed, they found that the frequency of Vif-specific CD8+ T-
cells in the acute phase of infection was significantly higher in
vaccinated controllers. In unvaccinated and vaccinated non-
controller macaques, however, Nef-specific CD8+ T-cells
were predominant and led to early viral escape from these T-
cells. Interestingly, most of the unvaccinated and vaccinated
macaques showed Nef-specific CD8+ T-cell responses in the
chronic phase. This is consistent with data from our laboratory

Fig. 1 Relationship between APOBEC3G, Vif, MHC presentation, and
CTL responses. a Proteasomal degradation of the Vif/A3G complex
limits incorporation of A3G into progeny virions, thereby preventing
hypermutation during subsequent cellular infection. This proteasomal
degradation may lead to increased presentation of Vif epitopes in the
context of MHC-I gene products and provide a target for Vif-specific

CTLs. Vif-specific T-cell responses may therefore be key for control of
HIV/SIV by targeting cells that evade the activity of the A3G restriction
factor. b In the absence of Vif, A3G is incorporated into progeny virions.
Upon infection of subsequent cells, A3G causes mutations during reverse
transcription of viral RNA that result in replication-incompetent virus
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that showed a correlation between high frequencies of Vif-
specific T-cell responses and low viral set points during the
chronic phase (Martins et al. 2010).

Vif-specific T-cells are correlates of decreased risk
of HIV acquisition

The association between elite control and certain MHC-I al-
leles, including the HLA-B*27 and -B*57 alleles, is widely
accepted and has been reviewed extensively (Goulder and
Watkins 2008). Of note, however, is that the HLA-B*27 allele
shares a similar peptide binding motif as the rhesus macaque
Mamu-B*08 allele (Loffredo et al. 2009). This suggests that
the immunodominant epitopes, namely Vif and Nef, associat-
ed with spontaneous and vaccine-induced control of SIV may
also be important in human control of HIV. Indeed, a number
of HIV Vif epitopes have been shown to bindMHC-I proteins
and activate CTLs (Fig. 2).

Analyses of individuals who are at high risk for infection
but remain seronegative provide fertile ground for understand-
ing protective mechanisms (Addo et al. 2011; Guerini et al.
2011). These Bexposed, seronegative individuals^ (ESNs) do
not acquire HIV infection despite repeated exposure and their
existence has been widely reported. A study conducted by
Kebba et al. in 2004 suggests that ESNs target different epi-
topes from individuals who are infected, and that these epitopes
are critical for viral replication (Kebba et al. 2004). In their
study, they demonstrated that ESNs mounted high-frequency
CTL responses against Vif, while seropositive individuals
mounted lower frequency, subdominant responses.

A more recent study conducted by the Kallas Laboratory
(part of the iPrEx chemoprophylaxis trial) examined the rela-
tionship between HIV-1-specific T-cell responses in ESNs and
risk of infection (Kuebler et al. 2015). They compared the T-
cell responses of ESNs who remained seronegative with those
who ultimately acquired infection. Interestingly, the frequency

Fig. 2 HIV and SIV Vif are targeted for presentation by MHC-I gene
products. The major function of HIV/SIV Vif is to prevent incorporation
of A3G into the capsid of progeny virus by targeting the Vif/A3G com-
plex to the proteasome. In so doing, the AIDS virus is able to prevent
hypermutation of its progeny virus upon infection of a subsequent cell.
This Vif amino acid alignment depicts the SIV and HIV Vif minimal
optimal epitopes and the MHC-I gene products that present them. In
addition, we show the extent of overlap between the Vif minimal optimal

epitopes and known functional domains of Vif. The HIVVif HCCHmotif
(amino acids shown in red) binds to Cul5. References: SIVmac239 epi-
topes (see Table 1), HIV-1 epitopes (Llano et al. 2013), Elo B/C binding
(Stanley et al. 2008), Cul5 binding (Dang et al. 2010; Luo et al. 2005;
Stanley et al. 2008), A3G binding (Chen et al. 2009; Dang et al. 2009;
Russell and Pathak 2007), A3F binding (Dang et al. 2010; He et al. 2008;
Russell and Pathak 2007), A3G and A3F binding (Dang et al. 2010; He
et al. 2008; Pery et al. 2009)
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of Vif-specific responses correlated with a substantial reduc-
tion in risk of HIV-1 infection. Their data show that a 10-fold
increase in Vif-specific T-cell responses, as measured by
ELISpot, corresponded to a 64% decreased risk of HIV-1 in-
fection. Further analyses of these types of human cohorts will
be required to understand the role vaccine-induced Vif-specif-
ic CTL responses could have in preventing infection.

Conclusion

Sterilizing immunity to HIV-1 has proven difficult to achieve
through vaccination (Fuchs and Desrosiers 2016). A successful
vaccine should therefore aim to restrict HIV replication in the
acute phase by inducing potent effector memory CD8+ T-cell
responses at the portals of viral entry. There is evidence that such
a T-cell response can limit the peak of acute phase infection,
thereby decreasing the number of host cells that serve as viral
reservoirs. A decrease in the number of viral reservoirs is be-
lieved to slow disease progression and decrease the host’s poten-
tial for transmitting the virus. Importantly, a decrease in the num-
ber of HIV-infected cells also diminishes the viral replication
required for a virus to mutate and escape CD8+ T-cell pressure.

It is important to note that the Merck vaccine trials, which
ended in failure, did not include a Vif immunogen (Sekaly
2008). Since these trials were designed, Vif-specific T-cell
responses have been found in elite controllers and correlated
with reduced viral loads during the chronic phase of infection.
Evidence from human cohorts has also suggested the presence
of broad Vif-specific responses in HIV-1 patients and high-risk
seronegative individuals (Kuebler et al. 2015; Tarosso et al.
2010). Given the data suggesting an important role for Vif-
specific T-cell responses, it will be valuable to continue study-
ing Vif-mediated immunity and the potential role of these T-
cells in both prevention and control of HIV-1 infection.

Immunodominance of viral epitopes varies for different
MHC-I molecules, and recent studies have described the impor-
tance of CD8+ T-cell responses in controlling HIV/SIV viremia.
Mapping of the SIVepitopes that are bound by different MHC-I
molecules, especially those associated with elite control, has
been an important step toward understanding control of SIV
infection. We hope that this review has demonstrated how an
in-depth understanding of the MHC-I gene products associated
with elite control of HIV and SIV, and the epitopes that they
present, can provide researchers with a glimpse into the protec-
tive immune responses that underlie AIDS nonprogression.
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