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ABSTRACT
Background. Salt sensitivity of blood pressure (SSBP) is an independent risk factor for
cardiovascular disease. The pathogenic mechanisms of SSBP are still uncertain. This
study aimed to construct the co-regulatory network of SSBP and data mining strategy
based on the competitive endogenous RNA (ceRNA) theory.
Methods. LncRNA and mRNA microarray was performed to screen for candidate
RNAs. Four criteria were used to select the potential differently expressed RNAs. The
weighted correlation network analysis (WGCNA) package of R software and target
miRNA and mRNA prediction online databases were used to construct the ceRNA
co-regulatory network and discover the pathways related to SSBP. Gene ontology
enrichment, gene set enrichment analysis (GSEA) and KEGG pathway analysis were
performed to explore the functions of hub genes in networks.
Results. There were 274 lncRNAs and 36 mRNAs that differently expressed between
salt-sensitive and salt-resistant groups (P < 0.05). Using WGCNA analysis, two mod-
ules were identified (blue and turquoise). The blue module had a positive relationship
with salt-sensitivity (R= 0.7, P < 0.01), high-density lipoprotein (HDL) (R= 0.53,
P = 0.02), and total cholesterol (TC) (R= 0.55, P = 0.01). The turquoise module was
positively relatedwith triglyceride (TG) (R= 0.8,P < 0.01) and low-density lipoprotein
(LDL) (R= 0.54, P = 0.01). Furthermore, 84 ceRNA loops were identified and one
loop may be of great importance for involving in pathogenesis of SSBP. KEGG analysis
showed that differently expressed mRNAs were mostly enriched in the SSBP-related
pathways. However, the enrichment results of GSEA were mainly focused on basic
physical metabolic processes.
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Conclusion. The microarray data mining process based on WGCNA co-expression
analysis had identified 84 ceRNA loops that closely related with known SSBP patho-
genesis. The results of our study provide implications for further understanding of the
pathogenesis of SSBP and facilitate the precise diagnosis and therapeutics.

Subjects Bioinformatics, Cardiology, Epidemiology, Medical Genetics
Keywords Competitive endogenous RNAs, Gene set enrichment analysis, Long non-coding
RNAs, Salt sensitivity of blood pressure, Weighted gene co-expression network analysis

INTRODUCTION
Salt sensitivity of blood pressure (SSBP), first proposed by Kawasaki in 1978 (Kawasaki
et al., 1978), is defined as the blood pressure of some people exhibiting changes parallel
to changes in salt intake (Elijovich et al., 2016). Hypertension that related with SSBP is
called salt sensitive hypertension (SSH) (Mo & Ren, 2012). SSBP is one of the early damage
markers of hypertension and an independent risk factor for cardiovascular morbidity and
mortality (Franco & Oparil, 2006), especially for Asian populations (Kario et al., 2018).
Understanding the key regulatory factors and pathogenic pathways of SSBP can help us
screen the high-risk individuals and conduct personalized treatments.

Evidences have showed that microRNAs (miRNAs) (Moazed, 2009) are involving in
the pathogenesis of SSH. For example, miR-429 (Zhu et al., 2017), miR-133a (Guo et al.,
2014) and miR-29b (Liu et al., 2010) are differentially expressed in SSH rat model, and
hsa-miR-361-5p is associated with SSH patients (Qi et al., 2017). However, there lacks
evidences about the associations between long non-coding RNAs (lncRNAs) (Wang &
Chang, 2011) and SSBP. A study revealed that the expression level of lncRNA sONE is
significantly decreased in rat model of SSH (Zhang et al., 2015). It is necessary to explore
the expression profile of lncRNAs in SSBP individuals. In addition, with the rising advent of
the competitive endogenous RNA (ceRNA) theory, it has been discovered that lncRNAs and
miRNAs function together to form biological modules (Xu et al., 2011). LncRNAs could
competitively combine with the miRNA response element (MRE) and repress miRNA’s
negative regulation of target mRNAs. This lncRNA-miRNA-mRNA triple network has
been demonstrated in several diseases, but not in SSBP (Chen et al., 2018; Pan et al., 2017b;
Xie et al., 2017; Yuan et al., 2017; Zhang et al., 2016). Thus, it is important to elucidate the
ceRNA co-regulatory of SSBP with bioinformatic analysis and data mining, which could
construct the systematic regulatory network and explore the interactive relationship of
different biomarkers.

Weighted correlation network analysis (WGCNA) is a systematic biology-based
approach that transforms gene expression profiles into co-expressed gene modules,
which provides insight into biological pathways (Langfelder & Horvath, 2008). WGCNA
has been widely applied in biological areas such as acute myeloid leukemia (Pan et al.,
2017a), hepatocellular carcinoma (Pan et al., 2016), schizophrenia (Ren et al., 2015), as
well as in coronary artery disease (Yan, 2018). Similarly, gene set enrichment analysis
(GSEA) is a gene expression analysis method that creates a priori gene sets according to
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prior knowledge about biological states and can be used to gain biological insight into the
transcript level (Subramanian et al., 2005).

Taken together, this study aims to screen for SSBP associated differentially expressed
hub lncRNAs and mRNAs using WGCNA method, construct the co-expression network
and ceRNA network, and provide insight into the mechanisms of SSBP on transcriptome
level.

MATERIAL AND METHODS
Study population
Participants were selected from the System Epidemiology Study on Salt Sensitivity
of Blood Pressure (EpiSS) study (Qi et al., 2018), which was registered in the WHO
International Clinical Trials Registry Platform (No: ChiCTR-EOC-16009980). Salt-
sensitive (SS) individuals were regarded as cases and salt-resistant (SR) ones were controls.
The participants were invited by general practitioners of health community centers
and underwent the modified Sullivan’s acute oral saline load and diuresis shrinkage
test (MSAOSL-DST) and physical examination. The MSAOSL-DST is a diagnostic test
used to distinguish SS from SR by orally administering 1,000 mL 0.9% saline solution
and measuring the changes in blood pressure. MSAOSL-DST has been widely used
in the definition of salt sensitivity with advantages of better acceptability and robust
reproducibility. Individuals with more than 5 mmHg increase after salt-loaded and 10
mmHg decrease after oral administration of furosemide are diagnosed as SS, and others are
SR (Li, Liu & Yang, 1994;Mu et al., 1993; Sullivan, 1991). To ensure the quality of subjects,
only the subjects who had the same salt-sensitive diagnostic results as their records in the
EpiSS database were included in this study. Blood was collected by professional nurses
from the community health centers using PAXgene R© blood RNA tube (PreAnalytiX,
Hombrechtikon, Switzerland) and stored at −80 ◦C for further processing. This study was
approved by the Ethical Committee of Capital Medical University, in compliance with the
Declaration of Helsinki. All participants signed informed consent before the study began.

RNA extraction and ceRNA expression profile
Total RNA was extracted and purified with PAXgeneTM Blood RNA Kit (Cat#762174,
QIAGEN, GmBH, Germany) following the manufacturer’s instructions. Qualified RNA
was amplified and transcribed into cRNA, which was purified and hybridized to the
SBC human ceRNA array V1.0 (Biotechnology Corporation, Shanghai, China) in Agilent
G2545A Hybridization Oven. Slides were washed and then scanned by Agilent G2565CA
Microarray Scanner with default settings. Raw data were normalized by the Quantile
algorithm of the ‘‘limma’’ package of R 3.2.2 software (Ritchie et al., 2015).

Screening differentially expressed lncRNAs (DE-lncRNAs) and
mRNAs (DEGs)
Independent two-sample t -test was performed to analyze the DE-lncRNAs and DEGs
between SS and SR after the normalizing of microarray data. Four inclusion criteria were
applied to obtain the DE-lncRNAs and DEGs: a. fold-change >2 or <0.5; b. P-value< 0.05
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(two-tailed); c. expression levels were different compared to background signal values; d.
RNAs with an expression difference between all samples that were higher than the median
of all expression differences for each RNA, or, RNAs with a mean expression between all
samples that were higher than the median of all expression differences for each RNA (Prieto
et al., 2008). The R package ‘‘heatmaps’’ was used to draw the heatmaps for DE-lncRNAs
and DEGs (Perry, 2019).

WGCNA co-expression analysis
The lncRNA-mRNA co-expression network was analyzed by the ‘‘WGCNA’’ package
of R 3.2.2 software (Langfelder & Horvath, 2008). Firstly, hierarchical clustering analysis
was conducted to remove samples that were outliers based on Euclidean distance; then,
we created a weighted adjacency matrix and calculated the soft thresholding power β.
After this, a topological overlap matrix (TOM) was generated to describe the connections
between genes. Genemodules were identified by cluster dendrogram analysis, with different
colors representing different modules. We correlated clinical traits such as gender, age, salt
sensitivity, and hypertension with each gene module to get the eigengene. Gene significance
and module membership were calculated within modules to discover the most important
transcripts.

Target genes prediction
The prediction of lncRNAs to target miRNAs was conducted using the LNCipedia
(http://lncipedia.org/db/search) and miRDB (http://www.mirdb.org/custom.html)
databases. LNCipedia was utilized to obtain the full sequence of lncRNAs. Then, the
sequences were imputed into miRDB and obtained the target miRNAs according to
the principle complementary base pairing. The top five target scores were chosen as
prediction results. The prediction of miRNAs to mRNAs was conducted with miRmap
online database (http://mirmap.ezlab.org/) (Vejnar, Blum & Zdobnov, 2013). We chose
the top ten as prediction results. The reason for selecting the top RNAs is to screen the
most significant target prediction genes and remove the irrelevant RNAs according to
the comprehensive ranks of ‘‘1G open’’, probability exact, conservation ‘‘PhyloP’’ and
miRmap score.

CeRNA regulatory network visualization
We integrated the results of co-expression and prediction by using intersection elements of
mRNAs. Then, the lncRNA-miRNA-mRNA triple competing relationship of each module
was visualized and reconstructed with Cytoscape 3.4.0 (Langfelder & Horvath, 2008). In the
network, nodes represented RNAs while lines represented co-expression and prediction
relationship.

mRNA functional enrichment analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis of the mRNAs were performed using package ‘‘clusterProfiler’’ of R 3.4.3 software
(Yu et al., 2012). Gene Symbol were transformed into Entrez Gene ID using bioDBnet
online database (https://biodbnet-abcc.ncifcrf.gov/db/db2dbRes.php) for further GO and
KEGG analysis.
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GSEA enrichment analysis
All the mRNA transcripts of the microarray were used to perform the GSEA enrichment
analysis (Mootha et al., 2003). After ranking the expression level of mRNAs in SS and
SR, we compared our ranking results with H and C2 gene sets of Molecular Signatures
Database (MSigDB). We identified the enrichment function of these mRNAs according to
their position in different pathways and calculated the false discovery rate (FDR). Gene sets
with FDR< 0.05 were regarded as significant. Similar gene sets. Enrichment results of data
mining and GSEA were compared to GO and KEGG to determine the optimal functional
analysis strategy.

RESULTS
Differentially expressed lncRNAs and mRNAs
SBC ceRNA array v1.0 contained 68,423 lncRNAs and 18,853 mRNAs. Figure 1 describes
the screening procedures of lncRNAs and mRNAs. According to the four inclusion criteria,
we discovered 274 DE-lncRNAs (119 upregulated and 155 downregulated) and 36 DEGs
(23 upregulated13 downregulated) (Supplementary Fig. 1).

Baseline characteristics of patients
Ten SS and 10 SR were included in this study from two health community centers of Beijing
between June 2016 and January 2017. Participants included eight males and 12 females,
including 10 hypertensive patients and 10 normotensives. The average age of samples was
63.85 ± 0.47 years old. TG was noted to be significantly higher in SR compared to SS
(P = 0.029). There was no significant difference in gender, age, TC, HDL, LDL, or GLU
between groups (P > 0.05) (Supplementary Table 1).

LncRNA-mRNA co-expression network construction
WGCNA was applied to detect the potential interactions between lncRNAs and mRNAs.
Sample dendrogram analysis showed no outliers, so all 20 samples were included for
further analysis. We could know from Fig. 2A that SS subjects were related with higher
TC, HDL and lower TG. We used β = 6 to get adjacency matrix and generated a TOM
dendrogram after calculating scale independence and mean connectivity (Fig. 2B). The
cluster dendrogram shows three colors of modules (blue, turquoise and grey). The blue
module contained 46 lncRNAs and 9 mRNAs and the turquoise module contained 191
lncRNAs and 17mRNAs. Greymodule was unclassified genes. Thus only blue and turquoise
modules were considered for further analyses. The top 10 weighted lncRNAs andmRNAs in
blue and turquoise co-expression network modules were summarized in the Supplemental
Information (Tables S2 and S3). The correlations between modules and clinical traits are
depicted in Fig. 2C. We found that the blue module had a positive relationship with salt-
sensitivity (R= 0.7, P < 0.01), HDL (R= 0.53, P = 0.02), and TC (R= 0.55, P = 0.01). The
turquoise module was positively related with TG (R= 0.8, P < 0.01) and LDL (R= 0.54,
P = 0.01). A cluster heatmap was performed to comprehensively reflect the adjacency and
topological structures of genes (Fig. 2D). We found two clusters in the heatmap, which
represent the twomodules. Then, the co-expression network was visualized with Cytoscape
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Figure 1 Flowchart of the screening of differentially expressed lncRNAs andmRNAs. SS, salt sensitive;
SR, salt resistant; FC, fold change.

Full-size DOI: 10.7717/peerj.7534/fig-1

software (Figs. 3A and 3B). Due to too many nodes, only top ten associated lncRNAs of
each mRNA were performed in turquoise co-expression network (Fig. 3B).

CeRNA network construction
We ranked lncRNAs by module membership in blue and turquoise modules. LncRNAs
with P < 10−7 were selected for target miRNAs and mRNA prediction using miRDB and
miRmap databases. Finally, 17 of 46 (37.0%) lncRNAs from the blue module and 128
of 191 (67.0%) lncRNAs from the turquoise modules were chosen for further prediction
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Figure 2 Weighted gene co-expression network analysis. (A) Sample dendrogram and clinical trait
heatmap; (B) Hierarchical clustering. The branches of the tree represent the clusters of DE-lncRNAs and
DEGs. Colors below the tree were gene modules that correspond to the clusters. (C) The correlation be-
tween gene modules and traits, and red represents a positive correlation and green represents a negative
correlation; (D) LncRNA-mRNA co-expression network modules. Light color represents low overlap and
darker red means higher overlap between RNAs. lncRNAs and mRNAs were organized into two modules.

Full-size DOI: 10.7717/peerj.7534/fig-2

analysis because their full sequences could be obtained from LNCipedia. After target genes
prediction, 79 miRNAs and 220 mRNAs were included in the blue module, while 347
miRNAs and 607 mRNAs were included in the turquoise module. Then, we merged the
mRNAs frompredictionwith co-expression and got 9 (MGAM2, ITGB4, KCNH7, CLEC1A,
KIF6, LOC643802, DHRS13, IL1B, SCN9A) overlapping mRNAs in the blue module and
14 mRNAs (TARP, GPR68, CCR5, TUSC5, ZNF98, TMEM14B, FOSL1, PLG, FAM111B,
DNAJB6, SEC14L2, PTGER3, GLIPR1L2, TKTL1) overlapping in the turquoise module.
Due to PTGER3 andKCNH7 were associated with known SSBPmechanism pathways, such
as sodium reabsorption and potassium ion-channel, which cause fluctuations of blood
pressure (Kelly & He, 2012), these two DEGs were selected to perform ceRNA network of
two modules (Figs. 4A and 4B). There were 10 miRNAs and 10 mRNAs in blue turquoise
module, which forming 11 ceRNA loops. Similarly, there were 32 miRNAs and 51 lncRNAs
in turquoise module, which forming 73 ceRNA loops.
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Figure 3 LncRNA-mRNA co-expression network plots of two gene modules. Yellow ovals represent
hub mRNAs and blue triangles represent lncRNAs. (A) Co-expression network of lncRNAs and mRNAs in
blue module; (B) Co-expression network of top ten lncRNA and mRNAs in turquoise module.

Full-size DOI: 10.7717/peerj.7534/fig-3

Figure 4 CeRNA network of salt sensitivity of blood pressure of blue modules (A) and turquoise mod-
ules (B). Red and blue diamonds in the center of network represent PEGER3 from turquoise module and
KCNH7 from blue module, respectively; green triangles signify miRNAs and yellow ovals denote lncR-
NAs.

Full-size DOI: 10.7717/peerj.7534/fig-4

Gene ontology and KEGG pathway analysis
All of theDEGs coming fromco-expression andpredictionwere united for genes annotation
enrichment analysis to investigate the potential functions of these differentially expressed
lncRNAs and mRNAs. For the turquoise module, the most significant cellular component
was the synaptic membrane. Axon guidance, neuron projection guidance, regulation
of short-term neuronal synaptic plasticity and response to nicotine were the top four
significant for biological processes (P < 0.001); RNApolymerase II core promoter proximal
region sequence-specific DNA binding was the most significant for molecular functions
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Table 1 Top 10 significant KEGG pathways for blue and turquoise modules.

Modules KEGG ID Description P
-value

Q
-value

Gene
count

Blue hsa04151 PI3K-Akt signaling pathway 0.001 0.107 11
hsa05165 Human papillomavirus infection 0.001 0.107 10
hsa04926 Relaxin signaling pathway 0.002 0.107 6
hsa04713 Circadian entrainment 0.003 0.107 5
hsa04115 p53 signaling pathway 0.005 0.107 4
hsa05020 Prion diseases 0.005 0.107 3
hsa05214 Glioma 0.006 0.107 4
hsa05212 Pancreatic cancer 0.007 0.107 4
hsa05218 Melanoma 0.007 0.107 4
hsa04512 ECM-receptor interaction 0.009 0.107 4

Turquoise hsa04925 Aldosterone synthesis and secretion 0.000 0.019 11
hsa04918 Thyroid hormone synthesis 0.001 0.073 8
hsa04962 Vasopressin-regulated water reabsorption 0.001 0.073 6
hsa04916 Melanogenesis 0.002 0.073 9
hsa04261 Adrenergic signaling in cardiomyocytes 0.003 0.073 11
hsa04911 Insulin secretion 0.003 0.073 8
hsa05031 Amphetamine addiction 0.003 0.073 7
hsa04727 GABAergic synapse 0.004 0.073 8
hsa04728 Dopaminergic synapse 0.004 0.073 10
hsa04360 Axon guidance 0.004 0.073 12

(P < 0.001). For the blue module, the most significant cellular components were the
synaptic vesicle membrane and exocytic vesicle membrane (P < 0.001), and the most
significant molecular function was transcriptional activator activity (P = 0.007). The
results of KEGG pathway analyses showed that the most significant pathway for the
turquoise module was aldosterone synthesis and secretion; whereas for the blue module,
the most significant pathway was that of PI3K-Akt signaling (Table 1).

GSEA enrichment of all mRNAs in ceRNA array
When H hallmark gene sets were regarded as reference sets, 37 of 50 genes sets were
upregulated in SS, and three of them were significantly different (P < 0.05) (Fig. S2).
Table 2 summarizes the significant SS-related leading edge genes sets. Thirteen gene
sets were upregulated in the SR group; two gene sets, pancreas beta cells and epithelial
mesenchymal transition, were significantly expressed (P < 0.05). For KEGG database of C2
gene sets (curated gene sets), 124 pathways were upregulated in SS and ten of them were
significantly different (P < 0.05). The different pathways involved processes like glycan
biosynthesis, propanoate metabolism, melanoma, aminoacyl trna biosynthesis, chronic
myeloid leukemia, renal cell carcinoma, and cytokine receptor interaction. Fifty-three
pathways were upregulated in SR; out of those, seven were significantly expressed, including
pathways for olfactory transduction, ribosome, steroid hormone biosynthesis, primary bile
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Table 2 Salt sensitivity related significant leading edge genes sets (hallmark).

Gene sets names Counts ES NES P- value FDR
q-value

UNFOLDED_PROTEIN_RESPONSE 112 0.401 1.489 0.006* 0.312
HEDGEHOG_SIGNALING 35 0.469 1.446 0.035* 0.236
PEROXISOME 103 0.358 1.318 0.040* 0.575
PROTEIN_SECRETION 95 0.349 1.263 0.103 0.709
ALLOGRAFT_REJECTION 200 0.308 1.232 0.081 0.735
REACTIVE_OXIGEN_SPECIES_PATHWAY 47 0.369 1.184 0.220 0.914
IL6_JAK_STAT3_SIGNALING 87 0.319 1.153 0.207 0.982
MITOTIC_SPINDLE 198 0.286 1.151 0.160 0.866
IL2_STAT5_SIGNALING 198 0.282 1.121 0.199 0.947
DNA_REPAIR 142 0.293 1.121 0.212 0.853
UV_RESPONSE_DN 143 0.286 1.106 0.254 0.860
NOTCH_SIGNALING 32 0.361 1.080 0.343 0.924

Notes.
ES, enrichment score; NES, normalized enrichment score; FDR, false discovery rate.

acid biosynthesis, drug metabolism cytochrome P450, calcium signaling pathway, and
metabolism of xenobiotics by cytochrome P450.

DISCUSSION
In this study, 274 DE-ncRNAs and 36 DEGs were identified through differential analysis.
WGCNA analysis discovered the correlation between clinical traits and three modules
(turquoise, blue and grey), and turquoise and blue modules were selected for enrichment
analysis. Eighty-four ceRNA loops were identified and lnc-CD302-1:1→hsa-miR-1283
→PTGER3 may be of great importance for participating in mechanism of SSBP.

GO and KEGG analyses revealed that the turquoise module was related with aldosterone
synthesis and secretion, which was one of the pathogenesis pathways of SSBP (Dengel
et al., 2001). Aldosterone is a kind of steroid hormone and mainly responsible for fluid
homeostasis of the body. Excess aldosterone would result in the reabsorption of salt and
water and thereby the elevation of blood pressure (Shibata & Fujita, 2011). The role of
aldosterone is more obvious in SSH patients, who have already undergone damages of
kidney and exhibit overproduction of aldosterone. The lncRNAs and mRNAs that we
screened out may involve in renin-angiotensin-aldosterone (RAAS) pathway through
regulating the expressions of corresponding genes.

Among the 14 mRNAs of turquoise ceRNA network, prostaglandin E receptor 3
(PTGER3) plays a prominent role in the cardiovascular system. They involved in biological
activities such as the regulation of blood pressure, metabolism of sodium and water,
inflammation, reangiostenosis, and so on (Ceddia et al., 2016;Grilo et al., 2011). Among the
32 miRNAs that had predictive relationships with PTGER3, hsa-miR-1283 was associated
with essential hypertension. Yang et al. (2015) found that hsa-miR-1283 may regulate the
expression of ATF1 through binding with the 3′UTR of the gene, which was abnormally
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expressed in essential hypertension. Due to SSBP is a clinical trait of hypertension, hsa-
miR-1283 is probably associated with SSBP. Although there is no direct evidence showing
that lnc-CD302-1:1 is directly associated with SSBP, the co-expression of lnc-CD302-1:1
and PTGER3 as well as the predictive relationship of lnc-CD302-1:1 to hsa-miR-1283
provide hypothesis for future investigation.

In blue module, PI3K-Akt signaling pathway was the most significant pathway for SSBP.
Insulin could activate the PI3K-Akt pathway by stimulating nitric oxide (NO) synthesis
and thereby promoting vasodilatation (Kobayashi et al., 2004). Insulin sensitivity is also
related with salt sensitivity by hyperinsulinemia, over-activation of sympathetic nervous
system, and reducing suppression of RAAS pathway (Yatabe et al., 2010). Thus, the active
of PI3K-Akt pathway may play a protective role in prevention and treatment of SSBP,
corresponding to the strong correlation of the blue module and SSBP.

GSEA showed that SSBP is mainly associated with basic biological processes including
glycan biosynthesis, and inositol phosphate metabolism. However, the results of GO and
KEGG that based on WGCNA screening showed more SSBP-relevant pathways. So, the
process of screening the differentially expressed RNAs, WGCNA co-expression analysis,
and target genes prediction could effectively discover the accurate pathway information for
SSBP, and more importantly, explore the function of ceRNA theory in the pathogenesis of
SSBP. As all themRNAs are consideredwhen conductingGSEA analysis, the results of GSEA
could bemore comprehensive and therefore helpful for discovering the unknown pathways.
However, there are some limitations for the twomethods. ForWGCNA, the nodes with low
connectivity degree would not be recognized by modules. The heterogeneities of samples
would result in the difficulties inmodule recognition and sample size under 15 could not use
WGCNA (Liu et al., 2017). For GSEA, although it is a group-set analysis method, there are
a few false positives due to focusing on sample-level variations rather than pathway-levels
(Yi & Stephens, 2008). Thus, new methods are necessary to be developed to overcome the
limitations. For this study, the combination of WGCNA data mining with GSEA could
screen for key regulators of diseases and provide ideas for exploring pathogenesis pathways
of other diseases.

There are a few limitations in our study. The regulatory effects of lncRNA to miRNA
and miRNA to mRNA need to be further validated by real-time polymerase chain reaction
with a larger sample size and functional experiments. The representative of participants is
limited because they are older age and living in Beijing. In addition, whether the microarray
data mining process is applicable for other diseases is currently unknown and should be
explored in future studies.

CONCLUSIONS
The microarray data mining process based on WGCNA co-expression analysis had
identified 84 ceRNA loops for SSBP. The results of our study provide implications
for understanding the pathogenesis of SSBP and facilitate the precise diagnosis and
therapeutics.
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