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Introduction
The defi ning event of mitosis occurs during anaphase, when 

identical sister chromatids disjoin and separate toward oppo-

site poles of the microtubule (MT)-based spindle. Anaphase 

chromatid-to-pole motion (anaphase A) is tightly linked to de-

polymerization of the opposite ends of chromosome-associated 

MTs. Chromosomes actively depolymerize MTs at their plus 

ends, thereby “chewing” their way poleward along MT tracks—

a type of motility termed Pacman. At the same time, chromo-

some-associated MTs serve as traction fi bers, which are drawn 

poleward via persistent depolymerization at their minus ends. 

This process, termed poleward fl ux because of the resulting 

poleward fl ow (fl ux) of MTs, reels in attached chromatids to 

spindle poles (for review see Mitchison and Salmon, 2001). 

Pacman and fl ux have been observed to occur simultaneously in 

diverse cell types and, in sum, account for the entire velocity of 

poleward chromosome motility (Mitchison and Salmon, 1992; 

Zhai et al., 1995; Maddox et al., 2002, 2003; Rogers et al., 

2004; Civelekoglu-Scholey et al., 2006). Thus, we refer to the 

general translocation mechanism underlying anaphase A as 

Pacman-fl ux.

A large and growing set of proteins has been identifi ed 

that bind to and modulate the functions of spindle MTs (Scholey 

et al., 2003) and thus could be incorporated into the Pacman-

fl ux machinery that drives anaphase A. Among the most myste-

rious of the spindle binding proteins identifi ed to date are MT 

severing enzymes (Vale, 1991; McNally and Vale, 1993). Pro-

teins with the capacity to sever MTs have been found associated 

with spindles in a wide variety of systems, yet their specifi c mi-

totic functions remain largely unknown (McNally et al., 1996; 

Srayko et al., 2000; Errico et al., 2004; Svenson et al., 2005).

In particular, three conserved and closely related members 

of the AAA protein superfamily have been identifi ed that may 

function by severing mitotic spindle MTs (Frickey and Lupas, 

2004). The best characterized of these is Katanin, a heterodimer 

consisting of a 60-kD AAA catalytic subunit (p60) and an 

80-kD targeting and regulatory subunit (p80; McNally and Vale, 

1993; Hartman et al., 1998). Katanin has been found to target 

to centrosomes in diverse cell types (McNally et al., 1996; 

McNally and Thomas, 1998; Srayko et al., 2000), leading to the 

proposal that it contributes to MT minus-end depolymeriza-

tion and fl ux (McNally and Vale, 1993; McNally et al., 1996; 
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 McNally and Thomas, 1998). However, Katanin’s role in fl ux or 

chromosome motility has not been previously demonstrated. In 

addition, a Katanin homologue in Caenorhabditis elegans tar-

gets to meiotic chromosomes. Although this protein does not 

participate in mitosis, but instead is required for normal meiotic 

spindle assembly and dynamics (Srayko et al., 2000, 2006; 

 McNally et al., 2006), it is conceivable that a similarly posi-

tioned MT severing protein in mitotic cells could contribute to 

Pacman-based chromosome motility.

A second AAA family member, Spastin, has also been 

found to sever MTs in cells and in vitro (Evans et al., 2005; 

Roll-Mecak and Vale, 2005). Spastin has been studied primarily 

for its role in neuronal development and function. Mutations in 

the Spastin gene are the major cause of hereditary spastic para-

plegia, a disorder caused by the degeneration of subsets of neu-

rons and hallmarked by the progressive weakening of lower 

extremities (Hazan et al., 1999). Loss-of-function mutations of 

the Spastin homologue in Drosophila melanogaster also cause 

behavioral abnormalities and perturb neuromuscular junctions 

and axonal MT arrays (Sherwood et al., 2004). Mitotic func-

tions for the protein are unknown, but Spastin has been found to 

localize to centrosomes and spindle poles in vertebrate cells 

(Errico et al., 2004; Svenson et al., 2005), raising the possibility 

that it, too, could contribute to chromosome motility via the 

generation of poleward fl ux.

A third AAA protein family member, Fidgetin, groups 

closely with Spastin and Katanin by phylogenetic analysis 

(Frickey and Lupas, 2004) and thus may sever MTs as well, 

though this has not been demonstrated experimentally. Pheno-

typic analyses of Fidgetin mutant mice indicate important 

 developmental functions for this protein. Mutants display a 

head-shaking or “fi dget” phenotype stemming from defects in 

auditory development. They also develop small eyes, which are 

a manifestation of a cell cycle delay, suggesting a potential mi-

totic role for this protein (Cox et al., 2000). Fidgetin displays 

both cytoplasmic and nuclear localizations during interphase 

(Yang et al., 2005), but its mitotic localization and function have 

not been reported.

For this study, a series of live-cell analyses were per-

formed to explore whether and how D. melanogaster ortho-

logues of Katanin, Spastin, and Fidgetin contribute to mitotic 

spindle and chromosome dynamics. Our fi ndings reveal that all 

three are incorporated into the anaphase Pacman-fl ux machinery 

used to separate chromosomes. Surprisingly, the functions of 

these proteins are segregated so that Spastin and Fidgetin 

stimulate MT minus-end depolymerization and fl ux, whereas 

Katanin stimulates plus-end depolymerization and Pacman-

based anaphase A.

Results
The D. melanogaster genome encodes single orthologues of 

Spastin (Dm-Spastin; CG5977) and Fidgetin (Dm-Fidgetin; 

CG3326) and three potential Katanin p60s. The putative 

D. melanogaster Katanin p60 orthologues include the protein 

product of CG10229 (most similar to human Katanin p60 and 

referred to here as Dm-Kat60) and the more divergent protein 

products of CG1193 and CG10793 (Emes and Ponting, 2001; 

Kammermeier et al., 2003). This study reports on the mitotic 

functions of Dm-Spastin, Dm-Fidgetin, and Dm-Kat60 in 

D. melanogaster S2 cells (we found that the CG1193 protein 

had no impact on mitosis, and analyses of CG10793 were not 

performed). S2 cells were used for these studies because of their 

ready susceptibility to targeted protein knockdown by double-

stranded (ds) RNAi and their amenability to live-cell visualiza-

tion of mitotic spindle and chromosome dynamics (Goshima 

and Vale, 2003; Goshima et al., 2005; Maiato et al., 2005).

Only Dm-Spastin has been directly implicated as an MT 

severing enzyme in D. melanogaster cells. Overexpression of 

Dm-Spastin in S2 cells was found to cause a substantial loss 

of interphase MTs, which is typical of increased MT severing 

activity (McNally et al., 2000; Roll-Mecak and Vale, 2005). 

Figure 1. Overexpression of Dm-Kat60, Dm-Spastin, 
or Dm-Fidgetin eliminates MTs in interphase S2 cells. 
(A–C) mRFP–α-tubulin expressing S2 cells were tran-
siently transfected with full-length AAA-EGFP con structs. 
AAA refers specifi cally to Dm-Kat60, Dm-Spastin, and 
Dm-Fidgetin. Fluorescent MTs are pseudocolored 
green; expressed AAA fusion protein is pseudocolored 
red. Overexpression of any one of the AAA constructs 
visibly decreases the MT polymer mass. Bars, 5 μm. 
(D) Mean fl uorescence intensities (+SD) of mRFP–
α- tubulin for live whole cells after transient transfection 
with the indicated full-length AAA-EGFP construct. Red 
bars are tubulin fl uorescence intensities of cells that 
 visibly expressed fl uorescent AAA protein. Gray bars are 
intensities of neighboring cells not visibly expressing 
fl uorescent AAA protein. *, P < 0.001 versus controls. 
Numbers in bars are sample sizes. (E) Mean fl uores-
cence intensities (+SD) of immunostained α-tubulin in 
wild-type S2 cells that had been transiently transfected 
with either EGFP or the full-length Fidgetin-EGFP construct. 
Gray and red bars are values of neighboring untrans-
fected and transfected cells, respectively. The decrease 
of tubulin immunofl uorescence of Fidgetin-EGFP ex-
pressing cells is signifi cant when compared with either 
neighboring untransfected control cells or EGFP ex-
pressing control cells. Error bars indicate SD.
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 Using this same assay, we found that Dm-Fidgetin and Dm- 

Kat60 similarly disrupted MT arrays when overexpressed in S2 

cells, consistent with the hypothesis that all three D. melanogaster 

proteins function as MT severing enzymes in cells (Fig. 1).

Dm-Kat60, Dm-Spastin, and Dm-Fidgetin 
display distinct targeting within spindles
Because the localization of MT severing enzymes within 

D. melano gaster spindles had not been examined before this 

study, we raised antibodies against unique N-terminal domains 

of Dm-Kat60, Dm-Spastin, and Dm-Fidgetin (Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200612011/DC1) 

to detect these proteins in S2 cells. Antibodies against each 

were found to react with a single band near the predicted mo-

lecular mass of the intended target on Western blots of S2 cell 

lysates (Fig. S1 B). The intensity of each band diminished sub-

stantially when the target protein was knocked down by 5–7 d 

of RNAi treatment, indicating the specifi city of these anti-

bodies (Fig. S2 A).

Immunofl uorescence analyses revealed that all three sev-

ering proteins target to both centrosomes and chromosomes in 

D. melanogaster spindles (Fig. 2 A). In each case, RNAi specif-

ically reduced or abolished the intensity of labeling of the 

 intended target protein, supporting the specificity of this 

 localization (Fig. S2 B). (Depletion of the targeted proteins by 

RNAi had no apparent affect on the expression or localization 

of any off-target protein tested [Fig. S2, C and D].) The centro-

somal localization of these proteins was qualitatively similar 

and was not dependent on MTs (Fig. 2 A and Fig. S3).

In contrast, their association with chromosomes was more 

complex. Dm-Kat60 was present on chromosomes throughout 

mitosis, where it appeared as dispersed bright puncta covering 

the chromosome mass (Fig. 2 A). During anaphase, some of these 

Dm-Kat60 puncta clearly targeted to kinetochores, as indicated 

by colocalization with the kinetochore marker, Cid (Fig. 2 B). 

In contrast, the chromosomal targeting of Dm-Spastin and 

Fidgetin was prominent only during prometaphase/metaphase 

and decreased substantially at the onset of anaphase. Before 

anaphase, both Dm-Spastin and Dm-Fidgetin appeared on 

chromo somes as distinct puncta near, but usually not overlap-

ping with, kinetochores. Interestingly, of the three, only Dm-

Kat60 associates with chromosomes in the absence of MTs, 

indi cating a fundamental difference in the mechanisms target-

ing these proteins to chromosomes (Fig. S3).

Dm-Spastin and Dm-Fidgetin modify 
the interaction between centrosomes 
and spindle MTs
That Dm-Kat60, Dm-Spastin, and Dm-Fidgetin all target to mi-

totic centrosomes implies that this organelle is an important site 

for severing of spindle MTs. Indeed, MTs have been observed 

to detach from centrosomes in interphase and mitotic cells 

(Keating et al., 1997; Rusan and Wadsworth, 2005), and similar 

events have been inferred in mitotic spindles based on the dis-

placement between minus ends and centrosomes (Mastronarde 

et al., 1993). Therefore, we initially assessed the roles of these 

MT severing enzymes in regulating interactions between cen-

trosomes and spindle MTs. The depletion of Dm-Kat60, Dm-

Spastin, or Dm-Fidgetin by RNAi produced no increase of gross 

defects in spindle structure (Fig. S4, B–D, available at http://

www.jcb.org/cgi/content/full/jcb.200612011/DC1). However, the 

frequency of mitotic cells within RNAi-treated cultures did in-

crease signifi cantly, suggesting subtle perturbations of mitotic 

progression (Fig. S4 A).

To examine this issue in more detail, we developed an as-

say exploiting the mitotic phenotype resulting from the inhibi-

tion of the abnormal spindle protein (Asp; Saunders et al., 

1997). Asp is thought to form an insoluble matrix that anchors 

possibly severed MT minus ends to centrosomes (Wakefi eld 

et al., 2001), and its depletion by RNAi results in an easily 

Figure 2. Dm-Kat60, Dm-Spastin, and Dm-
Fidgetin display distinct targeting within 
spindles. (A) Immunolocalization of endogenous 
Dm-Kat60, Dm-Spastin, and Dm-Fidgetin dur-
ing metaphase and anaphase. Cells were tri-
ple stained to show AAA proteins (green), MTs 
(red), and Cid (blue). AAA refers specifi cally 
to Dm-Kat60, Dm-Spastin, and Dm-Fidgetin. 
All three AAA proteins localize to the centro-
somes (arrowheads). In addition, all three lo-
calize to chromosomes (arrows): Dm-Kat60 is 
dispersed widely on chromosomes, whereas 
Dm-Spastin and Dm-Fidgetin are typically lo-
cated in fewer puncta near kinetochores. The 
chromosomal immunostaining of Dm-Kat60 re-
mained constant from metaphase to anaphase, 
whereas that of Dm-Spastin and Dm-Fidgetin 
decreased. Similar staining patterns were 
 observed in hundreds of cells from multiple 
 experiments. Bar, 5 μm. (B) Immunolocaliza-
tion of Dm-Kat60 in late anaphase spindles. 
In panel 1, MTs are blue, Dm-Kat60 is red, 
and Cid is green. Panels 2 and 3 are higher 
magnifi cations of the region boxed in 1. Dm-
Kat60 remains dispersed over the anaphase 
chromosomes and is also found at kineto-
chores (arrows).
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 identifi able and highly penetrant phenotype in which centro-

somes completely dissociate from the central spindle (do Carmo 

Avides and Glover, 1999; Morales-Mulia and Scholey, 2005). 

We reasoned that a decrease in MT severing activity at centro-

somes would ameliorate the Asp RNAi phenotype: increasing 

the density of unsevered MTs at centrosomes would abrogate 

the need for the anchoring activity of Asp (Fig. 3 A). Indeed, 

codepletion of either Dm-Spastin or Dm-Fidgetin with Asp re-

stored the ability of centrosomes to associate with spindles, 

consistent with the notion that these proteins actively sever and 

release MTs from centrosomes (Fig. 3, B–D). Analysis of Asp 

immunofl uorescence in co-RNAi–treated cells was used to verify 

Asp depletion (Fig. S2 E). Thus, this rescue phenotype is not 

due to a decreased effi ciency of Asp knockdown resulting from 

double-target RNAi treatments. In contrast, Dm-Kat60 RNAi 

had no noticeable effect on the Asp RNAi phenotype and thus 

likely infl uences mitosis by a mechanism that is different from 

the other severing proteins (Fig. 3, B–D).

Dm-Spastin and Dm-Fidgetin, but 
not Dm-Kat60, stimulate poleward fl ux 
in metaphase spindles
Severing of MT minus ends at centrosomes and/or spindle poles 

has been proposed to be a necessary prerequisite to fl ux-related 

minus-end depolymerization (McNally and Vale, 1993). Given 

the ability of Dm-Spastin and Dm-Fidgetin to disassociate MTs 

from centrosomes, we were particularly interested in assessing 

the impacts of these severing proteins on fl ux. As described 

above, fl ux results from the persistent depolymerization of MT 

minus ends, which is balanced during metaphase by polymer-

ization at plus ends, allowing the spindle to maintain a constant 

length and chromosomes to remain at the spindle equator. During 

anaphase, the cessation of plus-end polymerization leaves the 

minus-end depolymerization unbalanced, so a pulling force is 

generated on chromosomes. To avoid ambiguity, we refer only 

the poleward movement of tubulin subunits (which occurs 

during both metaphase and anaphase) as fl ux.

To test the importance of MT severing enzymes in fl ux, 

we monitored fl ux on metaphase spindles from control and 

RNAi-treated S2 cells using fl uorescence speckle microscopy 

(Waterman-Storer et al., 1998) and photobleaching techniques 

(Fig. 4 A). Virtually identical results were obtained using either 

technique, so the data were pooled. In controls, fl ux was found 

to occur at a mean velocity of 0.81 ± 0.31 μm/min (Fig. 4 B), in 

good agreement with previous fi ndings (Maiato et al., 2005).

RNAi of Dm-Spastin or Dm-Fidgetin signifi cantly re-

duced the velocity of fl ux to 0.49 ± 0.29 and 0.48 ± 0.31 μm/min, 

respectively (Fig. 4 B). In the most severe cases, spindles lack-

ing either of these proteins displayed a nearly complete ces-

sation of fl ux. Unfortunately, simultaneous knock down of Dm-

Spastin and Dm-Fidgetin resulted in a high degree of cell death, 

making it impossible to directly assess their combined impacts 

on fl ux or to determine whether they perform partially redun-

dant functions. In contrast, RNAi of Dm-Kat60 had no discern-

ible effect on metaphase fl ux, which continued at a mean 

velocity of 0.85 ± 0.33 μm/min (Fig. 4 B). Thus, Dm-Spastin 

and Dm-Fidgetin are fl ux regulators, whereas Dm-Kat60 is not.

Previously, we identifi ed an MT-destabilizing Kinesin-13, 

KLP10A, as an important fl ux effector in D. melanogaster 

embryos (Rogers et al., 2004). This protein concentrates on 

centrosomes and spindle poles and likely catalyzes fl ux by 

directly stimulating the depolymerization of MT minus ends 

focused at poles. It is therefore conceivable that the depletion 

of Dm-Spastin or Dm-Fidgetin perturbs fl ux indirectly via 

the mislocalization of KLP10A. However, immunofl uor-

escence performed on cells lacking Dm-Spastin or Dm-Fidgetin 

revealed no obvious alteration in KLP10A’s localization 

(Fig. S2 D).

Figure 3. Dm-Spastin and Dm-Fidgetin regulate the interaction between 
centrosomes and spindle MTs. (A) Working model of Asp RNAi phenotype 
rescue by AAA co-RNAi. After nucleation from γ-TuRC (a) and severing by 
an AAA protein (b), the newly generated minus end of an MT (c) can be 
anchored in the pole matrix. Asp RNAi disrupts the pole matrix, allowing 
centrosomes to displace from minus ends; co-RNAi of AAA to inhibit sever-
ing might rescue this phenotype, preventing the release of MTs from 
γ-TuRC. (B) Major phenotypes of spindles after the indicated RNAi treat-
ments. Asp RNAi causes centrosomes to become signifi cantly displaced 
from spindle poles, producing a noticeable gap between centrosomes and 
the unfocused poles. Asp/Dm-Kat60 co-RNAi spindles still display the pre-
dominant Asp RNAi phenotype, but co-RNAi of Asp and either Dm-Spastin 
or Dm-Fidgetin results in spindles with centrosomes always fully attached 
(i.e., without visible separation) or closely positioned to the poles. (C) 
Co-RNAi of Asp with Dm-Spastin or Dm-Fidgetin signifi cantly increased 
the percentage of metaphase spindles with attached centrosomes (i.e., 
lacking a visible separation between poles and centrosomes). Asterisks 
mark treatments with signifi cantly different means than control. Numbers 
within bars are sample sizes, and error bars are SD. (D) The centrosome-
to-pole distances of all metaphase spindles with unfocused poles, regard-
less of the state of centrosome attachment, were measured. Co-RNAi of 
Asp with Dm-Spastin or Dm-Fidgetin signifi cantly decreased this distance. 
Error bars indicate SD.
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Dm-Spastin and Dm-Fidgetin stimulate 
the turnover of 𝛂-tubulin at the ends 
of spindle MTs
To further assess the impact of Dm-Kat60, Dm-Spastin, and Dm-

Fidgetin on spindle MT dynamics, FRAP was used to measure 

and compare the turnover of fl uorescent tubulin subunits at both 

MT ends in control RNAi cells. Regions at the spindle pole (MT 

minus ends) and the midzone (MT plus ends) of EGFP–α-tubulin 

containing metaphase spindles were photobleached, and recovery 

half-times (t1/2) were calculated. Dm-Kat60 RNAi had no impact 

on tubulin turnover at either MT end (Fig. 5 A and Fig. S5, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200612011/DC1), 

consistent with its lack of impact on fl ux. In contrast, RNAi of ei-

ther Dm-Spastin or Dm-Fidgetin signifi cantly attenuated tubulin 

turnover at the spindle poles (Fig. 5 A, top and middle; and Fig. S5), 

consistent with the hypothesis that these proteins destabilize 

MT minus ends to promote fl ux. Somewhat surprisingly, deple-

tion of these proteins also attenuated turnover at MT plus ends 

(Fig. 5 A, top and bottom; and Fig. S5). This fi nding is consistent 

with their association with preanaphase chromosomes (Fig. 2 A) 

and indicates that they play a more general role in regulating 

spindle MT dynamics, at least during metaphase. FRAP at MT 

ends, particularly plus ends, is likely driven by two nonexclu-

sive mechanisms, fl ux and dynamic instability (Mitchison and 

Kirschner, 1984). Unfortunately, our assay was not sensitive enough 

to distinguish the relative contributions of each of these mecha-

nisms to fl uorescence recovery (although we believe that both 

contribute to EGFP–α-tubulin FRAP at plus ends).

Dm-Spastin and Dm-Fidgetin catalyze the 
turnover of 𝛄-tubulin at centrosomes
Severing of MTs near their minus ends has been proposed to 

stimulate fl ux by releasing minus ends from stabilizing caps 

formed by γ-tubulin ring complexes (γ-TuRCs; McNally and 

Thomas, 1998; Buster et al., 2002). If so, depletion of fl ux-

stimulating Dm-Spastin or Dm-Fidgetin could also slow the 

turnover of γ-tubulin at centrosomes or elsewhere within the 

spindle (e.g., depolymerization of MT stubs that remain attached 

to γ-TuRCs after severing could disassemble the complex, caus-

ing γ-tubulin to be released from centrosomes or spindles). To 

test this hypothesis, FRAP analyses were performed in control 

and RNAi-treated S2 cells stably expressing γ-tubulin–EGFP. 

In these cells, γ-tubulin–EGFP fl uorescence clearly concen-

trated at mitotic centrosomes but was diffi cult to visualize and 

measure with precision elsewhere within the spindle. Thus, we 

focused our analyses specifi cally on the turnover of γ-tubulin–

EGFP associated with mitotic centrosomes.

After photobleaching in control cells, mitotic centrosome-

associated γ-tubulin–EGFP fl uorescence rapidly recovered (t1/2 = 

34 s) to a plateau of 
40% of prebleach levels (Fig. 5 B and 

Fig. S5). This recovery showed a partial dependency on MTs: 

overnight treatment with colchicine (which depolymerizes MTs 

and arrests cells in mitosis) signifi cantly reduced the FRAP re-

covery rate (t1/2 = 60 s) in those cells that ultimately recovered 

to control levels. The recovery of γ-tubulin–GFP fl uorescence, 

which, although attenuated, persists in the absence of MTs in 

some colchicine-treated cells, is consistent with the direct inter-

change between cytosolic and pericentriolar matrix-associated 

pools of the protein ( Khodjakov and Rieder, 1999).

Similar to colchicine treatment, depletion of either Dm-

Spastin or Dm-Fidgetin signifi cantly decreased the turnover of 

γ-tubulin at centrosomes, whereas Dm-Kat60 did not (Fig. 5 B 

and Fig. S5). Specifi cally, the FRAP t1/2 in Dm-Spastin or Dm-

Fidgetin RNAi-treated cells was more than double that of control 

cells (34 s for controls, 75 s for Dm-Spastin RNAi, and 78 s for Dm-

Fidgetin RNAi). The overall similarity of these results  supports 

Figure 4. Dm-Spastin and Dm-Fidgetin, but not Dm-Kat60, 
stimulate poleward fl ux in metaphase spindles. (A) To visual-
ize poleward fl ux, bars were photobleached across  metaphase 
spindles of EGFP–α-tubulin expressing S2 cells, after RNAi 
treatment. Images are frames taken from time-lapse videos; 
the elapsed times (s) after photobleaching are indicated to the 
left or within the panels. Orange arrowheads mark the initial 
position of the photobleached bars, and blue arrowheads 
indicate their current positions. Kymographs were generated 
from the time-lapse recordings of these spindles to further illus-
trate the fl ux rates: a large angle between the tracks of 
bleached bar and pole indicates a relatively high fl ux rate 
(control and Dm-Kat60 RNAi), whereas more parallel 
tracks indi cate decreased fl ux (Dm-Spastin and Dm-Fidgetin 
RNAi). t and d indicate the time and distance axes, respec-
tively. (B) Mean fl ux rates (+SD) for metaphase cells after 
RNAi treatment. The fl ux rate after Dm-Kat60 RNAi is equiva-
lent to control, whereas fl ux is signifi cantly decreased after 
Dm-Spastin or Dm-Fidgetin RNAi. *, P < 0.05 versus controls. 
Numbers within bars are sample sizes.
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the notion that Dm-Spastin and Dm-Fidgetin infl uence the turn-

over of centrosomal γ-tubulin by a mechanism involving MTs.

Dm-Spastin and Dm-Fidgetin 
regulate the number of plus ends 
in preanaphase spindles
If Dm-Spastin and Dm-Fidgetin catalyze the release of MT mi-

nus ends from their nucleating γ-TuRCs and/or centrosomes, 

then depletion of these proteins could also decrease the nucle-

ation of new MTs and thus reduce the number of polymerizing 

plus ends within the spindle. To test this hypothesis, live analy-

ses were performed on control and RNAi-treated cells express-

ing the plus-end tracking protein EGFP-EB1, which appears as 

comets on polymerizing plus ends (Rogers et al., 2002). As ex-

pected, the depletion of Dm-Spastin and Dm-Fidgetin, but not 

Dm-Kat60, signifi cantly reduced the number of EGFP-EB1 

comets near spindle poles and also within the interior of pre-

anaphase spindles (Fig. 6 A). In a corroborating line of study, 

we found that the depletion of Dm-Spastin and Dm-Fidgetin 

slightly reduced the MT polymer mass within spindles relative 

to cytoplasmic tubulin; Dm-Kat60 depletion had no measurable 

effect (Fig. 6 B). This decrease alone is not likely the cause of 

the observed reductions in fl ux velocity, as fl ux continued at 

a statistically normal rate when MT polymer mass was reduced 

to a similar extent by treatment with low levels of colchicine 

(fl ux rate of untreated cells, 0.83 ± 0.22 μm/min; rate of colchi-

cine-treated cells, 0.93 ± 0.18 μm/min; treatment was 50 μM 

 colchicine for 
30 min).

Dm-Kat60, Dm-Spastin, and Dm-Fidgetin 
are all required for chromosome 
segregation during anaphase A
We have shown that Dm-Spastin and Dm-Fidgetin are regula-

tors of fl ux, at least during metaphase. If they persist in this 

function through anaphase, then depletion of these proteins 

should also cause a commensurate decrease in anaphase A ve-

locity by diminishing the fl ux component of the Pacman-fl ux 

mechanism. Additionally, although Dm-Kat60 does not appear 

to infl uence fl ux, its association with anaphase chromosomes/

kinetochores raises the possibility that it, too, contributes to 

anaphase A, but by a different mechanism (e.g., the stimulation 

of Pacman-associated MT plus-end depolymerization). To de-

termine whether these proteins are generally involved in ana-

phase A, we used 4D spinning-disk confocal microscopy to 

visualize anaphase A chromosome movements in live RNAi-

treated S2 cells stably expressing EGFP–α-tubulin. S2 cell 

spindles contain prominent bundles of kinetochore MTs, and 

chromosomes appear at the ends of these as EGFP-free dots. 

The motions of the negatively stained chromosomes can be 

tracked during anaphase (Fig. 7 A and Videos 1–4, available at 

Figure 5. Dm-Spastin and Dm-Fidgetin stimulate the turnover of 𝛂-tubulin at MT ends and 𝛄-tubulin at centrosomes. (A, top) FRAP of metaphase spindles 
of EGFP–α-tubulin expressing S2 cells after RNAi. One spindle pole region (MT minus ends) and one spindle equator region (MT plus ends) were photo-
bleached, and their fl uorescence recoveries were recorded. Images are frames from time-lapse recordings; the elapsed times after photobleaching are shown 
to the left. Fluorescent α-tubulin recovery after Dm-Kat60 RNAi is similar to control, whereas the recoveries after Dm-Spastin and Dm-Fidgetin RNAi are visi-
bly slower. (middle) Mean fl uorescence recovery half-times (t1/2) for MT minus ends (left). Asterisks indicate treatments with statistically slower α-tubulin turn-
over rates compared with control. Percentage of fl uorescence recoveries are shown (right). Numbers within bars are sample sizes, and error bars are SD. 
(bottom) Mean t1/2 (+SD) of MT plus ends. (B, top) The two intensely fl uorescent centrosomes of γ-tubulin–EGFP expressing S2 cells were photobleached, 
and their fl uorescent recoveries were recorded. Selected time-point images and their postbleach elapsed times are shown. (middle) Mean t1/2 (+SD) of 
γ-tubulin turnover at centrosomes. (bottom) Percentage of fl uorescence recoveries is shown.
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http://www.jcb.org/cgi/content/full/jcb.200612011/DC1). In 

controls, chromosomes moved poleward at a mean velocity of 

1.03 ± 0.28 μm/min (Fig. 7 B), consistent with earlier fi ndings 

(Goshima and Vale, 2005; Maiato et al., 2005).

Surprisingly, the depletion of any of these proteins caused 

a signifi cant attenuation of anaphase A rate. These effects were 

remarkably similar regardless of the RNAi target, resulting in 


50% reduction in the poleward velocity of chromatids: this 

motility was slowed to 0.47 ± 0.25 μm/min by Dm-Kat60 

RNAi, to 0.48 ± 0.19 μm/min by Dm-Spastin RNAi, and to 

0.43 ± 0.12 μm/min by Dm-Fidgetin RNAi (Fig. 7, B and C). 

A common manifestation of slowed anaphase A was the de-

condensation of chromosomes while still some distance from 

the poles, indicating that chromosome motion was reduced to 

such an extent that decondensation initiated before segregation 

was completed.

Dm-Kat60 contributes to anaphase A by 
stimulating MT plus-end depolymerization 
and Pacman
Finally, to specify the contributions of Dm-Spastin, Dm-

Fidgetin, and Dm-Kat60 to anaphase A, we photobleached 

lines across spindles of live S2 cells containing both EGFP–

α-tubulin and Hoechst-labeled chromosomes. The rate at which 

chromosomes moved toward the bleach mark corresponds to 

Pacman, whereas the poleward translocation of the bleach 

mark corresponds to fl ux (Fig. 8 A and Videos 5–7, available 

at http://www.jcb.org/cgi/content/full/jcb.200612011/DC1). 

In controls, Pacman and fl ux each accounted for 
50% of 

the velocity of poleward chromatid motility (Fig. 8 C). After 

the depletion of Dm-Kat60, fl ux rate was normal but very 

 little Pacman was observed (Fig. 8, B and C). Thus, Dm-

Kat60 is involved in the stimulation MT plus-end depolymer-

ization. (Dm-Kat60 RNAi did not infl uence the localization 

of several kinetochore/centromere- associated regulators of 

MT dynamics [Fig. S2 D]; thus, the inhibition of Pacman 

does not result indirectly from gross structural perturba-

tions of kinetochore or the loss of other Pacman effectors 

from kinetochores.)

In contrast, RNAi of Dm-Spastin or Dm-Fidgetin had no 

impact on Pacman motility but, as expected, dramatically re-

duced the fl ux velocity (Fig. 8, B and C), consistent with the hy-

pothesis that their impact on anaphase A stems entirely from 

their role in the stimulation of MT minus-end depolymerization 

and resulting infl uence on fl ux. Thus, all three proteins are incor-

porated into the Pacman-fl ux machinery that drives anaphase A. 

Dm-Spastin and Dm-Fidgetin are required for MT minus-end 

depolymerization and poleward fl ux, whereas Dm-Katanin is 

required for MT plus-end depolymerization and Pacman-

based motility.

Figure 6. Dm-Spastin or Dm-Fidgetin RNAi decreases the number of 
polymerizing plus ends and the fraction of total tubulin incorporated into 
the MT array of spindles. (A, left) Single confocal section of an EB1-EGFP 
expressing S2 cell before and after processing to enhance contrast of EB1-
EGFP comets. The pole and equator regions used for EB1-EGFP comet 
counting are outlined with dashed lines. (right) Densities of EB1-EGFP at 
spindle poles (black bars) and equators (gray bars) after RNAi treatment. 
*, P < 0.05 versus controls. Numbers within parentheses are sample sizes, 
and error bars are SD. (B, left) A z-series projection of an EGFP–α-tubulin 
expressing cell. Total fl uorescence is measured within region 1 (enclosing 
the metaphase spindle) and region 2 (the remainder of the cell) to calculate 
the spindle polymer/cytoplasmic fl uorescence ratio. (The brightness of this 
image was increased to improve its visibility; for fl uorescence measure-
ments, saturated images were avoided.) (right) Ratios of tubulin polymer/
monomer fl uorescence in metaphase S2 cells after RNAi. Numbers within 
bars are sample sizes.

Figure 7. Dm-Kat60, Dm-Spastin, and Dm-Fidgetin are all required for 
proper chromosome segregation during anaphase A. (A) After RNAi, 
EGFP–α-tubulin expressing S2 cells were recorded from metaphase until 
late anaphase as single confocal sections. Chromosomes are visible as 
black dots at the ends of the prominent kinetochore fi bers. In the last 
frames, yellow dots mark the positions of the chromosomes, and blue dots 
the centrosome position, in a half spindle. Numbers are elapsed time after 
the fi rst frame. (B) Anaphase chromatid-to-pole velocities (+SD) after RNAi. 
*, P < 0.05 versus controls. (C) Representative plots of chromatid-to-pole 
distance versus time taken from individual chromosomes in A.
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Discussion
The results of this study show that three closely related MT sev-

ering enzymes, Dm-Kat60, Dm-Spastin, and Dm-Fidgetin, are 

important for mitosis in D. melanogaster S2 cells. Interestingly, 

the activity of these proteins is segregated both spatially and 

temporally, allowing them to perform complementary functions 

throughout the spindle. This is most apparent during anaphase A, 

when all three are integrated into the Pacman-fl ux machinery 

used to move chromosomes.

Dm-Spastin and Dm-Fidgetin, but not 
Dm-Katanin, infl uence centrosome–MT 
attachments and poleward fl ux 
during mitosis
Dm-Spastin and Dm-Fidgetin emerge from this study as new 

regulators of poleward MT fl ux. Specifi cally, inhibition of either 

protein results in a signifi cant reduction in fl ux velocity. In ad-

dition, we have found that both proteins similarly promote the 

turnover of α-tubulin at spindle poles and γ-tubulin at centro-

somes. In sum, these data are consistent with a general model 

for fl ux and chromosome motility, in which Dm-Spastin and 

Dm-Fidgetin function to release MT minus ends from their nu-

cleating γ-TuRCs, which are believed to cap and stabilize MT 

ends (Wiese and Zheng, 2000). In turn, severing exposes minus 

ends to depolymerization by spindle pole–associated Kinesin-13 

(KLP10A in D. melanogaster), which has been shown to also 

contribute to fl ux (Rogers et al., 2004; Fig. 9 A). During ana-

phase A, the MT minus-end depolymerization of fl ux “reels in” 

chromosomes to the poles.

Based on our proposal that Dm-Spastin and Dm-Fidgetin 

work in concert with KLP10A to promote fl ux, one would ex-

pect many similarities in the phenotypes resulting from the 

inhibition of these proteins. Indeed, as in Dm-Spastin or 

Dm-Fidgetin RNAi–treated cells, depletion of KLP10A also in-

hibits fl ux and slows anaphase A (unpublished data). A notable 

difference, however, is that KLP10A RNAi induces spindle 

elongation (Rogers et al., 2004; Goshima et al., 2005; Laycock 

et al., 2006), whereas Dm-Spastin or Dm-Fidgetin RNAi does 

not. One possible explanation for this apparent inconsistency 

stems from the fact that spindles probably elongate as a result of 

continued plus-end polymerization and MT sliding when minus-

 end depolymerization (i.e., fl ux) is decreased after KLP10A 

RNAi. Thus, the puzzling absence of spindle elongation after 

Dm-Spastin or Dm-Fidgetin RNAi might be explained by the 

observation that plus-end polymerization is also signifi cantly 

decreased in these cells (Fig. 5 A, bottom).

Although our data demonstrate roles for Dm-Spastin and 

Dm-Fidgetin in regulating fl ux and MT–centrosome interaction 

(i.e., catalyzing the turnover of γ-tubulin and regulating Asp-

mediated attachments with MT minus ends), it is currently un-

clear whether centrosomes are the sole or even primary site of 

action of these proteins in the spindle. Indeed, the presence of 

centrosomes is not required for spindle assembly, fl ux, and 

chromosome segregation in some D. melanogaster cell types 

(Bonaccorsi et al., 2000; Goshima and Vale, 2003; Mahoney 

et al., 2006) and other systems such as oocyte spindles (Sawin 

and Mitchison, 1994; Heald et al., 1997; Khodjakov et al., 

2000). Additionally, even in centrosome-containing cells, the 

majority of MT minus ends are often positioned at a distance 

from centrosomes, and many spindle MTs are thought to arise 

from noncentrosomal sources (e.g., chromosomes/kinetochores; 

Khodjakov et al., 2000; Goshima and Vale, 2003; Maiato et al., 

2004; Mahoney et al., 2006). These MTs may still be capped by 

cytoplasmic γ-TuRCs, and it is conceivable that severing within 

the spindle (i.e., away from centrosomes) is required for their 

normal dynamics and fl ux. Thus, although our model (Fig. 9 A) 

depicts Dm-Spastin and Dm-Fidgetin as functioning only at 

centrosomes (where these proteins concentrate), this may be 

an oversimplifi cation.

Why both Dm-Spastin and Dm-Fidgetin would be used 

for the same task is unclear. At present, we have no clear evi-

dence for a functional or physical interaction between these 

proteins. Each protein might sever a distinct subset of centrosomal 

Figure 8. Dm-Kat60 stimulates Pacman, whereas Dm-Spastin and Dm-
Fidgetin drive poleward fl ux. (A) Frames of time-lapse recordings of ana-
phase EGFP–α-tubulin expressing S2 cells in which chromosomes were 
Hoechst stained just before visualization, and bars were photobleached 
across each half spindle. Yellow arrowheads mark the initial position of 
bleach marks; yellow arrows and dots mark their current positions. Blue 
arrowheads mark the initial positions of the leading edge of a selected 
chromosome; blue arrows and dots mark the current positions of the 
chromosome. The control spindle displays both poleward fl ux and Pacman 
motility (manifested as chromosomes overtaking bleach marks), but the 
Dm-Kat60 RNAi spindle has visibly diminished Pacman motility, and the 
Dm-Spastin and Dm-Fidgetin spindles have diminished fl ux. (B) Representa-
tive plots of distance versus time of individual chromosomes measured from 
the RNAi-treated cells in A. Red lines represent fl ux, and blue lines repre-
sent Pacman motility (measured as the approach of chromosomes to bleach 
marks). (C) Mean fl ux, Pacman, and chromatid-to-pole velocities (+SD) for 
anaphase spindles. Statistical differences from the control are marked with 
asterisks. Numbers in parentheses are sample sizes.
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MTs, but to our knowledge this would be unprecedented, and 

we consider it unlikely. Unfortunately, coinhibition of these 

proteins by RNAi causes a high degree of cell death, making 

it diffi cult to assess this possibility. Alternatively, a degree of 

functional redundancy may explain why a small portion of 

D. melanogaster carrying null mutations in the spastin gene sur-

vive to adulthood (Sherwood et al., 2004). Genetic analysis of 

the relationship between these proteins should be revealing and 

may help answer this question.

It is notable that Dm-Kat60 also localizes to centrosomes 

but performs no obvious function there, at least based on the 

 assays used here. However, Dm-Kat60 RNAi does impact the 

mitotic index (Fig. S4 A), which is likely indicative of subtle 

preanaphase Dm-Kat60 activities, which are beyond the sensi-

tivity of our visualization techniques.

MT severing by Dm-Katanin stimulates 
plus-end depolymerization and Pacman 
by anaphase chromosomes
Although Dm-Kat60 does not appear to function at centrosomes 

(Figs. 3 and 5), our data indicate that this protein plays an im-

portant role in moving anaphase chromosomes (Figs. 7 and 8). 

Dm-Kat60, which localizes to both chromosome arms and ki-

netochores, functions during anaphase to stimulate the depoly-

merization of MT plus ends, thereby moving chromosomes by 

a Pacman mechanism. We propose that Dm-Katanin functions 

in this regard by uncapping MT plus ends—much the same as 

Dm-Spastin and Dm-Fidgetin do at minus ends—and exposing 

them to depolymerization by centromere/kinetochore-associ-

ated Kinesin-13, which is also required for Pacman (Fig. 9 B). 

Although Pacman-inhibiting plus-end caps have not been iden-

tifi ed, several MT-stabilizing microtubule-associated proteins 

(such as the plus-end tracking proteins CLASP, EB1, and 

CLIP-190) associate with kinetochore-associated MT plus ends 

(Dujardin et al., 1998; Rogers et al., 2002; Dzhindzhev et al., 

2005). Whether the association of these proteins with plus ends 

inhibits depolymerization by Kinesin-13s is unknown.

Additionally, severing by Katanin could uncap plus 

ends associated with chromosome arms. A vertebrate kinesin, 

XKLP1, which targets to chromosome arms, has been shown 

to bind and stabilize MT plus ends and would probably resist 

Pacman motility (Bringmann et al., 2004). The D. melanogaster 

genome encodes several potential XKLP1 homologues, and it 

will be interesting to see whether Katanin has an antagonistic 

relationship with any of these.

We cannot rule out the possibility that D. melanogaster 

Katanin directly stimulates the depolymerization of kinetochore-

associated MT plus ends. Indeed, it could conceivably supplant 

chromosome-associated Kinesin-13s in some systems, poten-

tially explaining why the Kinesin-13 KLP59C does not appear 

to play a direct role in chromosome motility in S2 cells 

(Goshima and Vale, 2005) even though it drives Pacman in 

D. melanogaster embryos (Rogers et al., 2004). However, we 

have recently identifi ed another Kinesin-13 that is needed for 

Pacman in S2 cells (unpublished data), making it unlikely that 

Dm-Katanin directly depolymerizes plus ends.

It is notable that Dm-Spastin and Dm-Fidgetin also target 

to chromosomes before anaphase, where they may function sim-

ilarly to Dm-Katanin. FRAP analysis indicates that both proteins 

normally enhance the turnover of chromosome-associated plus 

ends on preanaphase spindles (Fig. 5 A, bottom). Why the chro-

mosome activity of these proteins is down-regulated at the onset 

of anaphase while Katanin, which associates with chromosome 

throughout mitosis, is up-regulated is unclear. The loss of Spas-

tin and Fidgetin from chromosomes may result from the under-

lying dependence of this targeting on MTs. Both are released 

from chromosomes in the presence of colchicine, and alterations 

in MT dynamics that accompany the onset of anaphase may 

have the same effect. Alternatively, Katanin’s activity may be 

up- or down-regulated by phosphorylation. Indeed, the primary 

sequence of Dm-Kat60 contains several putative CDK1 phos-

phorylation motifs (unpublished data). Finally, Katanin’s severing 

activity may be negatively regulated by MT-coating microtubule-

associated proteins, as demonstrated in other systems (Vale, 

1991; McNally et al., 2002; Qiang et al., 2006).

Conservation of mechanism
Interestingly, Katanin does not appear to target to chromosomes 

or kinetochores in many cell types. In fact, the only system be-

sides D. melanogaster in which a Katanin homologue has been 

reported to associate with chromosomes is C. elegans, which 

does not use Katanin for mitosis (Srayko et al., 2000). This raises 

the question of whether the mitotic functions of MT severing pro-

teins, particularly Katanin, are conserved throughout phylogeny. 

In this regard, we note that several additional Katanin p60 

homologues whose functions have not yet been analyzed have 

been identifi ed within vertebrate and invertebrate genomes 

(Emes and Ponting, 2001; Frickey and Lupas, 2004; see Results). 

Any of these could target to chromosomes and stimulate Pacman-

based anaphase A. Moreover, a recent yeast two-hybrid study 

has shown that Fidgetin associates with the protein kinase A 

Figure 9. Model: Katanin, Spastin, and Fidgetin function distinctly to drive 
Pacman-fl ux chromosome motility during anaphase. (A) At centrosomes, 
Spastin and Fidgetin sever MTs from the protective γ-TuRCs associated with 
centrosomes/poles. The newly generated MT ends can now disassemble; 
minus-end disassembly of the released MT is promoted by Kinesin-13 at the 
poles. Plus-end disassembly eliminates the short remaining MT and allows 
γ-TuRCs turnover at centrosomes. (B) At chromosomes, Katanin severs near 
the plus ends of spindle MTs, generating new free ends. This activity would 
remove any protective caps stabilizing plus ends. Kinesin-13 at centro-
meres/kinetochores then stimulates minus-end disassembly, enabling chromo-
somes to move poleward by Pacman.



JCB • VOLUME 177 • NUMBER 2 • 2007 240

anchoring protein, AKAP95, which targets to chromosomes 

throughout mitosis (Yang et al., 2006). D. melanogaster contain 

no obvious AKAP95 homologue, perhaps explaining why Fidg-

etin does not impact Pacman in this system. Future studies to ex-

amine the possible mitotic functions of vertebrate Fidgetin and 

Katanin homologues would address this question.

In closing, we suggest a general mechanism in which ap-

propriately positioned and tightly regulated MT severing pro-

teins provide a means to rapidly create free MT ends, which are 

then exposed to the actions of other regulatory proteins. During 

anaphase, such an activity works in close coordination with 

 Kinesin-13s, stimulating poleward chromatid motility by a 

combined Pacman-fl ux mechanism (Kwon et al., 2004). In other 

instances, the creation of free ends could have a very different 

impact on MT behaviors. Future analyses examining the inter-

actions between severing proteins and Kinesin-13s, as well as 

other regulators of MT dynamics, will help test this proposal.

Materials and methods
S2 cell culture
S2 cells stably transfected with an EGFP–α-tubulin construct (under control 
of the copper-inducible pMT promoter or the constitutive pAc5.1 promoter 
[Invitrogen]) or with an EB1–EGFP construct (controlled by the pMT pro-
moter) were a gift from R. Vale (University of California, San Francisco, 
San Francisco, CA). Cells were cultured according to published methods 
(Rogers et al., 2002).

dsRNAi
Sequences to be used for RNAi were selected by alignment of mRNAs to 
identify 500–600-bp regions for each protein that displayed minimal ho-
mology with other proteins in the FlyBase database. Selected sequences 
are as follows: Dm-Kat60 (CG10229), nucleotides 1885–2448 (in 3′ UTR 
of NM_080258); Dm-Spastin (CG5977), 2831–3389 (in 3′ UTR of NM_
170115); Dm-Fidgetin (CG3326), 150–671 (in CDS of NM_134919); 
Asp (CG6875), 4207–4872 (in CDS of NM_079764). DNA templates 
for RNA synthesis were obtained by PCR of D. melanogaster ESTs (Dro-
sophila Genomics Research Center) or S2 cell cDNA using the primers 
listed in the following paragraph. dsRNA was generated using commercial 
transcription kits (Megascript T7 [Ambion] or Ribomax T7 [Promega]) ac-
cording to the manufacturers’ instructions. For RNAi, S2 cells were treated 
on day 0, 2, and 4 by incubating for 1 h in 1 ml serum-free Schneider cell 
medium (Invitrogen) with 20 μg dsRNA, followed by addition of 1 ml 
Schneider medium containing 20% heat-inactivated FBS. Cells were replated 
and analyzed on day 5.

Each primer for generating dsRNA was preceded with T7 se-
quence (taatacgactcactataggg). The gene-specifi c sequences used for 
primers are as follows (listed as 5′ to 3′ for both forward/reverse primers): 
control, atggataagttgtcgatcg/accaggttcacatgcttgcg (template = pBluescript 
SK+; Stratagene); Asp, ctacatctgcgcgaggttacc/agcccttcgcttcatctcg; 
Dm-Fidgetin, tgctgcgctcaaggatcac/ttcgagctcacagttcgcttg; Dm-Kat60, 
gaatggctagcgattgtagg/atctctgcctgcactaaactatg; Dm-Spastin, cgttgtttaac
caccatgtcc/acaccagatccatacgcacc.

Antibody production
GST and maltose binding protein fusions of the N-terminal regions of each 
protein displayed in Fig. S1 were bacterially expressed and purifi ed using 
glutathione–Sepharose or amylose resins. Polyclonal antibodies were gen-
erated against the GST fusions (ProteinTech). Antibodies were affi nity puri-
fi ed from sera using their respective maltose binding protein fusion proteins 
coupled to Affi gel resin (Bio-Rad Laboratories). In addition, affi nity-purifi ed 
antibodies were preabsorbed with resin-bound fusions of N-terminal re-
gions of the other AAA proteins to eliminate cross-reactivity.

Immunofl uorescence microscopy
After RNAi, S2 cells were plated on concanavalin A–coated coverslips to 
stimulate cell spreading for microscopy (Rogers et al., 2002). Cells were 
fi xed in −20°C methanol for 20 min and blocked with 5% normal goat 

 serum in PBS containing 0.1% Triton X-100. Primary antibodies (against 
the Dm-AAA proteins or α-tubulin [DM1a; Sigma-Aldrich], γ-tubulin [GTU-
88; Sigma-Aldrich], phospho-histone H3 [Upstate Biotechnology], or cen-
tromere marker Cid [a gift from G. Karpen, University of California, 
Berkeley, Berkeley, CA]) were applied at 1–20 μg ml−1 fi nal concentra-
tions in blocking buffer. Fluorescent secondary antibodies (Jackson Immuno-
Research Laboratories) were used at 7.5 μg ml−1. DNA was stained 
with 1 μg ml−1 propidium iodide, 5 μM Draq5, or 0.3 μg ml−1 Hoechst 
33258. Specimens were imaged using an Ultraview spinning-disk confo-
cal system (PerkinElmer) mounted on an inverted microscope (Eclipse TE 
300; Nikon) with a 100×, 1.4 NA objective and captured with a digital 
camera (Orca ER; Hamamatsu). Most images are displayed as maximum 
intensity projections of the captured z stacks. For experiments requiring 
MT disruption, cells were treated with 30 μM colchicine for 16 h just be-
fore fi xation.

In vivo severing assay
Two similar approaches were used to assay severing activity. For Fig. 1 D, 
S2 cells (constitutively expressing mRFP–α-tubulin) were transiently trans-
fected with a copper-inducible gene encoding full-length Dm-AAA protein 
fused to EGFP. Transfected cells were induced with 500 μM CuSO4 for 
8–12 h and then imaged with the system described. Images of live cells were 
captured digitally with identical system settings (exposure time, gain, etc.). 
Using ImageJ (NIH), fl uorescence intensities for both EGFP and mRFP were 
measured from entire cells expressing Dm-AAA-EGFP and neighboring con-
trol cells not visibly expressing EGFP.

For Fig. 1 E, wild-type S2 cells were transiently transfected with 
plasmids encoding EGFP or full-length Fidgetin-EGFP. After induction, cells 
were fi xed (4% paraformaldehyde, 0.14% glutaraldehyde, 1 μM taxol, 
0.1% Triton X-100, 1 mM MgCl2, 1 mM EGTA, and 80 mM Pipes, pH 6.8; 
15 min, 24°C) and immunostained with DM1a to visualize MTs, and digi-
tal micrographs were captured as described. Polymer fl uorescence inten-
sity was calculated by subtracting the mean cytosolic fl uorescence intensity 
of a cell (calculated from measurements made in several cytoplasmic re-
gions devoid of MTs) from its total mean fl uorescence intensity (measured 
from the entire cell).

Measurement of fl ux and anaphase chromatid-to-pole rates
Two techniques were used to measure poleward fl ux rates of preanaphase 
spindles: (1) fl uorescence speckle microscopy and (2) the tracking of marks 
photobleached onto uniformly fl uorescent spindle MTs. Because the fl ux 
rates produced by each technique were in good agreement for several 
experiments, the data were pooled.

To measure fl ux rates by fl uorescence speckle microscopy, RNAi-
treated cells expressing EGFP–α-tubulin (under control of the inducible pMT 
promoter) were plated on concanavalin A–coated microwell dishes as 
described. The leaky basal expression of the pMT promoter sometimes 
produces a low EGFP–α-tubulin titer necessary for speckling of spindle 
MTs. Speckled MTs were visualized with the Ultraview spinning-disk confo-
cal system, and images were captured at 2- or 5-s intervals as single optical 
sections. Only cells with spindle orientations near perpendicular to the light 
path were analyzed. Using MetaMorph (Universal Imaging Corp.), images 
were processed with the high-sharpen and low-pass functions, and kymo-
graphs were generated from prominent speckles in each half-spindle. Each 
kymograph included the spindle pole, which served as a fi duciary point 
relative to which the rates of fl uxing speckles were measured. Flux rates 
were calculated from the angles between the tracks of pole and speckles 
measured by MetaMorph.

Poleward MT fl ux rates were also measured on spindles of S2 cells 
constitutively expressing EGFP–α-tubulin (under control of the pAc5.1 pro-
moter). Narrow rectangular regions were photobleached across the fl uo-
rescent bipolar spindles of RNAi-treated S2 cells using a confocal system 
(TCS SP2; Leica) on an inverted microscope (DMIRE2 [Leica]; Plan Apo 
63× objective, 1.4 NA). Time-lapse videos of the photobleached spindles 
were captured with 3–6-s frame intervals. The movement of the bleach 
mark through the spindle was measured with the MetaMorph calipers tool, 
and fl ux rate was calculated from the change of distance between bleach 
mark and spindle pole as a function of time.

Chromatid-to-pole rates were measured in RNAi-treated anaphase 
S2 cells constitutively expressing EGFP–α-tubulin and vital stained with 
Hoechst 33258. Images of the Hoechst-stained chromosomes on fl uores-
cently tagged spindle MTs were captured at 3–5-s intervals, and the chro-
matid anaphase rates were measured from the translocation distance 
through time. Alternatively, anaphase chromatids were tracked in EGFP–
α-tubulin expressing cells by their negatively stained profi les at the ends 
of prominent kinetochore fi bers.
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FRAP
To measure α-tubulin turnover at MT ends, rectangular regions at the pole 
(MT minus ends) and spindle equator (MT plus ends) of RNAi-treated S2 
cells stably expressing EGFP–α-tubulin were photobleached using the con-
focal system described in the previous section, and time-lapse videos of 
the bleached cells were immediately recorded. To measure γ-tubulin turn-
over at centrosomes, the two large fl uorescent spots of S2 cells stably 
expressing γ-tubulin–EGFP were photobleached and their subsequent 
recoveries recorded. The half-time for fl uorescence recovery (t1/2) of each 
bleached region was measured from the plots of fl uorescence recovery 
(corrected for postbleach fl uorescence loss because of imaging). For 
those cases when the percentage of fl uorescence recovery was <25%, 
the corresponding t1/2 values were not included in calculating the mean 
t1/2 for a treatment. Photobleaching was not observed to adversely affect 
cells; for example, photobleached cells were sometimes observed to pro-
ceed to anaphase.

Measurement of EB1-EGFP densities and tubulin polymer/monomer 
fl uorescence ratios
Densities of comets of a fl uorescently tagged +Tip protein, EB1-EGFP, were 
measured within metaphase spindles of RNAi-treated S2 cells by capturing 
each spindle as a z series of 1-μm optical sections with a spinning-disk 
confocal microscope (see Immunofl uorescence microscopy), and images 
were processed by sequentially applying the “convolve” and “smooth” 
functions of ImageJ. Two spindle pole regions (each extending 1.25 μm 
from the tip of a pole toward the metaphase plate) and a single spindle 
equator region (extending 1.25 μm to each side of the metaphase plate) 
were delimited in each spindle. Fluorescent puncta of EB1-EGFP were 
counted within each z section of each region and then totaled. (Comet 
totals for the two pole regions were combined.) Densities were calculated by 
dividing EB1 comet totals by the region volumes (calculated by multiplying 
region areas [obtained from ImageJ] by the number of sections).

Total fl uorescence of EGFP–α-tubulin within spindles and total fl uor-
escence of EGFP–α-tubulin within the remainder of the cytoplasm were 
measured from projections of z series of confocal digital images of meta-
phase S2 cells using ImageJ. Ratios of these values were calculated and 
used to estimate proportions of tubulin distributed between polymer and 
soluble fractions. This estimation assumes that spindle fl uorescence is pri-
marily due to MT polymer and that fl uorescence outside the spindle is pri-
marily due to soluble tubulin.

Image processing and data analysis
Datasets were saved as stacks of TIFF fi les, and time-lapse series were 
saved as AVI videos. Datasets were processed and analyzed with Meta-
Morph or ImageJ as described. When fl uorescence intensities were to be 
quantitated (Fig. 1), the digital images were recorded with identical set-
tings of microscope and Ultraview software. The statistical differences be-
tween treatments were analyzed using either a one-way nonparametric 
analysis of variance (Kruskal-Wallis) for multiple group comparisons or a 
nonparametric t test (Mann-Whitney) for two group comparisons (Sigma-
Stat, Systat Software, or GraphPad Prism; GraphPad Software). Measure-
ment means were taken to be statistically different if P < 0.05.

Online supplemental material
Supplemental fi gures show production of mono-specifi c antibodies against 
the AAA proteins (Fig. S1), verifi cation of target AAA protein knockdown 
after RNAi (Fig. S2), immunolocalization of AAA proteins after colchicine 
treatment (Fig. S3), analysis of spindle phenotypes after AAA RNAi 
(Fig. S4), and representative fl uorescence recovery curves of photobleached 
α-tubulin or γ-tubulin of RNAi-treated spindles (Fig. S5). Videos 1–4 are re-
cordings of live EGFP–α-tubulin expressing, anaphase S2 cells after RNAi 
with control, Dm-Katanin, Dm-Spastin, or Dm-Fidgetin dsRNA, respectively. 
Videos 5–7 are recordings of live EGFP–α-tubulin expressing, anaphase 
S2 cells after RNAi to knock down control, Dm-Katanin, or Dm-Spastin, 
respectively. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200612011/DC1.

The stable S2 cell lines expressing EGFP–α-tubulin or EB1-EGFP are much-
 appreciated gifts from the laboratory of Ron Vale. Thanks to the members of the 
Sharp laboratory, Frank McNally (University California, Davis), J.-Y. Huang 
(University of Newcastle), and J.R. McIntosh (University of Colorado) for useful 
discussion and insightful comments.
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