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Short term elevation in dietary protein
intake does not worsen insulin resistance
or lipids in older adults with metabolic
syndrome: a randomized-controlled trial
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Abstract

Background: There is a great deal of controversy as to whether higher protein intake improves or worsens insulin
sensitivity in humans. The purpose of the study was to determine the influence of a short-term elevation in dietary
protein on hepatic and peripheral insulin sensitivity in twelve older subjects (51–70 yrs) with metabolic syndrome.

Methods: Individuals were randomly assigned to one of the dietary groups: recommended protein intake (RPI, 10% of
daily calorie intake) or elevated protein intake (EPI, 20% of daily calorie intake) for 4 weeks. Prior to and immediately
following the dietary intervention, subjects were studied with primed continuous infusion of [6,6-2H2]glucose and
[1-13C]glucose dissolved in drink during the dual tracer oral glucose tolerance test (DT OGTT) to determine hepatic and
peripheral insulin sensitivity. Plasma lipids were measured pre- and post-dietary intervention.

Results: In both intervention groups: 1) hepatic insulin sensitivity as assessed by the endogenous glucose rate of
appearance (glucose Ra), 2) peripheral insulin sensitivity as assessed by the metabolic clearance rate of glucose
normalized to plasma glucose concentration (MCR) and/or the rate of glucose utilization (Rd) or 3) glucose/insulin AUC
were unaffected by the diets. Moreover, fasting lipid was not affected by RPI or EPI.

Conclusion: Our findings suggest that a short-term elevation in EPI with correspondingly higher branched chain
amino acid (BCAA) contents has no detrimental impact on hepatic and peripheral insulin sensitivity or plasma lipid
parameters in older adults with metabolic syndrome.

Trial registration: ClinicalTrials.gov Identifier: NCT02885935; This trial was registered retrospectively (Study start date,
April 01, 2013, date of registration, August 26, 2016).
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Background
It has been well demonstrated that dietary protein intake
above the recommended dietary allowance (RDA) of
0.8 g protein/kg body weight/day which promotes reduc-
tions in body fat mass due in part to increased satiety
and/or energy expenditure linked to feeding induced
thermogenesis [1]. A high protein diet has also been

linked to improvements in lean body mass (reflecting
muscle mass) via the stimulation of net protein synthesis
[2, 3], which has also been accompanied by improved
strength and function [4]. Given that skeletal muscle is
the largest organ and responsible for the majority of post-
prandial glucose disposal [5], an increase in protein intake
may promote the preservation of skeletal muscle and lead
to improvements in insulin sensitivity [6]. Studies have
also shown that increased protein intake may have favor-
able effects on circulating triglyceride concentrations [7].
Indeed, elevations in protein intake have been linked to
many improvements in what many consider the hallmarks
of metabolic syndrome (i.e., hypertension, atherosclerosis,
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hyperlipidemia) [8]. Considering these data, one would
anticipate benefits in metabolic health by increasing the
amount of protein and decreasing the amount of calories
from fat (particularly, saturated fats) and highly processed
carbohydrates.
Despite the potentially favorable influence of higher

protein intake on metabolic health, controversy exists
regarding the results (improved or worsen) from short-
(<6 months) and long-term intervention studies and/or
the phenotype of participants that includes those who are
healthy, obese, insulin resistant, and/or have type 2 dia-
betes [9]. Moreover, the term itself “high protein” can be
used to indicate a slight elevation in protein intake or a
diet comprised of only dietary fat and protein [10]. Despite
these wide variations in protein intake that obviously
affect dietary intake of fat and carbohydrate, studies based
on dietary intake data from food questionnaires have
linked high dietary protein to deleterious alterations in
glucose metabolism [11]. Moreover, cross sectional studies
have suggested that elevations in plasma branched chain
amino acids are connected excess visceral adipose tissue
and markers of insulin resistance [12, 13].
On the other hand, numerous studies over the past

10 years or so have demonstrated significant improve-
ments in metabolic health with increased dietary protein
intake [14–18]. In many of the cases where changes in
dietary intake were implemented, it is difficult to ascertain
whether the alterations were induced through dietary
counseling, dietary assessment or metabolic feeding.
Whereas the purpose of cross sectional studies are largely
directed towards descriptive interpretation [19] and the
limitations of dietary recall have been known for many
years [20], conclusions drawn from these approaches still
persist. In order to address the short-term impact of
significant elevations in protein intake, we utilized a
metabolic feeding approach that closely controlled dietary
intake. In turn, we hypothesized that short-term (i.e.,
4 weeks) changes in 1) elevated protein intake (EPI) that is
20% of daily calorie intake) compared to the 2) recom-
mended level of protein intake (RPI) that is approximately
10% of daily calorie intake) would not have any measur-
able negative influence on hepatic and peripheral insulin
sensitivity and plasma lipid profiles in older individuals
with metabolic syndrome.

Methods
Subjects
Twelve older subjects with metabolic syndrome were
recruited from the Little Rock area using local newspaper
advertisements and flyers posted around the Little Rock
area and the University of Arkansas for Medical Sciences
(UAMS) campus (April 2013 through September 2014).
Upon their first visit to the lab in the Reynolds Institute on
Aging (RIOA), subjects took part in a battery of medical

tests for subject eligibility, including medical history, blood
count, plasma electrolytes, blood glucose concentration,
and liver and renal function tests. Subjects were included if
they met two of the following conditions (see Table 1): 1)
plasma triglycerides (>130 mg/dl), high-density lipoprotein
(HDL) (<40 mg/dl in men or < 50 ml/dl in women), blood
pressure (systolic > 140 or diastolic > 90 mm Hg, or taking
medication for hypertension), and fasting plasma glucose
(>100 mg/dl). Subjects were excluded if they met one of
following conditions: glycated hemoglobin (Hb1c) of 7.5),
diabetes, lactose intolerance or dairy allergy, active

Table 1 Group Characteristics and Medications

Intervention Recommended
Protein Intake

Elevated
Protein Intake

Pre Post Pre Post

Age, yrs 64.5 ± 3.0 60.2 ± 2.8

Gender, M/F 3/3 2/4

Total body
mass, kg

108.5 ± 10.6 108.5 ± 10.5 106.0 ± 6.8 105.3 ± 6.8

Lean body
mass, kg

59.0 ± 7.4 57.3 ± 6.0 58.1 ± 4.6 56.4 ± 3.8

Body mass
index, kg/m2

37.4 ± 2.6 37.4 ± 2.6 37.6 ± 1.4 37.3 ± 1.4

Body fat (%) 41.3 ± 7.5 41.2 ± 3.4

Total cholesterol,
mg/dl

198.3 ± 43.6 188.7 ± 37.9

Triglyceride,
mg/dl

185.3 ± 60.9 171.2 ± 41.5

HDL cholesterol,
mg/dl

44.2 ± 10.1 41.5 ± 7.1

Glucose, mg/dl 102.5 ± 23.1 99.2 ± 14.3

Blood pressure,
mm Hg

Systolic blood
pressure

143.0 ± 21.8 145.2 ± 17.2

Diastolic blood
pressure

85.0 ± 9.5 82.8 ± 5.4

Medications (# of subjects)

For hypertension

Beta blocker 2

ACE inhibitor 1 2

Calcium channel
blocker

1 1

Diuretic 2 5

For lipid or type
2 diabetes

Metformin 1 2

Glipizide 1

Statin 2 1

Values are expressed as Mean ± SEM. M/F number of male/female subjects.
There were no significance differences in any of variables of group
characteristics before and after their respective dietary intervention between
groups (for all; p > 0.10)
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malignancy within the past 6 months, gastrointestinal by-
pass surgery, a chronic inflammatory disease, low
hematocrit or hemoglobin concentration, low platelets,
concomitant use of corticosteroids, any unstable medical
conditions, and use of insulin to control their blood sugar.
Subjects were asked to maintain their habitual medications
and to take them in a designated time (Table 1). Subjects
gave written informed consent. Eligible subjects performed
a dual-energy X-ray absorptiometry (QDR-4500A; Hologic,
Waltham, MA) for determination of body composition
(Table 1). Final analyses of the present study included
twelve older adults with MS [6 subjects per group; range
of age: 51–70 yrs] (Table 1) due to subject dropout (n = 5)
and screening failures (n = 35): see Consolidated Standards
of Reporting Trials (CONSORT) Diagram; Additional file
1: Figure S1). The sample size calculations were based on
a paired t-test. With six subjects and a α-level of 0.05, we
calculated that a paired t-test would have 80% power to
detect effect sizes (ie., change from pre-supplementation)
of 1.75 (using the Insulin Sensitivity Index) with a stand-
ard deviation of 1.6 [21]. The study was approved by the
Institutional Review Board (ie., ethics approval and con-
sent for publication committee) at UAMS. This trial is
registered at https://ClinicalTrials.gov as NCT02885935.

Experimental protocol
After screening for subject eligibility, eligible subjects were
randomly assigned by a study coordinator to one of two
groups in a permuted block randomization method using a
sealed envelope: the RPI or the EPI group (Additional file 2).
Subjects in the RPI consumed meals consisting of 55%
carbohydrate, 35% fat, and approximately 10% protein
which contained 0 – 1.5 servings of dairy per day) while
subjects in the EPI consumed meals consisting of 45%
carbohydrate, 35% fat, and approximately 20% protein over
4 weeks. The EPI diets contained three or more servings of
dairy per day compared to the RPI. Sources of the dairy
were milk, yogurt, and cheese. Before and after the 4-week
respective dietary intervention, subjects were studied in the
RIOA for determination of insulin sensitivity and plasma
lipids. The isocaloric RPI and EPI oriented diets were pre-
pared in the Metabolic Kitchen at the RIOA by the Re-
search Dietician. After the first metabolic studies in which
participants were asked to consume their normal dietary in-
take, subjects in each intervention paradigm (RPI compared
to EPI) consumed their respective meals for a total of
28 days (Table 2), followed by the second metabolic studies.
Subjects obtained meal allotments at regular intervals from
our study coordinator and were also given a dietary record
and point-and-shoot digital camera. Meal consumption and
percentage of meal consumption were recorded, and the
meal was photographed prior to and after consumption.
Subjects were instructed to return all unused or empty
meal/supplement packaging and camera when they

reported to the RIOA for subsequent meal allotments or for
the metabolic study. These data helped the Research Diet-
ician ascertain caloric/protein intake as well as study com-
pliance. Prior to the first measurements and during the
entire intervention periods, subjects were instructed to re-
frain from any significant alterations in their patterns of
physical activity.

Dual Tracer Oral Glucose Tolerance Test (DT OGTT)
On the 4th day following 3-d of normal dietary consump-
tion, subjects were reported to the RIOA after an overnight
(after 2200) fast. Two 18- gauge catheters were placed in
each lower arm, one for the infusion of stable isotope tracer
and the other for blood sampling for the DT OGTT (Fig. 1).
Following the collection of blood sample for determination
of background isotopic enrichments, a primed, continuous
[6,6-2H2]glucose infusion [prime, 82.2 umol/kg; rate, 0.78
umol•kg−1•min−1] was provided. After 2.5 h of the tracer
infusion, subjects received a test drink for oral glucose
tolerance test containing [1-13C]glucose (40 mg/kg) and
75 g of unlabeled glucose, dissolved in flavored water [22].
Over the 4.5 h period, blood samples were collected at
regular intervals. The same metabolic study was replicated

Table 2 Macronutrient Intake

Recommended
Protein Intake

Elevated
Protein Intake

Days of diet provision 27.7 ± 0.7 28.0 ± 0.7

Daily calories intake, kcal/day 2962 ± 293 2826 ± 208

Protein

Protein, g 77.2 ± 6.9 145.9 ± 11.6**

Protein, g/kg 0.72 ± 0.03 1.37 ± 0.02**

Protein, % 10.3 ± 0.1 20.4 ± 0.3**

EAA, g 19.8 ± 4.1 49.4 ± 10.0**

BCAA, g 9.1 ± 1.9 22.8 ± 4.6**

Leucine, g 4.1 ± 0.9 10.2 ± 2.1**

Fat

Fat, g 117.2 ± 11.5 111.0 ± 8.2

Fat, %

Saturated fat 10.5 ± 0.1 13.8 ± 0.1**

Monounsaturated fat 10.3 ± 0.5 9.7 ± 0.3*

Polyunsaturated fat 7.1 ± 0.1 5.1 ± 0.1**

Total fat 35.0 ± 0.1 34.9 ± 0.1

Carbohydrate

Carbohydrate, g 412.6 ± 41.9 320.2 ± 22.8

Carbohydrate, % 54.7 ± 0.2 44.8 ± 0.3**

Fiber, g 32.9 ± 2.8 28.3 ± 1.2

Values are expressed as mean ± SEM
*Significantly different from Recommended Protein Diet, *p < 0.05, **p < 0.001
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after completing 28 days of their respective dietary inter-
vention. Glucose kinetics (i.e., primary outcome) including
endogenous glucose rate of appearance (Ra), exogenous
glucose Ra, and total glucose Ra, glucose Rd, and the
metabolic clearance rate (MCR) were estimated using the
Steele equation for the non-steady state [22]. Rates were
calculated utilizing two adjacent two time points over the
last 2 h of the DT OGTT, and the mean kinetic values were
calculated from these rates. Plasma responses of glucose
and insulin during the DT OGTT were determined at each
of the sampling times and areas under the curves (AUCs)
were calculated from these values. In addition, secondary
outcome i.e., plasma concentrations of lipids in the fasted
states including triglyceride, HDL, low density lipoprotein
(LDL), very low density lipoprotein (VLDL), and total
cholesterol were determined before and following the
respective dietary interventions (Fig. 2).

Analytical methods
Blood samples (t = −150, −140, and −130 min) were
collected prior to the onset of the DT OGTT protocol,
and serial blood samples (t = 30, 45, 60, 70, 80, 90, 105,
and 120 min) were collected during the remainder of the
study into ethylenediaminetetraacetic acid (EDTA)-con-
taining tubes and centrifuged at 3500 rpm for 15 min at
4 °C. Plasma enrichments of glucose tracers were mea-
sured on the pentaacetate derivative with the use of
gas-chromatography-mass spectrometry (models 7890A/
5975; Agilent Technologies, Santa Clara, CA). Ions of
mass-to-charge ratio of 331.1, 332.1, and 333.1 for
glucose were monitored with chemical impact ionization
and selective ion monitoring [23]. Plasma glucose
concentrations were measured spectrophotometrically
on a Cobas c 111 analyzer (Roche, F. Hoffman-La Roche,
Basel, Switzerland). Plasma insulin concentrations were
measured by using a commercially available human in-
sulin enzyme-linked immunosorbent assay (ELISA) kit
(Alpco Diagnostics). The lipid panels were determined
by Labcorp (Labcorp 7777 Forest Lane, Dallas TX) using
enzymatic methodology.

Calculations
Calculations of whole body glucose kinetics in non-
steady state using Steele equation [24] were performed
as in our previous study [22]. In brief, plasma enrich-
ments of glucose tracers and concentrations were curve-
fitted with a 3-order polynomial model over the OGTT
period in Graphpad Prism 6 for Mac (Graphpad Soft-
ware, Inc. La Jolla CA). Enrichment (E) is expressed as
mole percent excess (MPE): MPE is calculated as (TTR)/
(1 + TTR), where TTR is tracer to tracee ratio. Appropri-
ate corrections for skew abundance distribution and

Fig. 1 Stable isotope tracer infusion protocol

Fig. 2 Plasma isotope tracer enrichments: a plasma enrichments of
[6,6-2H2]glucose, which was primed continuously infused, and b
plasma enrichments of [1-13C]glucose, which was ingested as a
glucose bolus in which the tracer was dissolved to be enriched
at ~ 5%. Values are expressed as mean ± SEM
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overlapping spectra were made for the glucose tracers
[24]. From these calculations, total glucose Ra is comprised
of rates of appearance of exogenous (i.e., ingested) glucose
and of endogenous (i.e., hepatic glucose production and
negligible renal glucose production or splanchnic glucose)
glucose:

TotalRa glucose Total Rað Þ
¼ F– pV• C2 þ C1ð Þ=2ð Þ• E2–E1ð Þ= t2–t1ð Þð Þð Þ

= E2 þ E1ð Þ=2
ð1Þ

Glucose Rd ¼ Total Ra–pV• C2–C1ð Þ= t2–t1ð Þ ð2Þ

Exogenous glucose Ra RaExoð Þ ¼ Total Ra• EPL=EDð Þ ð3Þ

Endogenous glucose Ra ¼ Total Ra–Exo Ra ð4Þ

Metabolic Clearance Rate MCRð Þ ¼ Rd= C1 þ C2ð Þ=2ð Þ ð5Þ

where F represents the infusion rate of [6,6-2H2]glucose;
pV is the effective volume of distribution for glucose, for
which 40 ml•kg−1 was used; C1 and C2 are plasma glucose
concentrations at times t1 and t2, respectively, E1 and E2
are plasma enrichment of [6,6-2H2]glucose at times t1 and
t2, respectively; ED and EPL are tracer enrichments of [1-
13C]glucose from the test drink and plasma, respectively.
Whole-body insulin sensitivity was estimated by the

Insulin Sensitivity Index (ISI) = 10,000/square root of
([fasting glucose x fasting insulin] x [mean glucose x mean
insulin during OGTT]) [25].

Statistical methods
Two-tailed independent t-test was used to compare
changes in whole body glucose kinetics and ISI from
pre- to post-intervention between RPI and EPI. Two-
factor analysis of variance (ANOVA) was used to evalu-
ate the effect of group (RPI and EPI) and intervention
(before and after the respective dietary intervention) on
measures of whole body glucose kinetics and AUCs of
plasma glucose, insulin, and lipids. Statistical significance
was declared when the p-value was less than 5% level.
All data were analyzed using the Graphpad Prism 6 for
Mac (Graphpad Software, Inc. La Jolla CA) and pre-
sented as mean ± SEM.

Results
Glucose kinetics and insulin sensitivity
Whole body glucose kinetics are presented as absolute
(Table 3) and changes from pre- to post-intervention (ml/
kg/min for MCR and mg/kg body weight/min for the other
variables) (Fig. 3). For all these kinetic variables, we did not
find any significant differences between RPI and EPI.

Plasma glucose and insulin responses
For plasma glucose AUC responses, there were no
significant effects for a group-by-intervention interaction
(p = 0.573), for group (p = 0.756) and for intervention
(p = 0.620) for glucose AUC (Table 4). For plasma insu-
lin AUC responses, there were no significant effects for
a group-by-intervention interaction (p = 0.7892), for group
(p = 0.187), and for intervention (p = 0.080) (Table 4).
However, ISI increased significantly in RPI (P = 0.02), but
did not change in EPI (P = 0.90) (Fig. 4).

Fasting plasma lipids
There were no significant group-by-intervention interac-
tions, group effects, and intervention effects of total,
HDL, LDL, and VLDL cholesterol and triglyceride (for
all, p > 0.05) (Table 4).

Discussion
Consistent with our hypothesis regarding the short-term
influence on glucose metabolism, we did not observe
any adverse changes in hepatic and peripheral insulin
sensitivity (as evaluated by glucose Ra, glucose Rd and
MCR during the DT OGTT) and/or plasma lipid profiles
in older individuals with metabolic syndrome following
either the RPI (i.e., 0.72 g protein/kg body weight/day)
or EPI (i.e., 1.37 g protein/kg body weight/day) after
4 weeks of respective dietary intervention. More specif-
ically, glucose Ra, glucose Rd and MCR during the DT
OGTT were not different between groups and there was
no difference in glucose and/or insulin AUC following
the respective interventions. ISI was increased in the RPI
and did not change in EPI. This difference was largely
influenced by outliers in two participants in each insulin
data set that were reduced in RPI, and yet increased in
EPI. There were no differences in fasting blood lipids be-
tween RPI and EPI. Unlike evidence from epidemio-
logical studies that suggest a negative effect of increased
dietary protein on glucose metabolism [9], direct short-
term elevation of dietary protein intake (i.e., EPI) from
dairy products does not have a negative effect on insulin
resistance and/or lipid parameters in older adults with
metabolic syndrome.
It has been suggested that high protein intake induces

insulin resistance via leucine-mediated activation of the
mechanistic target of rapamycin (mTOR) [26]. This
hypothesis is largely based upon a positive correlation
between tissue or plasma concentrations of branched-
chain amino acids (BCAA) and insulin resistance in obese
individuals [27], and based upon data showing impaired
insulin-mediated glucose uptake with in vitro leucine
treatment via this mechanism [28, 29]. This postulation
was further strengthened by the observations in humans
that intravenous amino acid infusion reduced glucose up-
take during hyperinsulinemic euglycemic clamp [30, 31],
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although the role for leucine in the pathogenesis of insulin
resistance has been challenged [32]. However, there are
several issues to consider. It was not established whether
the elevated BCAA concentrations in obese insulin resist-
ant individuals were the cause or an effect of insulin resist-
ance. Second, reduced glucose uptake as a result of amino
acid infusion during the clamp (a non-physiological condi-
tion) may not reflect the glucose metabolism in the
physiological circumstance of mixed meal intake with
varying protein or BCAA amount. It is also possible that
acute physiological responses may not reflect chronic re-
sponses to high protein or BCAAs, necessitating interven-
tional studies and chronic response determination.
Despite significant interests in the effects of high protein

diets on glucose metabolism, the study of these diets in
humans under weight-stable conditions using controlled
metabolic feeding has been surprisingly scarce [33–35]. In
the present study, we observed no impairment in glucose
disposal during a physiological condition (i.e., OGTT)

following 4 weeks of EPI containing more than 2-fold
higher leucine or BCAA contents than RPI. Consistent with
our findings, Shiu et al. found that consumption of a high
protein diet for 4 weeks did not alter plasma glucose/insu-
lin concentrations or insulin sensitivity as assessed by an
intravenous glucose tolerance test [35]. In longer-term
weight-stable studies where participants served as their
own controls, and wash-out periods in between three dif-
ferent types of diets (including the Dietary Approaches to
Stop Hypertension (DASH), protein rich diet or unsatur-
ated fat rich diets), insulin sensitivity as assessed by the
quantitative insulin sensitivity check index (QUICKI) and
homeostasis model assessment of insulin resistance
(HOMA-IR) was not different [34]. Lastly, in studies com-
paring four different types of diet (Control, High cereal
fiber, High Protein, and High Cereal Fiber/High Protein),
the High Protein diet had no influence on markers of insu-
lin sensitivity (i.e., QUICKI). In individuals with more pro-
found insulin resistance, Gannon et al., demonstrated that
higher protein intake (30% protein vs. 15% protein in total
energy of the daily meals) for 5 weeks in type 2 diabetic pa-
tients resulted in a 40% reduction in the mean 24-h inte-
grated glucose AUC (mean age: 61y, range: 39 – 79y) [36].
Glycated hemoglobin also decreased significantly with
5 weeks of higher protein intake in this study providing
additional evidence to the importance of this strategy in in-
dividuals with type 2 diabetes. On other hand, in studies
where individuals had yet to be classified with type 2 dia-
betes [33–35], consumption of increased dietary protein
was not sufficient to improve insulin sensitivity even when
measured with methods that provided enhanced specificity
[35].
Given the epidemiological evidence showing a significant

inverse relation between dairy product intake and metabolic
syndrome [37], improvements in peripheral insulin sensitiv-
ity with EPI can be expected, as EPI contained > 2-fold
higher dairy products, compared to RPI. It is possible that
to observe beneficial effects on peripheral insulin sensitivity,
a higher relative protein intake (i.e., 30% of overall energy
intake) is required. For example, the higher relative protein

Table 3 Whole body glucose kinetics during the oral glucose tolerance test over 4-week dietary intervention

Recommended Protein Intake Elevated Protein Intake p-value

Pre Post Pre Post Time Group T × G

Ra Total, mg/kg/min 3.39 ± 0.13 3.25 ± 0.17 3.75 ± 0.18 3.50 ± 0.19 0.045a 0.192 0.533

Ra Endo, mg/kg/min 1.20 ± 0.09 1.22 ± 0.11 1.08 ± 0.09 1.15 ± 0.10 0.062 0.501 0.369

Ra Exo, mg/kg/min 2.19 ± 0.15 2.02 ± 0.22 2.67 ± 0.25 2.35 ± 0.20 0.027a 0.174 0.442

Rd, mg/kg/min 3.25 ± 0.17 3.06 ± 0.19 3.71 ± 0.18 3.42 ± 0.14 0.015a 0.110 0.544

MCR, ml/kg/min 1.67 ± 0.16 1.68 ± 0.24 1.97 ± 0.36 1.83 ± 0.29 0.486 0.558 0.391

Values are expressed as mean ± SEM
RaTotal Rate of appearance of total glucose, RaEndo rate of appearance of endogenous glucose, RaExo rate of appearance of exogenous glucose, Rd rate of
disappearance of glucose, MCR metabolic clearance rate of glucose (Rd normalized to plasma glucose concentration), T × G time-group interaction
aThere were significant effects on time (i.e., post- vs. pre-intervention). However, post hoc t-test analyses revealed no significant changes from pre- to
post-intervention (for all, p > 0.235)

Fig. 3 Changes in whole body glucose kinetics from baseline: Kinetic
values are expressed as difference between post- and pre-interventions.
Rate of appearance of total glucose (Ra Total), rate of appearance of
endogenous glucose (Ra Endo), rate of appearance of exogenous
glucose, rate of disappearance of glucose (Rd), and metabolic clearance
rate of glucose (MCR, Rd normalized to plasma glucose concentration)
were determined during the OGTT before and following the 4-week diet
intervention of either RPI (i.e., ~0.8 g protein/kg body weight/day) or EPI
in isocaloric mixed meals intakes (i.e., ~1.4 g protein/kg body weight/
day). Values are expressed as mean ± SEM
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intake of Gannon study was not only 1/3 greater than ours,
but was also lower in dietary carbohydrate. The combin-
ation of higher protein and lower carbohydrate intake may
be required to elicit alterations in glucose metabolism.
Alternatively, it may be likely that a longer time is required
to realize the beneficial effects of increasing dairy protein
intake in mixed meals with respect to insulin sensitivity.
As secondary outcomes in the present study, we deter-

mined lipid panels in the fasted state before and after the
respective interventions. In many cases, studies that have
demonstrated the effectiveness of increased dietary protein
intake on improvements in blood lipids were also associ-
ated with weight loss [15, 38, 39]. Meta-analysis of high
protein/weight loss studies has confirmed their preferential
efficacy on the reduction of triglycerides in particular [40].
In the case of a hypercaloric diet, increased protein intake
is linked to a trend (i.e., p = 0.07) towards reduced triglycer-
ides [7]. In our study under conditions of weight balance
and isocaloric dietary intake, we found no improvements in
any of the lipid panels (Table 4). Consistent with our find-
ings, Chiu et al. found no improvement in triglyceride and

total-, LDL-, or HDL-cholesterol after 4 weeks of either
20% (as in the present study) or 30% of protein with either
low or high saturated fat intake without weight loss in over-
weight and obese adults [35]. Therefore, an elevation in
dietary protein intake without weight loss seems to foster
stable lipid parameters in individuals with the characteris-
tics of metabolic syndrome.
A potential limitation of the present study is that we did

not quantify habitual protein intake or dietary patterns of
the subjects prior to study initiation. Thus, it is possible
that subjects in the EPI group may not have consumed
much more protein than their usual protein intake. In
retrospect, study design may have been better served with a
longer dietary run-in period to reduce the potential influ-
ences of subjects’ previous dietary pattern [41]. If we
assume that most individuals were eating the average
American protein intake by NHANES (i.e., 1.1 g/kg/day; we
had no vegetarians in the study), then the variance from
habitual protein intake to that consumed between groups
(0.72 g/kg/d vs. 1.37 g/kg/d) should only serve to magnify
the response to changes in protein intake in this population,
if indeed one exists. We have illustrated that elevation of
dietary protein intake using dairy products does not have a
negative influence on insulin sensitivity. While some studies
have linked increased consumption of red meat to the
development of insulin resistance [42], recent data from
longitudinal feeding studies dispute this assertion [43].
These findings indicate that reasonable elevations in
protein intake do not alter glucose kinetics in subjects with
metabolic syndrome, and also highlight the empirical
nature of nature of epidemiological research [44].

Conclusions
In the present study, we found that 4 weeks of higher pro-
tein intake (i.e., EPI) containing a significant amount of
dairy products and BCAAs did not improve nor worsen
glucose metabolism as measured by isotopically measured
glucose kinetics, and lipid parameters in individuals with
the clinical characteristics of metabolic syndrome.

Table 4 Plasma glucose and insulin responses during the oral glucose tolerance test and fasting lipids over 4-week dietary intervention

Recommended Protein Intake Elevated Protein Intake

Pre Post Pre Post

Glucose AUC 22504 ± 2062 21745 ± 2789 23286 ± 2615 23335 ± 3097

Insulin AUC 10022 ± 2122 8314 ± 1899 14831 ± 3026 12561 ± 2300

Total cholesterol 184.8 ± 12.9 176.7 ± 21.6 179.5 ± 13.2 170.2 ± 10.4

Triglyceride 154.5 ± 19.3 175.3 ± 18.9 188.5 ± 18.2 192.0 ± 29.3

HDL cholesterol 36.8 ± 3.3 34.3 ± 3.6 35.5 ± 8.3 34.8 ± 9.8

LDL cholesterol 116.8 ± 11.5 108.3 ± 17.3 106.3 ± 12.9 97.7 ± 9.7

VLDL cholesterol 31.2 ± 3.9 35.3 ± 3.9 37.7 ± 8.7 38.5 ± 5.8

Values are expressed as mean ± SEM (mg/dl)
AUC area under the curve, HDL cholesterol, high-density lipoprotein cholesterol, LDL cholesterol, low-density lipoprotein cholesterol, VLDL cholesterol, Very-low
density lipoprotein cholesterol

Fig. 4 Insulin sensitivity index: Pre- and post-intervention values in
RPI and EPI. *Represents significant increase from pre-intervention
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Unfortunately, interpretation of the ISI was complicated
by two outliers in each insulin data set for RPI and EPI.
Future studies with a longer intervention period should be
performed to ascertain whether increasing amount of
“high quality” protein intake containing correspondingly
high BCAA have positive or negative impact on the
modulation of glucose and lipid parameters.
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