
REVIEW

Gut microbiota and associated metabolites: key players in high-fat diet-induced 
chronic diseases
Wei Du *, Zhen-Ping Zou *, Bang-Ce Ye , and Ying Zhou

Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 
Shanghai, China

ABSTRACT
Excessive intake of dietary fats is strongly associated with an increased risk of various chronic 
diseases, such as obesity, diabetes, hepatic metabolic disorders, cardiovascular disease, chronic 
intestinal inflammation, and certain cancers. A significant portion of the adverse effects of high-fat 
diet on disease risk is mediated through modifications in the gut microbiota. Specifically, high-fat 
diets are linked to reduced microbial diversity, an overgrowth of gram-negative bacteria, an 
elevated Firmicutes-to-Bacteroidetes ratio, and alterations at various taxonomic levels. These micro
bial alterations influence the intestinal metabolism of small molecules, which subsequently 
increases intestinal permeability, exacerbates inflammatory responses, disrupts metabolic func
tions, and impairs signal transduction pathways in the host. Consequently, diet-induced changes in 
the gut microbiota play a crucial role in the initiation and progression of chronic diseases. This 
review explores the relationship between high-fat diets and gut microbiota, highlighting their roles 
and underlying mechanisms in the development of chronic metabolic diseases. Additionally, we 
propose probiotic interventions may serve as a promising adjunctive therapy to counteract the 
negative effects of high-fat diet-induced alterations in gut microbiota composition.
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Introduction

High-fat diets (HFD) are gaining popularity in con
temporary society.1 The health risks associated with 
the overconsumption of fat are becoming more 
apparent. Research demonstrates that sustained 
adherence to an HFD substantially elevates the risk 
of developing a range of chronic conditions, includ
ing diabetes, obesity, cardiovascular disease, hepatic 
metabolic disorders, and certain cancers. These 
health issues not only aggravate individual well- 
being but also present a formidable challenge to 
public health systems.2 As a result, investigating 
the factors that contribute to the elevated risk of 
diseases associated with HFD, along with identifying 
strategies to mitigate the detrimental health effects of 
such dietary patterns, has emerged as a critical focus 
within the field of public health.

Recent epidemiological and omics-based studies 
underscore the significant role of microbial com
munities in mediating the environmental influ
ences on human health and disease susceptibility.3 

The human gut harbors a diverse array of microbes 
that are shaped by various factors, including mode 
of delivery, diet, lifestyle choices, medication use, 
and host genetic predisposition.3 The gut micro
biome plays a pivotal role in shaping host immu
nity, facilitating food digestion, regulating gut 
endocrine function and neural signaling pathways, 
modulating drug efficacy and metabolism pro
cesses, detoxification mechanisms, as well as 
synthesizing various bioactive compounds impact
ing the host’s overall physiology.3 Numerous stu
dies have demonstrated the essential involvement 
of gut microbiota in the pathogenesis of HFD- 
related chronic diseases.4–8

The composition of the gut microbiota is pro
foundly influenced by the quantity of dietary fat. 
HFD has been associated with a reduction in the 
diversity of the gut microbiota,9 as well as an 
increase in the translocation of lipopolysaccharide 
(LPS),10 heightened intestinal permeability,11 ele
vated inflammation,12 and disrupted immune 
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system function.13 Furthermore, HFD-induced 
alterations in the intestinal microbiota lead to shifts 
in the metabolic activity of gut microbes, impairing 
host metabolic processes such as glucose14 and 
lipid metabolism,15 signal transduction,16 and 
endotoxin accumulation.17 These disruptions con
tribute to an increased risk of chronic metabolic 
disorders associated with HFD. Therefore, there 
has been growing interest in elucidating the role 
of dietary fat-induced changes in the gut micro
biota, particularly in relation to obesity and asso
ciated chronic metabolic diseases. This review aims 
to investigate the relationship between HFD and 
gut microbiota, focusing on their roles and under
lying mechanisms in chronic metabolic diseases. 
Additionally, we address crucial considerations 
and limitations in examining the impact of micro
biota on host pathology. Finally, we propose pro
biotic therapy as a potential adjunctive strategy to 
mitigate the adverse effects of HFD-induced mod
ification in gut microbiota composition.

Effects of HFD on gut microbiota

Research on the human microbiome highlights that 
important environmental influences on humans 
may arise from changes in the microbial commu
nities within the gastrointestinal tract. These 
microorganisms, collectively known as the “gut 
microbiota,” encompass a diverse array of interact
ing bacteria, archaea, phages, eukaryotic viruses, 
and fungi. They coexist harmoniously within the 
human gut and establish predominantly symbiotic 
or mutualistic relationships with their hosts. The 
gut microbiota represents a dynamic system that is 
influenced by various factors including environ
ment, diet, lifestyle choices, medications, and host 
genetics. Intestinal microorganisms play pivotal 
roles in modulating host intestinal immunity, facil
itating nutrient digestion and absorption processes, 
influencing drug efficacy and intestinal metabolic 
responses while exerting systemic effects via intri
cate communication pathways such as the gut- 
brain axis, gut-liver axis, and gut-heart axis.3,18–20

Dietary modulation of gut microbiota

Defining a taxonomically precise “healthy gut 
microbiome” is a crucial aspect of microbiome 

research. However, such definition remains elusive 
for the human gut microbiome. The variability 
among host individuals renders each person’s gut 
microbiome unique, which further complicates the 
establishment of a standardized definition for 
a “healthy gut microbiome”. The perturbation of 
the gut microbiome in disease states can be con
ceptualized as an imbalance within the ecosystem 
of a healthy gut microbiome. The human micro
biome primarily comprises five bacteria 
(Firmicutes, Bacteroidetes, Proteobacteria, 
Actinobacteria, and Verrucobacteria) and one 
archaeon, with their relative distribution being 
unique to each individual host. Generally, anaero
bic bacteria with restrictive metabolism dominate 
over facultative anaerobic bacteria.21 Despite sub
stantial inter-individual variations, high-class 
diversity, abundant microbial gene richness, and 
stable core microbiota are characteristic features 
of a healthy gut microbiota.22

The diet plays a crucial role in shaping the com
position and coordinating host-microbe interac
tions in the gut microbiome. The composition of 
the gut microbiome is sensitive to dietary compo
nents and reacts differently to diet in different 
environmental backgrounds. Dietary components 
can directly promote or inhibit the growth of spe
cific gut microbes. Gut microbes with the ability to 
obtain energy from specific dietary components 
have a competitive advantage, allowing them to 
grow better than those that are not good at this 
function. In addition, dietary vitamin A deficiency 
leads to excessive growth of Bacteroides vulgatus in 
mice, which may be due to the inhibitory effect of 
vitamin A on bacteria.23 Vitamin D is crucial for 
combating intestinal pathogens and maintaining 
the survival of beneficial symbiotic organisms.24 

Dietary lactobacilli, candida, and penicillium, 
among others, can also be passively transferred 
and colonized in the host gut microbiome through 
diet.25 However, the extent of colonization is also 
contingent upon the preexisting microbe, primarily 
due to differences in the resistances and receptive
ness of unique gut microbiome compositions to 
foreign bacterial colonization.26 Dietary compo
nents may disrupt the protective function of the 
gut barrier indirectly, leading to dysbiosis, such as 
HFD and low-fiber diet being believed to disrupt 
the barrier function of mice, ultimately leading to 
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the promotion of mild inflammation and metabolic 
syndrome mediated by dysbiosis.16,27,28 There are 
significant differences in gut microbiota composi
tion among individuals, populations, and dietary 
patterns, reflecting complex interactions of host 
genetic background, lifestyle, environmental expo
sure, and long-term dietary habits. Different indi
viduals may respond very differently to the same 
diet, depending on the initial composition and 
metabolic capacity of their gut microbiota. For 
example, certain populations may have unique 
microbiome structures due to their traditional diet
ary patterns, such as high-fiber or fermented foods, 
that show greater adaptability and stability in 
responding to specific dietary challenges. In addi
tion, regional and cultural differences also lead to 
distinct characteristics in the gut microbiota of 
different populations, such as differences in micro
biota composition between Western high-fat, low- 
fiber dietary patterns and traditional high- 
diversity, high-fiber dietary patterns. 
Understanding microbiome differences among 
individuals, populations, and dietary patterns is 
therefore critical to developing personalized nutri
tion intervention strategies and promoting gut 
health.

HFD-induced gut microbiota dysbiosis

Although the composition of the gut microbiome 
varies among individuals, there is substantial evi
dence linking dietary fat to composition of micro
biome. Despite host genotypes can shape the gut 
microbiota by modulating immune system, their 
impact is frequently eclipsed by the predominant 
influence of diet.29 Gut microbiota disorders 
related to obesity are directly associated with 
HFD, which promotes the development of 
a similar microbiota as observed in obese male 
mice.16,30,31 The microbiota of HFD mice exhibited 
an overall reduction in microbial diversity and 
alterations in the relative abundance of various 
bacterial taxa (Figure 1).32,33 Moreover, transplan
tation of fecal bacteria from mice on a normal diet 
(ND) to HFD mice can effectively diminish their 
food utilization efficiency and significantly 
enhance their metabolic function.34

Dietary fats have been demonstrated to induce 
alterations in the composition of the gut 

microbiota, notably through decreasing the abun
dance of the Bacteroidetes phyla while increasing the 
abundance of Firmicutes and Proteobacteria 
phyla.35,36 The Firmicutes/Bacteroidetes ratio is com
monly employed as a key indicator of microbial 
shifts, serving as a marker for changes in intestinal 
microbiota composition.37 In both animal and 
human studies, dietary fat typically results in an ele
vated Firmicutes/Bacteroidetes ratio.16,38 This shift is 
primarily attributed to an increased abundance of 
specific genera within the Firmicutes phylum, includ
ing Oscillibacter, Dorea, Ruminococcus, Lachnospira, 
and Lactobacillus.16,39,40 Furthermore, dietary fat con
sumption has been linked to decreased levels of 
Prevotellaceae and Rikenellaceae families within the 
Bacteroides phylum.16,41,42 Additionally, dietary fat 
promotes the proliferation of Proteobacteria,43 

a group containing pro-inflammatory, Gram- 
negative bacteria such as those from the 
Enterobacteriales order, which possess LPS.44 

Chronic high-fat diets have also been linked to 
a significant decrease in the abundance of 
Tenericutes in the murine intestinal microbiota.45 

Moreover, the abundance of the genus Akkermansia 
has been reported to exhibit a negative correlation 
with body fat percentage in HFD mice,46 a similar 
association being observed in obese or overweight 
human individuals, particularly with regard to 
Akkermansia muciniphila.47 HFD-induced dysbiosis 
is often linked to a decrease in Bifidobacteria 
(Actinomycetes phyla), which is inversely correlated 
with intestinal barrier integrity.48 However, this rela
tionship is not universally supported across all stu
dies, with some evidence contradicting the 
anticipated positive correlation. The discrepancies 
observed in the literature can be attributed to several 
factors, including microbial adaptability to dietary 
changes, intervention duration, individual genetic 
variations, environmental exposure differences, and 
heterogeneity in sample collection and data analysis 
methodologies. For instance, research has demon
strated that the gut microbiome’s response to dietary 
interventions varies significantly among individuals, 
potentially due to differences in baseline microbiome 
composition, host metabolic status, and lifestyle 
factors.25,49 Moreover, the duration of the interven
tion may influence the pattern of microbiome 
changes, with short-term interventions possibly fail
ing to capture long-term microbiome dynamics.50,51 
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The highly individualized and dynamic nature of the 
gut microbiome complicates the establishment of 
universal biomarkers. Additionally, interactions 
between the microbiome and the host involve multi
layered regulatory networks, including metabolites, 
immune signaling, and neuroendocrine pathways, 
which remain incompletely understood. As a result, 
single-dimensional microbiome analyses often fail to 
capture the full spectrum of their association with 
disease. To address these challenges, integrating com
plementary omics approaches and advancing next- 
generation sequencing technologies are essential. 
Multi-omics integration, such as combining metage
nomics and metabolomics, can provide a more com
prehensive understanding of microbiome-host 
interactions, enabling precise identification of micro
bial metabolic pathways and disease-associated meta
bolites. Furthermore, artificial intelligence (AI) and 
machine learning algorithms offer powerful tools for 
analyzing large-scale microbiome data, identifying 
complex patterns, predicting disease risk, and opti
mizing personalized interventions. For example, deep 
learning models can extract key features from exten
sive datasets to develop predictive models for early 
diagnosis and prognosis. In conclusion, integrating 
multi-omics approaches, advancing sequencing tech
nologies, and leveraging computational tools will 
enable more accurate and insightful microbiome ana
lysis in the future.

In a mouse model, HFD was found to induce 
a reorganization in the spatial arrangement of the 
microbiota within the intestines. Specifically, there 
was an increased density of microbiota colonizing 
the intervillous region of the ileum, accompanied 
by significant alterations in the composition of the 
colonic microbiota.52 Moreover, it was observed 
that antimicrobial peptide expression decreased in 
regions with higher bacterial density within the 
ileum. Notably, stimulation of PPAR restored 
proper spatial distribution patterns of intestinal 
flora; conversely, PPAR-deficient mice exhibited 
enhanced colonization within the ileum.52 These 
findings provide evidence for how HFD can impact 
both the distribution and physiological aspects of 
microflora within the ileum through regulation via 
the PPAR-γ pathway.

HFD-Induced gut microbiota and associated 
metabolic alterations in chronic diseases

Gut microbial metabolites serve as crucial media
tors in maintaining health and influencing disease 
progression, facilitating key interactions between 
the host and its microbiota. The homeostasis of 
metabolites directly impacts host metabolism, 
immunity, and barrier function. Short-chain fatty 
acids (SCFAs), produced through the microbial 
fermentation of dietary fibers such as acetic acid, 

Figure 1. Effects of HFD on gut microbiota dysbiosis.
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propionic acid, and butyric acid, serve as key meta
bolites in intestinal energy metabolism. Butyric 
acid is a primary energy source for colon epithelial 
cells and plays a crucial role in maintaining intest
inal barrier integrity by upregulating tight junction 
protein expression.53 Furthermore, it promotes the 
differentiation of regulatory T cells (Tregs) and 
mitigates excessive inflammatory responses.54,55 

LPS constitutes a major component of the outer 
membrane of Gram-negative bacteria. Upon trans
location across the intestinal barrier into the blood
stream, LPS binds to Toll-like receptor 4 (TLR4) on 
host immune cells, thereby activating the down
stream NF-κB signaling pathway. This activation 
promotes the release of inflammatory cytokines 
and has been implicated in both metabolic 

syndrome and inflammation.56,57 A reduction in 
the abundance of SCFAs-producing bacteria and 
an increase in LPS-producing opportunistic patho
gens, such as Klebsiella pneumoniae, are correlated 
with disease activity and recurrence in chronic 
spontaneous urticaria (CSU). Zhu et al. substan
tiated the role of gut microbiota in CSU pathogen
esis through fecal microbiota transplantation 
(FMT) experiments.58 The biological effects of 
amino acid metabolites exhibit dual characteristics. 
Tryptophan is metabolized by gut microorganisms 
into indole derivatives which enhances blood-milk 
and intestinal barrier function and exerts anti- 
inflammatory effects through activation of the 
aryl hydrocarbon receptor (AhR).59,60 Conversely, 
excessive accumulation of branched-chain amino 

Figure 2. HFD-induced gut microbiota disturbances are associated with common chronic metabolic diseases.
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acids (BCAAs) has been shown to potentially 
induce insulin resistance.61 In conclusion, gut 
microbiota-derived metabolites from the form an 
intricate network of microbial-host interactions by 
modulating immune responses, metabolic path
ways, and barrier functions. The equilibrium of 
these metabolites can serve as potential disease 
biomarkers and provide a theoretical foundation 
for developing intervention strategies that target 
the microbiome.

Long-term consumption of HFD increases the 
susceptibility to obesity, diabetes, liver metabolic 
disorders, cardiovascular diseases, chronic intest
inal inflammation, cancer, and other related con
ditions (Figure 2). Recent evidence strongly 
suggests that the gut microbiome plays 
a significant role in this process. Dysregulation of 
gut microbes induced by HFD is a crucial factor 
contributing to the elevated risk of these diseases. 

This dysregulation may result from alterations in 
gut microbiota composition that promote changes 
in intestinal metabolic responses. These changes 
can lead to the production of harmful metabolites 
that impair host glucose and fat metabolism as well 
as disrupt intestinal barrier function and signal 
transduction pathways. Additionally, they may 
inhibit the synthesis of beneficial metabolites with 
positive regulatory effects on health, thereby facil
itating disease occurrence and progression 
(Figure 3).

Obesity

The prevalence of obesity is increasing globally, 
with variations observed across different geogra
phical regions, ethnicities, age groups, and 
genders.62 Sedentary lifestyles and diets, combined 
with a widespread polygenic predisposition, are 

Figure 3. Microbial metabolites associated with HFD regulate host metabolism. An overview of HFD-induced changes in gut microbial 
metabolic responses affecting host energy homeostasis, body fat, inflammation, glucose regulation, insulin sensitivity, and hormone 
secretion. SCFAs: short chain fatty acids. LPS: lipopolysaccharide. BCAA: branched-chain amino acid. IAA: indole-3-acetic acid. IPA: 
indole-3-propionic acid. 5-HIAA: 5-hydroxyindole-3- acetic acid. 5-HT: 5-hydroxytryptamine. PGN: peptidoglycan. TMA: trimethyla
mine. GPCRs: G protein-coupled receptors. TLR: toll-like receptor. GLP-1: glucagon-like peptide-1. PYY: peptide YY. AhR: aryl 
hydrocarbon receptor. TMAO: trimethylamine oxide. TJps: tight junction proteins. FIAF: fasting-induced adipokine. Ecs: endocanna
binoid systems. UCP1: uncoupling protein-1.
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believed to be major contributors to the obesity 
epidemic.63 Moreover, mounting evidence sup
ports the role of gut microbiome in the pathogen
esis of obesity. In 2006, it was discovered that 
transplanting microbiota associated with obesity 
led to weight gain in previously lean mice.5 Since 
this finding, subsequent epidemiological studies 
have highlighted significant differences in the com
position of gut microbiota between obese and lean 
individuals. At a species level, twin studies have 
demonstrated an association between the abun
dance of short-chain fatty acid-producing bacteria 
such as Eubacterium ventriosum and Roseburia 
intestinalis with obesity.64 A metagenomics corre
lation study conducted on lean and obese indivi
duals showed a significant reduction in Bacteroides 
thetaiotaomicron abundance among obese indivi
duals along with a negative correlation with serum 
glutamate concentration.65 Additionally, feeding 
mice with Bacteroides thetaiotaomicron prevented 
obesity, suggesting potential interventions target
ing gut microbiota through probiotics or microbial 
compounds for future research purposes. A FMT 
study supplemented observational studies by 
demonstrating that transferring feces from discor
dant twins into germ-free mice could transfer 
human donor phenotype to recipient animals 
depending on their diet.66 This groundbreaking 
study provides a theoretical foundation for investi
gating gut microbiota disturbances linked to 
obesity.

Excessive fat intake is an environmental factor 
associated with obesity and metabolic disease. 
However, some subjects were less susceptible to 
weight gain and metabolic changes when similarly 
consuming too much energy.67 Suggests that in 
addition to the human genome, the gut microbiome 
is also involved in the development of obesity.68 The 
gut microbiota plays a crucial role in the production 
of SCFAs, which significantly influence the host’s 
energy harvest and storage from dietary 
components.69 SCFAs, including acetate, butyrate, 
and propionate, are produced by fermenting dietary 
fiber. They bind to g protein-coupled receptors 
GPR41 and GPR43,70,71 increasing glucagon-like 
peptide 1 (GLP-1) and peptide YY (PYY) expression 
in the gut.72 Studies have shown that GLP-1 and 
PYY can inhibit appetite73 in obese mice while redu
cing body weight and improving insulin 

resistance.74 Additionally, PYY reduces intestinal 
transport by inhibiting food absorption, intestinal 
motility, pancreatic secretion, and gastrointestinal 
emptying.75 Butyrate promotes fatty acid oxidation 
and thermogenesis through multiple mechanisms. 
In the liver and muscle, it increases the phosphor
ylation of peroxisome proliferator-activated recep
tor-γ coactivator 1α (PGC-1α) and AMP-activated 
protein kinase (AMPK). Additionally, in brown adi
pose tissue, butyrate enhances the expression of 
PGC-1α and mitochondrial uncoupling protein 1 
(UCP-1). These effects collectively contribute to 
improved metabolic function.76 Several studies 
have demonstrated that HFD leads to a greater 
reduction in total SCFAs compared to an LFD.77,78 

Moreover, administering a high-fat and high-sugar 
diet to mice led to a significant decrease in GPR43 
expression compared with the control group.77 

These studies demonstrate how SCFAs produced 
by gut microbes regulate host metabolism/appetite. 
Alterations in the gut microbiota can contribute to 
weight gain by augmenting energy harvested from 
the diet and enhancing lipid accumulation.5,38,79 The 
gut microbiota is capable of downregulating the 
expression of fasting-induced adipokine (FIAF) 
through interacting with surface molecules on 
intestinal endocrine cells, including toll-like recep
tors (TLRs).80 FIAF is a peptide that acts as a potent 
inhibitor of circulating lipoprotein lipase (LPL) 
activity.81 Inhibition of FIAF leads to increased 
LPL activity in adipocytes, resulting in triglyceride 
deposition.79 Moreover, it can also contribute to 
fat accumulation by modulating fat absorption 
and conversion processes. Mice lacking FIAF 
(-/-) exhibit elevated intestinal fat uptake and 
reduced fecal lipid excretion, leading to an obese 
phenotype.82 Bacteroides thetaiotaomicron has 
been shown to stimulate adipogenesis through 
inhibition of FIAF expression.83 Additionally, the 
endocannabinoid system (EC) is implicated in the 
regulation of blood lipids and glucose metabolism. 
Alterations in EC activity can modulate the 
expression of adipose tissue hormones, such as 
apelin, with excessive activation posing a risk for 
obesity.84 Certain gut microbiota, such as 
Myxophilus, have been found to disrupt fat meta
bolism by inhibiting EC-driven lipogenesis, stimu
lating adipocyte proliferation, and increasing lipid 
accumulation within adipocytes.85,86
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Diabetes

Evidence from large-scale epidemiological stu
dies suggests that patients who have undergone 
total colectomy are at an increased risk of devel
oping type 2 diabetes (T2D) compared to indi
viduals without colectomy.87 This implies 
a potential involvement of the gut microbiota 
and the distal gut’s hormone secretion capacity 
in glucose regulation.T2D accounts for approxi
mately 90% of all cases of diabetes88 and, similar 
to obesity, its incidence and prevalence are ris
ing, affecting 5% to 15% of the adult population 
and making it the most common endocrine 
disorder.89 The early pathophysiological features 
of overweight or obesity primarily involve insu
lin resistance in skeletal muscle, liver, and adi
pose tissue, along with compensatory increases 
in insulin synthesis and secretion. In cases 
where persistent insulin resistance occurs, there 
is a decrease in insulin biosynthesis followed by 
elevated hyperglycemia.90,91 However, since T2D 
patients require treatment with multiple drugs 
targeting high blood sugar levels, this multi-drug 
regimen also affects their gut microbiota differ
ently. Consequently, recent epidemiological stu
dies have aimed to elucidate the connection 
between gut microbiota and T2D during the 
prediabetes phase. Prediabetic individuals exhi
bit elevated blood sugar values within the non- 
diabetic range but at levels that increase their 
risk of developing significant T2D.6 In these 
non-medicated prediabetic patients, alterations 
were observed in their gut microbiota composi
tion, characterized by a reduction in butyrate- 
producing taxa and an increase in bacteria with 
pro-inflammatory potential.6,92 Furthermore, 
gestational diabetes mellitus (GDM), which 
affects 7–10% of pregnancies in the third trime
ster, represents another prediabetic state.93 

Compared to pregnant women with normal 
blood glucose levels, those with GDM exhibit 
disrupted gut microbiota composition. Notably, 
during and after pregnancy, the gut microbiota 
of individuals with GDM resembles that of non- 
pregnant individuals with T2D who have abnor
mal microbiota.94

A representative animal model of diabetes is the 
mouse model fed HFD, which exhibits high 

reproducibility and similarity to human disease 
pathogenesis. Consequently, it is extensively 
employed in investigating the phenotype and 
pathology of diabetes. There is an increasing 
focus on exploring the association between HFD- 
induced intestinal microbiota imbalance and dia
betes. Despite sharing the same background and 
nutritional status, diabetic or non-diabetic mice 
fed HFD display distinct gut microbiome profiles 
that are closely related to metabolic phenotypes.95 

These results are consistent in humans, as both 
insulin-resistant and insulin-sensitive obese indi
viduals display distinct microbiome profiles, even 
though they have comparable levels of insulin 
activity.96 A study investigating antibiotic therapy 
provided evidence supporting the involvement of 
gut microbes in HFD-induced diabetes, as evi
denced by significantly decreased fasting blood 
glucose and insulin levels, along with improved 
glucose and insulin tolerance in mice treated with 
antibiotics.97 This effect may be attributed to the 
reduction of tryptophan metabolite 5-HT content 
in the host, which is regulated by gut microbes.98 

Both antibiotics and 5-HT synthesis inhibitors 
significantly improved glucose tolerance in mice. 
However, the combination of these two treat
ments did not result in an additive effect on glu
cose tolerance, suggesting that both interventions 
target the same glucose metabolic pathway. 
Specifically, gut microbiota can directly influence 
the production of 5-HT by enterochromaffin cells, 
thereby regulating glucose homeostasis via the 
5-HT pathway. The inefficiency of the gut micro
biota in producing ligands for tryptophan-derived 
aromatic hydrocarbon receptors may also be 
implicated in the pathogenesis of diabetes. Both 
HFD mice and diabetic patients exhibited 
a significant reduction in AhR expression,99 

which can be attributed to decreased production 
of ligands by the gut microbes through the indole 
metabolic pathway, including indole, indole acetic 
acid, tryptamine, and 5-hydroxyindole acetic 
acid.16,99–101 Treatment with FIZC (an AhR acti
vator) rescued AhR impairment in HFD mice and 
ameliorated metabolic dysfunction.99 This effect 
could potentially be attributed to indole metabo
lites produced by the intestinal flora that promote 
GLP-1 secretion100 and insulin signaling via 
AhR.16 In addition to tryptophan, the levels of 
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BCAAs such as L-leucine, L-valine, and 
L-isoleucine also exhibited significant changes fol
lowing consumption of HFD.102 This observation 
aligns with the changes seen in the serum of T2D 
patients, characterized by elevated levels of 
BCAAs in individuals with reduced insulin 
function.61 This phenomenon is linked to specific 
alterations in the composition of the gut micro
biota, notably an increase in BCAA- 
biosynthesizing bacteria such as Prevotella copri 
and Bacteroides vulgatus. And feeding these bac
teria leads to impaired insulin sensitivity and glu
cose tolerance,61 highlighting the role of BCAAs 
and their metabolizing bacteria in the develop
ment of insulin resistance. In addition, a recent 
study has elucidated the involvement of NOD2 in 
HFD HFD-induced diabetes, as impaired peptido
glycan perception by NOD2 promotes dysbiosis 
and insulin resistance.103 Furthermore, there was 
an increase in bacteria involved in synthesizing 
SCFAs, while bacteria responsible for converting 
SCFAs showed a decrease. Consequently, this led 
to the accumulation of SCFAs and subsequent 
development of insulin resistance in the host.61 

It is plausible that the SCFAs receptor GPR43 
also plays a role in this process. Enhanced GLP- 
1 secretion through regulation of GPR43 activa
tion also improves insulin resistance in mice.104 

Moreover, the diminished abundance of 
Akkermansia muciniphila in the gastrointestinal 
tract has been linked to the onset of T2D.6 This 
implies that the reduction in Akkermansia muci
niphila caused by HFD also partially contributes 
to the progression of diabetes.

Metabolic liver diseases

The prevalence of nonalcoholic fatty liver disease 
(NAFLD), a hepatic manifestation of metabolic 
syndrome resulting from HFD, ranges from 20% 
to 40% among the adult population in numerous 
countries.105 NAFLD represents a range of condi
tions, from simple fatty liver to the more severe and 
inflammatory variant known as nonalcoholic stea
tohepatitis (NASH).106

The disruption of the gut microbiome induced 
by HFD is likely to be a pivotal factor in the patho
genesis of NAFLD and NASH diseases. Studies 
involving human and animal fecal transplants 

have demonstrated that intestinal colonization by 
alcohol-producing Klebsiella pneumoniae, which is 
associated with an increased risk of NAFLD, accel
erates the manifestation of symptoms related to 
this condition.107,108 Similar to the dysbiosis of 
gut microbiota induced by HFD, NASH patients 
exhibited significantly elevated abundance of 
Enterobacteriaceae within Proteobacteria 
phylum.109 Furthermore, in children with steatosis 
or NASH, the gut microbiota showed a higher 
abundance of the Dorea and Ruminococcus genera 
when compared to the control group.110 Similarly, 
patients with liver cirrhosis also experienced altera
tions of microbiota composition, characterized by 
increased abundances of Proteobacteria and 
Clostridium.111 This distribution in gut microbial 
community structure was also observed in HFD 
mice. The westernization of diet contributes to 
the deterioration of the intestinal environment. 
This results in elevated levels of LPS in the blood
stream, which is an endotoxin and a constituent of 
Gram-negative bacterial outer membrane.112 HFD 
plays a significant role in the pathogenesis of 
NAFLD/NASH by promoting an increased influx 
of LPS into the liver through leaky gut syndrome, 
while also inducing intrahepatic lipid accumulation 
and contributing to exaggerated hepatic response 
to LPS.113 Feeding mice a typical Western diet (low 
in choline, high in fat, and high in sugar) increased 
the abundance of Blautia bacterium in the gut of 
the mice, resulting in an increase in monoglycer
ides of 2-octagenoate. This led to symptoms similar 
to those seen in human NAFLD patients, including 
liver hypertrophy, steatosis, inflammation of liver 
cells, and fibrosis.114 Dietary fat leads to higher 
concentrations of intestinal oxygen and nitrates, 
which promotes the growth of E. coli and breaks 
down choline into trimethylamine (TMA). Choline 
is then converted by liver monooxygenase into 
trimethylamine n-oxide (TMAO),115 which is con
sidered a novel biomarker for early metabolic 
syndrome.116 Patients with NAFLD have elevated 
blood levels of TMAO, which regulates glucose 
metabolism and causes adipose tissue 
inflammation as well as abnormal blood glucose 
levels by increasing serum levels of the inflamma
tory cytokine C-C motif chemokine 2 (CCL2).117 

SCFAs also play a role in metabolic liver disease. 
Studies have shown that butyric acid mediates 
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crosstalk between the gut and liver through the 
LKB1-AMPK-Insig signaling pathway. It regulates 
liver fat production and maintains lipid 
homeostasis.118

Cardio-metabolic disease

The existing literature provides evidence for the 
impact of gut microbiota on cardiovascular disease, 
which is believed to be mediated through the 
recognition of gut microbial metabolites by host 
receptor systems.119 The progression of athero
sclerosis induced by a Western diet is associated 
with alterations in gut microbiota functionality. 
Reversal of this process can be achieved by switch
ing to a normal diet, highlighting the crucial role 
played by intestinal microbiota in atherosclerosis 
development.120 Individuals with Cardio- 
metabolic disease exhibited decreased abundances 
of Bacteroides and the anti-inflammatory prausnit
zii faecalis.121 Recent investigations have revealed 
that ischemic heart failure is also linked to dysre
gulation of gut microbiota, characterized by ele
vated abundances of Ruminococcus, Acinetobacter, 
and Veillonella. Functionally, the microbiome in 
these patients displayed a high prevalence of 
genes involved in LPS and TMAO biosynthesis.122 

Rodent experiments have demonstrated that diet
ary supplementation with TMAO or its precursors 
accelerates the progression of arteriosclerosis, pro
motes platelet aggregation, and enhances 
thrombosis.123 Moreover, attenuation of TMA pro
duction by gut bacteria using 3,3-dimethyl-1-buta
nol (a TMA lyase inhibitor) can ameliorate 
arteriosclerosis and thrombotic events.124 The gut 
microbiota metabolizes choline, lecithin, and 
L-carnitine, primarily derived from red meat, egg 
yolks, and dairy products, into TMA. TMA is 
transported to the liver via the portal vein and 
subsequently oxidized to TMAO by flavin mono
oxygenase (FMO). Mechanistically, TMAO 
enhances the uptake of oxidized low-density lipo
protein (ox-LDL) by upregulating the expression of 
macrophage scavenger receptors, including CD36 
and SR-A1, thereby promoting the formation of 
foam cells,125 which serve as an early indicator of 
atherosclerosis. Meanwhile, TMAO can downregu
late the expression of key bile acid synthesis 
enzymes, including CYP7A1 and CYP27A1, as 

well as reduce the expression of intestinal choles
terol transporters like Niemann-Pick C1-like 1 
(NPC1L1) in the liver.126 The inhibition of bile 
acid synthesis and transport leads to a diminished 
bile acid pool, consequently impairing reverse cho
lesterol transport (RCT) and ultimately resulting in 
cholesterol accumulation within the vascular wall, 
thereby promoting atherosclerosis. Moreover, 
TMAO potentiates platelet reactivity to agonists 
like collagen and ADP, thereby augmenting platelet 
aggregation and elevating the risk of thrombosis.123 

TMAO also can activate the MAPK and NF-κB 
signaling pathways in vascular smooth muscle 
cells and endothelial cells, resulting in the upregu
lation of inflammatory gene expression and 
increased adhesion of white blood cells to the 
endothelium.127 Similarly, administration of anti
biotics to LDLR-deficient mice effectively sup
pressed the gut-derived release of LPS, thereby 
reversing the atherosclerosis-promoting effects 
induced by consumption of a Western diet.128 An 
increase in Clostridium resulting from HFD may 
contribute to the development of cardio-metabolic 
diseases by modulating amino acid metabolism in 
the gut. The intestinal symbiotic bacterium 
Clostridium sporogenes metabolizes phenylalanine 
into phenylacetic acid (PAA) and phenylpropionic 
acid (PPA).129 In the human body, PAA combines 
with glutamine (Gln) under the action of liver 
enzymes to form phenylacetylglutamine (PAGln). 
PAA exhibits a positive correlation with thrombo
tic events in human plasma. Furthermore, it has 
been confirmed that PAGln can promote throm
bosis formation through activation of Adrenergic 
Receptors (ADRs).130

Intestinal diseases

The gut serves as the primary interface between an 
individual and their external environment, playing 
a crucial role in both nutrient absorption and safe
guarding against ingested toxins and microorgan
isms. Comprising mucus layers, intestinal epithelial 
cells (IECs), tight junctions (TJs), immune cells, 
and the gut microbiome, the intricate intestinal 
barrier system is susceptible to various external 
factors including diet.

Dietary fats have been implicated in compromis
ing this barrier integrity, triggering inflammatory 
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responses, disrupting the structural integrity of the 
intestine. This predisposes individuals to 
a spectrum of gastrointestinal disorders such as 
inflammatory bowel disease, celiac disease, and 
irritable bowel syndrome. Studies have demon
strated that HFD feeding significantly increases 
the abundance of LPS-containing bacteria in the 
gut microbiota.131 Mice fed HFD experience 
greater intestinal barrier permeability and reduced 
expression of tight junction proteins compared to 
the control group. This is linked with substantially 
higher levels of the LPS receptor (CD14) and 
increased colonic mRNA expression of TLR4.132 

TLR4 is part of the pattern recognition receptor 
family, and its activation can induce the release of 
pro-inflammatory cytokines while increasing 
intestinal permeability.133 LPS directly regulate TJ 
proteins and enhance the permeability of Caco-2 
monolayer through TLR4-CD14-mediated nuclear 
factor kappa B (NF-κB) activation, thereby altering 
intestinal barrier integrity.134 Moreover, LPS 
directly induces rapid shedding of intestinal epithe
lial cells without compensatory TJ resealing 
mechanisms.135 Lastly, LPS may promote mito
chondrial autophagy and global mitochondrial 
dysfunction, leading to increased intestinal 
permeability.136 HFD has been linked to increased 
levels of Desulfovibrio species, especially Bilophila 
wadsworthia. This bacterium generates genotoxic 
hydrogen sulfide (H2S) gas, which contributes to 
the underdevelopment and increased permeability 
of IECs.137 B. wadsworthia is capable of producing 
hydrogen sulfide, which hampers the oxidation 
process of butyrate and disrupts the energy balance 
within intestinal cells. Consequently, this leads to 
damage in intestinal cell structure, resulting in 
hypoplasia and hyperpermeability of the intestinal 
epithelial cells. Ultimately, these cascading effects 
culminate in intestinal leakage and 
inflammation.138 Furthermore, Bilophila wads
worthia employs sulfur obtained from taurine cho
lic acid (TCA) as a reducing agent in its electron 
transport chain to support its survival and growth 
within the gastrointestinal tract.139 In addition, 
HFD augments the nutritional benefits of 
Oscillibacter spp., which is directly linked to the 
suppression of IEC expression of TJ proteins and 
subsequent dysfunction in the intestinal barrier. 
Conversely, HFD leads to a reduction in 

Bifidobacterium and Lactobacillus populations, 
which are associated with improved integrity of 
the intestinal barrier.140,141 The mechanisms 
through which these microorganisms exert their 
effects on gut health remain unknown. However, 
they appear to stimulate gene expression of TJP 
within the intestine.142–144 Similarly, Akkermansia 
muciniphila not only induces gene expression of 
Tjp1 and Ocln but also mitigates HFD-induced 
thinning of the small intestinal mucus layer 
(SUML), thereby effectively preventing enhanced 
permeability to intestinal substrates and 
pathogens.145,146 Moreover, butyrate enhances the 
assembly of tight junctions in the Caco-2 cell 
monolayer by activating AMP-activated protein 
kinases, thereby reinforcing the integrity of the 
intestinal barrier.53 T-helper 17 cells (Th17), 
which secrete interleukin-17 (IL-17), also play 
a crucial role in maintaining the integrity of the 
intestinal barrier.147 Following an imbalanced 
HFD-induced disturbance in the gut microbiota, 
the functionality of lamina propria antigen pre
senting cells within the small intestine becomes 
impaired, leading to a reduction in Th17 cell 
population.148 The compromised Th17 response 
contributes to an elevated level of intestinal 
permeability.148

Metabolic endotoxemia

LPS, a pro-inflammatory compound generated by 
gram-negative bacteria, is an essential part of their 
outer membrane and significantly contributes to 
the development and advancement of low-grade 
inflammation.57

Dysregulation of the gut microbiome induced by 
HFD results in increased intestinal barrier perme
ability, leading to intestinal leakage and facilitating 
the translocation of endotoxins from the gut lumen 
into circulation. HFD significantly enhances the 
abundance of LPS-containing bacteria in the gut57 

and elevates plasma LPS levels.149 Moreover, cul
turing wild-type mouse feces in a high-fat medium 
promotes greater production of LPS compared to 
a low-fat medium.27 In line with these findings, 
Jeong et al. showed that HFD leads to elevated 
levels of endotoxins in both plasma and feces, 
while also fostering the growth of 
Enterobacteriaceae and enhancing in vitro 
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endotoxin production.17 Supplementation with 
Lactobacillus plantarum LC27 and 
Bifidobacterium longum LC67 leads to a decrease 
in the populations of Firmicutes and Proteobacteria 
within the gut microbiota driven by HFD. 
Additionally, it results in reduced fecal LPS 
production.150 These findings indicate that HFD 
might foster the growth of gram-negative bacteria 
in the gut, leading to increased LPS production. 
This effect can potentially be mitigated by the use 
of probiotics. The elevated intestinal permeability 
and endotoxin production associated with HFD 
contribute to metabolic endotoxemia characterized 
by increased plasma endotoxin concentrations.151 

Notably, LPS exerts various detrimental effects on 
intestinal function including promotion of intest
inal inflammation through specific signaling path
ways. The indirect effects mediated by LPS 
primarily involve TLR4-CD14-dependent pro- 
inflammatory responses.152 Increased plasma levels 
of LPS, acting through TLR4, stimulate the release 
of TNF-α, IL-1, and IL-6. Therefore, it is reasonable 
to propose that changes in gut microbiota induced 
by HFD may significantly contribute to the devel
opment of low-grade inflammation.27,153 Studies 
have shown that bacteria originating from the gut 
can be identified in blood and white adipose tissue 
within just one week of HFD treatment. 
Furthermore, this observation was less pronounced 
in mice deficient in microbial pattern recognition 
receptors such as Nod1 or CD14, indicating 
a common mechanism underlying both metabolic 
endotoxemia and metabolic bacteremia.154 In sum
mary, HFD disrupts intestinal barrier function and 
alters microbiome composition leading to endo
toxemia and bacteremia.

Cancer

Recently conducted studies have provided compel
ling evidence supporting the pivotal role of gut 
microbiota in the development of dietary fat- 
associated cancers. In a study involving genetically 
susceptible K-rasG12Dint mice, it was observed that 
HFD expedited the progression of intestinal 
tumors by inducing alterations in the composition 
of gut microbiota.155 Furthermore, when fecal sam
ples from HFD mice with intestinal tumors were 
transferred to healthy K-rasG12Dint mice, 

augmented tumorigenicity was observed. 
However, this effect was effectively blocked by 
antibiotic treatment, thereby strongly suggesting 
the involvement of microbiome in disease progres
sion. Importantly, these effects were found to be 
independent of obesity since K-rasG12Dint mice 
exhibited resistance to HFD-induced obesity.155 

Similarly, HFD-induced obesity led to modifica
tions in gut microbiome composition which sub
sequently resulted in increased levels of 
deoxycholic acid. Deoxycholic acid, a metabolite 
produced by gut bacteria, is known for its ability 
to cause DNA damage. The enterohepatic circula
tion of deoxycholic acid led to increased hepatic 
release of various inflammatory and tumor- 
promoting factors, thereby accelerating the devel
opment of chemically induced hepatocellular car
cinoma in mice.156 Furthermore, the gut 
microbiome also plays a pivotal role in the initia
tion and progression of colorectal cancer (CRC). 
By conducting comprehensive multi-omics studies 
on rodents, extensive alterations were observed in 
the cecal bile acid metabolic profile of mice fed 
HFD. Notably, there was an increase in non- 
classical amino acid coupling of bile acid-cholic 
acid (AA-CA) with HFD intake. The 
Ileibacterium valens and Ruminococcus gnavus, 
possessing AA-Cas synthesis capabilities, can mod
ulate CA signaling through FXR and TGR5 path
ways, thereby enhancing Wnt signaling and 
facilitating the proliferation of intestinal stem 
cells. This process plays a crucial role in the initia
tion and progression of CRC.157

Central nervous system disorders

The gut microbiota communicates with the central 
nervous system through the brain-gut axis, exert
ing influence on brain function and behavior. 
Germ-free mice exhibited heightened motor activ
ity and reduced anxiety-related behaviors.158 

A mouse model of autism displayed significant 
changes in microbial composition, which were 
ameliorated by treatment with susceptible 
Bacteroides symbiosis found in humans, leading 
to improvements in communication, anxiety levels, 
and sensorimotor deficits.159 Furthermore, a study 
involving patients with Parkinson’s disease 
revealed alterations in the gut microbiome of 
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affected individuals.160 While it is evident that the 
gut microbiota impacts central nervous system dis
orders, there remains limited research on HFD- 
induced changes within this process. However, 
transplantation of HFD-associated gut microbiota 
into mice has been reported to induce selective 
disruptions affecting exploration behavior, cogni
tion, stereotypical behavior as well as potential 
associations with increased neuritis and impair
ment of cerebrovascular homeostasis.161 HFD 
affects gut microbes, causing them to release 
a large amount of leucine, which activates the 
mTORC1 signaling pathway in myeloid progenitor 
cells. This promotes the production and differen
tiation of myeloid-derived inhibitory cells (PMN- 
MDSCs) with polymorphonuclear morphology, 
further advancing cancer progression.102 

Targeting the gut microbiota to treat 
HFD-induced intestinal diseases

Recent research has explored the potential of 
targeting the gut microbiota as a therapeutic 
approach.162 Although still in its early stages, 
several studies have reported promising results. 
Currently, most investigations have utilized pro
biotics to address HFD-induced dysbiosis. 
Probiotics are live microorganisms that, when 
ingested in sufficient quantities, confer health 
benefits to the host by aiding digestion and nutri
ent absorption, maintaining gastrointestinal 
homeostasis, and improving key metabolic dis
ease risk factors such as body mass index, fasting 
blood glucose levels, alanine and aspartate 
aminotransferase.163,164 Treating mice fed HFD 
with Bifidobacterium animalis ssp. lactis 420 
(B420) can lead to reductions in fat mass, 
improvements in glucose tolerance, decreases in 
LPS levels, and reductions in inflammation.165 In 
line with these results, clinical studies investigat
ing the supplementation of B420 have demon
strated its ability to significantly reduce body fat 
mass, waist circumference, and trunk fat accumu
lation, particularly in the central region. 
Additionally, B420 may decrease energy intake 
by modulating satiety hormones such as PYY. 
The effects were more pronounced when B420 
was combined with prebiotics like polydextrose 
(PDX), indicating that B420 has potential benefits 

for metabolic health.166 Similarly, Saccharomyces 
boulardii has been shown to decrease body 
weight, fat mass, liver steatosis, and inflammatory 
response in db/db micemice by modulating 
intestinal microbial composition.167 Additionally, 
the study demonstrated that HFD mice treated 
with Lactobacillus curvatus HY7601 and 
Lactobacillus plantarum KY1032 experienced less 
weight gain and fat accumulation while also exhi
biting reduced plasma insulin levels, leptin levels, 
total cholesterol levels, and hepatotoxic biomar
kers associated with changes in gut bacterial com
position and diversity.168 A randomized 
controlled trial conducted among Greek patients 
with T2D demonstrated that daily supplementa
tion with multi-strain probiotics LactoLevureR 
(comprising Lactobacillus acidophilus, 
Lactobacillus plantarum, Bifidobacterium lactis, 
and Saccharomyces boulardii) for 6 months sig
nificantly enhanced blood glucose control, 
reduced total cholesterol levels, and decreased 
waist circumference. Additionally, it positively 
influenced the composition of gut microbiota, 
including specific genera, metabolites, and key 
enzymes associated with diabetes.169 In healthy 
adults and children, the gut microbiota usually 
comprises 1%-4% of the prebiotic bacterium 
Akkermansia muciniphila.170 Akk. muciniphila 
possesses a unique survival advantage due to its 
ability to utilize mucin. Its distinctive structure 
enables Akk. muciniphila to regulate intestinal 
barrier integrity and enhance intestinal perme
ability in HFD mice.171 Moreover, the Type IV 
pili of Akk. muciniphila is capable of directly 
interacting with host immune receptors, regulat
ing the expression of genes associated with hepa
tic lipid synthesis and inflammatory responses, 
and preserving balance within the intestinal 
immune system.172–175 Additionally, Akk. mucini
phila has the ability to secrete oligosaccharides 
and short-chain fatty acids that promote micro
biome enrichment and reduce the risk of 
obesity.176,177 Furthermore, plant-derived com
pounds have the potential to positively influence 
gut microbiota composition in obesity studies. 
Extracts from cranberries, which are rich in poly
phenols, have been shown to safeguard mice 
against diet-induced obesity and metabolic dis
turbances by boosting the abundance of 
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Akkermansia species.178 Prolonged supplementa
tion with Akk. muciniphila can enhance the 
mucus layer thickness in the intestinal barrier 
and simultaneously reduce the expression of 
genes linked to inflammation.179 Despite the lim
ited data from current human trials, the success
ful use of intestinal bacterial transplantation in 
treating Clostridium difficile infections provides 
a new method for preventing and managing 
chronic conditions linked to high-fat diets in 
humans. In conclusion, the use of probiotics 
and prebiotics holds great promise in alleviating 
metabolic disorders caused by HFD, reducing fat 
accumulation, inflammatory response, and insu
lin resistance, while enhancing intestinal barrier 
function. This approach offers a promising new 
direction for the prevention and management of 
HFD-associated chronic. To more accurately and 
effectively modify the microorganisms in the host 
gut, genetic engineering techniques have recently 
been employed to alter specific microorganisms, 
endowing them with targeted functions for the 
treatment and prevention of chronic diseases.180– 

183 Engineered probiotics have also been utilized 
in HFD-induced chronic diseases. 
N-acylphosphatidylethanolamines (NAPEs) are 
lipid derivatives involved in anorexia signaling 
molecules in the small intestine. When mice on 
HFD were administered with engineered bacteria 
EcN expressing NAPEs, significant inhibition of 
weight gain was observed in the obese mouse 
model. Moreover, this intervention reduced liver 
inflammation and alleviated early symptoms of 
fibrosis.184,185 Additionally, modification of 
Lactobacillus to secrete GLP-1 and induce insulin 
secretion has shown improvement in hyperglyce
mia symptoms in diabetic rat models.186 Tissue 
accumulation of Pyrroloquinoline quinone 
(PQQ) can prevent oxidative damage both locally 
within the liver and systemically throughout the 
body. Combined with SCFAs, PQQ can effec
tively reduce hyperlipidemia. Chaudhari et al. 
constructed engineered EcN capable of expressing 
mtlK and fdh enzymes, resulting in increased 
SCFAs and PQQ levels along with decreased 
body weight and blood glucose concentration in 
mice.187 The engineered bacterium BsS-RS06551, 
which produces butyric acid, was developed using 
Bacillus subtilis as the cellular chassis. 

Administration of BsS-RS06551 significantly atte
nuated obesity induced by HFD and exhibited 
favorable effects on host glucose and lipid meta
bolism as well as gut microbial composition.188

Conclusions and future perspectives

Long-term consumption of HFD is associated with 
an increased risk of obesity, diabetes, liver meta
bolic disease, cardiovascular disease, chronic 
intestinal inflammation, cancer, and other chronic 
diseases. The gut microecological disorders caused 
by dietary fats may play a more pivotal role in the 
promotion of these chronic diseases than genetic 
predispositions. Mechanistic studies have identi
fied specific gut bacterial taxa that are linked to 
the disease risks associated with HFD. 
A predominant finding across most studies is that 
an elevated Firmicutes/Bacteroidetes ratio, along 
with alterations in microbial communities at the 
family, genus, and species levels, represents a key 
characteristic of HFD-induced shifts in the gut 
microbiota. However, the pathogenesis of HFD- 
related chronic diseases is likely the result of an 
intricate. There is also an interaction between 
chronic diseases directly driven by fat accumula
tion and gut microbiota making it difficult to deter
mine the causal relationship between 
microecological dysregulation and morbidity. 
Therefore, HFD-driven specific intestinal bacterial 
type disorders and HFD-related chronic diseases 
need to be studied as partially independent yet 
closely related mechanisms. Published findings 
suggest that maintaining a balanced diet with 
appropriate fat content is crucial not only for host 
health, but also for the gut microbiome. The dys
biosis of intestinal microbes plays a significant role 
in the development of chronic diseases associated 
with HFD. The prevailing perspective posits that 
HFD induces alterations in specific intestinal 
microbiota, leading to changes in microbial meta
bolic reactions within the intestine. This results in 
an increased production of disease-promoting 
metabolites or disruption of synthesis pathways 
for beneficial metabolites that can be positively 
regulated. Consequently, this impairs the host’s 
glucose and fat metabolism, compromises intest
inal barrier function, disrupts signal transduction 
processes, and promotes endotoxin accumulation.
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Based on our literature discussion regarding the 
impact of HFD on gut microbiome alterations, the 
investigation of specific microbial metabolites pre
dominantly relies on in vivo studies conducted in 
target tissues or cells, often supplemented by 
rodent-based experimental models. Although 
mouse studies have provided valuable insights 
into the role of gut microbes and their metabolites 
in HFD-induced chronic metabolic diseases, trans
lating these findings to human applications faces 
significant challenges. Firstly, species differences 
limit direct extrapolation, as mice and humans 
differ substantially in gut microbiome composi
tion, metabolic pathways, and genetic back
grounds. Key microbiota and metabolites in 
humans may be absent or less abundant in mice, 
and their mechanisms of action can vary markedly. 
Secondly, experimental conditions in mouse stu
dies often fail to replicate real-world human life
styles. The composition of high-fat diets used in 
mice differs from typical human diets, and con
trolled laboratory environments cannot capture the 
complexity of human factors such as stress, sleep, 
and medication use. Additionally, mouse studies 
predominantly use inbred strains with homoge
neous genetics, whereas humans exhibit significant 
genetic and microbiome diversity, leading to varia
bility in microbial-host interactions. Human 
chronic metabolic diseases arise from a complex 
interplay of genetic, dietary, lifestyle, and environ
mental factors, which mouse models cannot fully 
replicate. Mouse studies also typically involve 
short-term interventions, which may not reflect 
the long-term progression of human diseases, and 
dosages or exposure durations may not align with 
real-world scenarios. Ethical and practical con
straints further limit human studies, making long- 
term dietary interventions challenging to imple
ment. Moreover, small sample sizes in mouse 
experiments can introduce biases when extrapolat
ing results to human populations. To address these 
limitations, future research should prioritize rigor
ously designed, long-term human clinical studies, 
including cohort studies and intervention trials, 
with clearly defined endpoints and large sample 
sizes. Multi-omics technologies (e.g., genomics, 
metabolomics) should be employed to 

comprehensively analyze microbiome-host inter
actions. Cross-species validation using multiple 
animal models and interdisciplinary collaboration 
will enhance the reliability and translational poten
tial of findings. In summary, while mouse studies 
provide valuable insights, greater emphasis on 
human research, technological innovation, and 
cross-disciplinary collaboration is essential for 
translating these findings into clinical applications.

The existing literature on targeting the microbiota 
as a therapeutic approach for diet-induced chronic 
diseases is promising and suggests potential as 
a complementary strategy to modulate gut micro
biota composition. However, a comprehensive 
understanding of viable pharmacological agents in 
this context remains insufficient, and critical aspects 
such as optimal dosage, timing, and administration 
frequency have yet to be determined. Future 
research should prioritize the following directions 
to elucidate the role of gut microbes and their meta
bolites in high-fat diet-induced metabolic diseases 
and facilitate clinical translation. Leveraging the sig
nificant individual variability in gut microbiome 
composition and function, future studies should 
integrate multi-omics and AI-driven approaches to 
develop precise dietary protocols tailored to indivi
dual microbiome profiles. For example, diets 
enriched with prebiotics, probiotics, or specific 
microbial metabolites could be designed to target 
specific microbial communities, enhancing meta
bolic health. Additionally, exploring variations in 
dietary responses across diverse populations (e.g., 
age, gender, ethnicity) will refine personalized nutri
tion strategies. Advances in synthetic biology and 
gene editing enable targeted microbiome modifica
tions to modulate host metabolism and improve 
disease phenotypes. However, the safety, stability, 
and long-term effects of these interventions in com
plex gut environments require rigorous validation. 
Translating basic research into clinical practice 
remains challenging. Key priorities include develop
ing precision microbiome-based therapies, such as 
FMT, probiotic/prebiotic combinations, and meta
bolic pathway-targeted interventions. Large-scale 
clinical trials are essential to evaluate the long-term 
safety and efficacy of these interventions in prevent
ing, treating, and reversing metabolic diseases. 
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Furthermore, exploring synergies between micro
biome-based therapies and other treatments (e.g., 
pharmacological, lifestyle, or surgical interventions) 
will optimize outcomes and improve patient 
adherence.
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