
Vol.:(0123456789)1 3

Journal of Artificial Organs (2020) 23:113–123 
https://doi.org/10.1007/s10047-019-01133-3

REVIEW

End‑stage liver failure: filling the treatment gap at the intensive care 
unit

Robert A. F. M. Chamuleau1  · Ruurdtje Hoekstra1

Received: 11 July 2019 / Accepted: 9 September 2019 / Published online: 18 September 2019 
© The Author(s) 2019

Abstract
End-stage liver failure is a condition of collapsing liver function with mortality rates up to 80. Liver transplantation is the 
only lifesaving therapy. There is an unmet need for therapy to extend the waiting time for liver transplantation or regenera-
tion of the native liver. Here we review the state-of-the-art of non-cell based and cell-based artificial liver support systems, 
cell transplantation and plasma exchange, with the first therapy relying on detoxification, while the others aim to correct also 
other failing liver functions and/or modulate the immune response. Meta-analyses on the effect of non-cell based systems 
show contradictory outcomes for different types of albumin purification devices. For bioartificial livers proof of concept has 
been shown in animals with liver failure. However, large clinical trials with two different systems did not show a survival 
benefit. Two clinical trials with plasma exchange and one with transplantation of mesenchymal stem cells showed positive 
outcomes on survival. Detoxification therapies lack adequacy for most patients. Correction of additional liver functions, and 
also modulation of the immune system hold promise for future therapy of liver failure.

Keywords Acute liver failure · Acute on chronic liver failure · Artificial liver · Liver transplantation

Introduction

End-stage liver failure (ESLF) is a life-threatening condition 
of patients with collapsing liver function, caused by massive 
death of liver cells. The clinical syndrome comprises bleed-
ing risks or thrombosis, disturbed acid–base homeostasis, 
systemic inflammatory response, hemodynamic instabil-
ity, hepatic encephalopathy (HE) with the risk of increased 
intracranial pressure (ICP) and multi-organ failure.

Different types of ESLF are distinguished: acute liver fail-
ure (ALF), when ESLF occurs in a person with a previous 
healthy liver and Acute on Chronic Liver Failure (ACLF) 
in a patient with an already compromised liver, mostly 
cirrhosis.

The incidence of ACLF in the Western World is about 
70.000 patients per year and for ALF about 8000 [1]. At 

present, standard medical therapy consists of treating the 
cause of deterioration, maintaining hemodynamic stability, 
fluid-, acid/base- and electrolyte balance, supplying fresh 
frozen plasma in case of bleeding, preventing increasing ICP 
and, optionally hemodialysis [2].

Nevertheless, mortality rates are high, up to 80%, depend-
ing on the cause of ESLF and the number of failing organs 
[3]. The heterogeneity between the pathophysiology of the 
ESLF patients severely complicates the standardization of 
an effective treatment [4]. At present liver transplantation 
(LTX) is the only lifesaving therapy. In the EU one-year 
survival rates after liver LTX are 74% for ALF patients and 
85% for ACLF patients (European Liver Transplant Registry 
1988–2015), however, the low supply of donor livers limits 
the impact of LTX [5].

There is an unmet need for improving standard medical 
therapy to such extent that the waiting time for LTX can be 
prolonged and the patient enters surgery in a better condition 
or, ideally, that the native liver regenerates.

Different liver support strategies have been developed, 
including non-cell based and cell-based artificial liver sup-
portive systems (ALSS), cell transplantation and high vol-
ume plasma exchange.
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Here, we summarize the state-of-the-art of liver support 
strategies for ESLF and analyze remaining problems and 
possible solutions.

Non‑cell‑based ALSS

All the non-cell-based ALSS rely on extracorporeal albumin 
purification, either by albumin dialysis, fractionated plasma 
separation, or replacement of albumin and/or adsorption 
techniques. These therapies aim to remove albumin-bound 
toxins which accumulate in the plasma. A limited number 
of studies has been performed on pigs with ALF caused 
by complete liver ischemia or overdose of acetaminophen 
(APAP). No ACLF models were tested. These experiments 
show that non-cell based albumin purification devices have 
the potential to improve biochemical parameters and ICP, 
while ADVOS and DIALIVE also improve survival time 
(Table 1).

Table 2 shows the results of clinical studies of non-cell 
based ALSS: two randomized clinical trials (RCTs), one 
controlled clinical trial (CCT) and one uncontrolled trial, as 
well as seven retrospective studies comparing two or more 
groups. Most of the studied treatments positively affected 
biochemical parameters and secondary endpoints, like HE, 
but whether a significant effect on the primary endpoint, 
i.e. improved survival rates, has been established, remains 
controversial [6]. A meta-analysis in 2013 of eight RCTs 
showed that non-cell based ALSS reduced mortality in 
ACLF patients (p < 0.018), but not in ALF patients [7]. In 
contrast, a meta-analysis in 2015 [8], comparing MARS 
treatment with standard medical therapy, showed signifi-
cant effect on survival in 93 ALF patients (p = 0.04), and 
no survival effect in 453 ACLF patients. Subsequent clini-
cal studies continued to produce contradictory results with 
albumin dialysis systems. Gerth et al. [9], in a retrospective 
study of 101 ACLF patients, confirmed improved short-term 
mortality in ACLF by MARS, but the same group failed to 
improve 28-day mortality in ALF [10]. These apparent con-
tradictory results need further clarification. It is most likely 
that only specific subgroups of ESLF patients, i.e. those 
with less severe liver failure, may profit from non-cell based 
ALSS. A combination with plasma exchange (PE) seems to 
improve the impact of non-cell based ALSS therapy; con-
trolled studies on non-cell based ALSS showed predomi-
nantly improved survival in those combination therapies (2 
out of 2 studies [11, 12]), while stand-alone non-cell based 
ALSS therapies predominantly failed to provide any survival 
benefit (negative studies: [10, 13–15]) with the exception of 
two positive studies [9, 16].

In summary, different albumin purification devices une-
quivocally reduce elevated plasma bilirubin, and haemodi-
alysis reduces plasma ammonia levels. Consequently, HE Ta
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grade might be improved. This reduction of HE, may, in 
combination with removal of albumin-bound toxins amelio-
rate ESLF. According to the meta-analyses [7, 8] in a minor-
ity of cases, non-cell based ALSS improved survival time, 
but it is unlikely that stand-alone non-cell based ALSS will 
prevent liver transplantation, as normalization of coagula-
tion, electrolyte balance, body homeostasis and cardiovas-
cular stability requires a more complete restoration of failing 
liver function. Nevertheless, new systems, like DIALIVE 
and ADVOS, which show short-term survival benefit in ani-
mals with ALF, are under investigation, but we have to wait 
for their clinical benefit on survival.

Cell‑based ALSS

Bioartificial liver (BAL) devices

A BAL is an extracorporeal device containing liver cells to 
be connected temporarily to the patient’s circulation com-
pensating the failing detoxification, synthetic and homeo-
static function of the diseased liver. An optimal BAL device 
promotes liver cell differentiation by allowing medium 
perfusion, 3-dimensional growth and supplying oxygen 
and contains sufficient liver cell mass (at least 20% of the 
native liver, approximating 15.109 or 150 g hepatocytes) that 
provides stable support of multiple liver-specific functions 
[17]. Therefore, a BAL has more potency to be effective 
than non-cell ALSS. Besides highly functional, the ideal 
biocomponent of BALs should be of human origin, safe and 
cost effective.

Many BAL-devices have been studied in experimental 
models of large animals with ALF (Table 3); only few have 
reached clinical application (Table 4).

Preclinical BAL studies

The applied large animal models relied on ALF caused by 
complete liver ischemia, total hepatectomy, overdose of 
drugs, such as D-galactosamine (D-GALN) and APAP, or 
intoxication with α-amanitin and lipopolysaccharide. Most 
controlled studies (CSs) included three groups; control with 
no connection to the system (c), empty-BAL (eB) and cell-
filled-BAL (cB). Studies that did not include the eB group 
are less informative, as dilution of plasma or blood by pre-
filling the extracorporeal circuit may lead to attenuation of 
ESLF. Most CSs in animals (13 out of 15) showed a benefi-
cial effect on survival and biochemical markers. One study 
even reported that BAL treatment accelerated liver regen-
eration (56). So far, BAL systems have not been studied in 
animal models of ACLF.

Clinical BAL studies

Four different BAL systems based on freshly isolated por-
cine liver cells (BLSS, MELS, AMC-BAL and TECA-
BALSS/HBAL) were tested in phase I/IIa studies and one, 
the HepatAssist, with cryopreserved porcine liver cells, in an 
RCT. All studies showed the safety of the system. However, 
the RCT with the HepatAssist device could not establish 
survival benefit in the whole patient population, analysed by 
intention to treat. Unexplained was an increased survival in 
the subpopulation of fulminant/subfulminant hepatic failure 
patients [18]. In the uncontrolled study of the AMC-BAL 
plasma levels of total bilirubin and ammonia decreased by 
35 and 45%, respectively, and was associated with improved 
neurological state and stabilization of hemodynamics [19].

The ELAD system, based on the human liver cell line 
C3A, has been extensively tested in clinical trials with the 
largest ones being NCT01471028, an open-label RCT in 
203 patients with severe alcoholic hepatitis [20], and very 
recently VTL-308 in 151 less severe and relatively young 
alcoholic hepatitis patients (age > 18 and < 50 years, MELD 
(Model for End-Stage Liver Disease) score < 30). Both 
RCTs showed temporary improvement of some biochemical 
parameters in ELAD-treated groups vs control groups, but 
no significant benefit on survival. By intent to treat analysis, 
ELAD did not meet its primary endpoint, overall survival 
(https ://vital thera pies.com/resea rch-clini cal-trial s-devel 
opmen t/elad-rosto ck-9-29-18/).

Concluding remarks clinically applied cell‑based 
ALSS

Most BAL systems showed safety and efficacy in animal 
models of ESLF, indicating that supply of a broad spec-
trum of liver functions has a high potential to support ESLF 
patients. However, a clinical breakthrough has not yet been 
obtained, due to different factors. In Europe progress has 
been delayed due to the European moratorium on xenotrans-
plantation [21]. The major concerns around BAL applica-
tions with xenogeneic liver cells included immunological 
responses and risks associated with zoonotic infections. 
So far, transmission of porcine endogenous retroviruses 
to patients treated with BAL containing porcine cells has 
not been observed [22, 23]. Consequently, outside Europe 
researchers continue developing BALs based on porcine 
hepatocytes; the SR-BAL and LifeLiver systems are pre-
clinically under investigation (Table 3).

As an alternative for primary porcine hepatocytes, human 
liver cell lines have been most extensively applied as bio-
component for BALs. Their human origin, high reproduc-
ibility and relatively cheap propagation make them more 
suitable for BAL application. However, the cell lines most 
frequently used until now, C3A and HepG2, display a 

https://vitaltherapies.com/research-clinical-trials-development/elad-rostock-9-29-18/
https://vitaltherapies.com/research-clinical-trials-development/elad-rostock-9-29-18/
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limited spectrum of liver functions and even produce lac-
tate and ammonia, instead of eliminating it [17]. This may 
be a reason for the disappointing outcomes of the clinical 
ELAD trials. Another cell source comprises original or 
induced stem cells, which, however, display a limited func-
tional spectrum as well [17, 24]. To date, the most functional 
human liver cell line is the HepaRG cell line [25], which 
further differentiates by culturing in the AMC-BAL system 
[26]. Comparison of the transcriptomes of different prolif-
erative sources of human liver cells showed that HepaRG 
cells most closely resembled primary human hepatocytes 
[24, 27]. Further improvement of existing cell systems may 
be achieved by (conditional) ectopic expression of limiting 
regulatory or structural genes and by application of cell cul-
ture systems promoting maturation, e.g. by delivering high 
oxygen levels, 3D configuration and perfusion [28].

The development of BAL technology also faces a logis-
tical challenge, as cells need to be provided with preserva-
tion of high functionality at the bedside. Cryopreservation 
of primary hepatocytes, however, may further aggravate the 
damage already induced by isolation [29], leading to cell 
death or dedifferentiation. This may be the reason for the 
disappointing results of the HepatAssist RCT [18]. Cryo-
preservation is substantially less damaging for prolifera-
tive cells than mature cells. In addition, liver cells rapidly 
deteriorate in the presence of human plasma, which limits 
the therapeutic window of the BAL [30, 31]. This negative 
effect can be reversed by an intermittent phase of recirculat-
ing culture medium through the bioreactor [32]. Another 
challenge that extracorporeal BALs face is the provision of 
in vivo like bile secretion [33]. A hybrid BAL containing a 
sufficient amount of well-functioning liver cells combined 
with integrated haemodialysis or albumin purification might 
be the preferred option to improve the patient’s condition to 
create time for native liver regeneration or liver transplanta-
tion. It is evident that for clinical application, the cell- and 
BAL-cultures need to be produced according to Good Manu-
facturing Practice [34].

Together, these challenges render a BAL system a com-
plex product, and the costs of a BAL treatment will be sub-
stantial. This is actually a general problem for advanced 
therapies, based on cell or tissue-engineered products.

Other therapies

High volume plasma exchange

By plasma exchange combined with hemoperfusion or con-
tinuous hemodiafiltration overabundant toxic substances 
will be removed and reduced liver-specific products will 
be replenished. To our knowledge, no preclinical survival 
studies in large animals have been performed. The first large Ta
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prospective CS in HBV-associated ACLF patients (MELD 
score 28–29) showed higher short- and long-term survival in 
the treatment group (n = 104) vs the control group (n = 130) 
[35].

In 2016 Larsen et al. [36] showed in a RCT that high vol-
ume plasma exchange (HVPE), with 8–12 L daily volume 
exchange, improved survival in patients with ALF (mainly 
APAP overdosed) by correcting the hemodynamics and bio-
chemistry, e.g. the ammonia levels, and by modulating the 
innate and adaptive immune responses to the necrotic liver 
[37]. These two studies indicate a beneficial effect of PE 
or HVPE on ESLF patients. Further studies are needed to 
consolidate these results.

Hepatocyte or stem cell transplantation

Based on several successful survival studies in large animals 
[38–40], cell transplantation has been studied as an alterna-
tive way of filling the treatment gap at the ICU for ESLF 
patients [41].

Initially, hepatocytes were the cell source of choice for 
cell transplantation of ESLF patients. Five patients with 
ALF underwent intrasplenic or/and intrahepatic hepatocyte 
transplantation. All patients showed temporary clinical and 
biochemical improvement but eventually died [42]. A severe 
complication is that for treatment of ESLF large amounts 
of successfully engrafting and safe hepatocytes are needed. 
Therefore, hepatocyte transplantation is a more promising 
strategy for correcting liver-based metabolic deficiencies [43], 

requiring lower amounts of engrafted cells, and is less suitable 
for ESLF therapy.

Besides hepatocytes, mesenchymal stem cells (MSCs) have 
also been applied in cell transplantations in preclinical survival 
studies in large animals [44–49]. These cells do not directly 
support liver functions, but rather produce paracrine factors 
(e.g. cytokines, chemokines, and growth factors) with immu-
nomodulatory and liver regeneration promoting effects [50].

A controlled study in HBV-associated ACLF patients 
compared the outcomes of four groups: controls (n = 30): PE 
(n = 30), umbilical cord-MSC transplantation (n = 30) and 
UC-MSC + PE (n = 20) [51]. It was concluded that MSC 
transplantation combined with PE treatment was safe, but 
could not significantly improve the short-term prognosis of 
HBV-ACLF patients compared to the single treatment.

An RCT on HBV-related ACLF patients showed that four 
weekly infusions with 100,000–1 million MSCs improved 
the MELD score and bilirubin levels, decreased the inci-
dence of severe infections and increased the 24-week sur-
vival [52]. These studies indicate promising results. How-
ever, further studies are needed to show the benefit of MSC 
transplantation in all categories of ESLF patients.

Concluding remarks

Interesting developments are ongoing in the field of liver 
support for ESLF patients. From the first non-cell-based 
ALSS studies we learned that detoxification modalities may 

Table 4  Clinically applied BAL devices

Supplier/expert center Year Device Characteristics Study design Outcomes [references]

Beijing and Nanjing Uni-
versities, China

2001 TECA-HALSS/HBAL Hollow fiber hybrid BAL, 
charcoal adsorption and 
primary porcine hepato-
cytes (10–20 billion)

Uncontrolled study, six 
ALF and three ACLF 
patients

Safety, improved grade of 
HE [79]

Thomas E. Starzl TX 
Institute Pittsburgh, 
USA

2002 BLSS Hollow fiber, primary 
porcine hepatocytes 
(70–100 g)

Uncontrolled study, one 
ALF patient

Safety shown [80]

Charité, Berlin, Germany 2003 Cell Module Bioreactor Modular Extracorporeal 
Liver Support; primary 
porcine hepatocytes 
(1.8–4.4 billion)

Uncontrolled study, eight 
ALF patients

Successfully bridged to 
transplantation [23]

Cedars Sinai Medical 
Center, Los Angeles, 
USA

2004 HepatAssist Cryopreserved porcine 
hepatocytes (7 billion) 
and charcoal adsorption

RCT, ALF patients 
treated (n = 85 treatment 
vs n = 86 control group)

No survival benefit by 
intent-to–treat [18]

HepArt Medical devices 
B.V./

University of Amsterdam, 
the Netherlands

2005 AMC-BAL Perfused scaffold; primary 
porcine hepatocytes 
(7–15 billion) in 3D

Uncontrolled study, 
twelve ALF patients

11/12 successfully bridged 
to transplantation and 
1/12 spontaneous recov-
ery [81]

Vital Therapies/
University of Minnesota, 

Minneapolis, USA

2018 ELAD Hollow fiber, 440 g C3A 
cells

RCT, severe alcoholic 
hepatitis patients (n = 96 
treatment vs n = 107 
control group)

No survival benefit by 
intent-to-treat [20]
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temporarily yield improvement of biochemistry and grade 
of HE, but the supply of plasma factors, control of homeo-
stasis, and/or modulation of the immune system are needed 
to effectively support ESLF patients.

BAL systems were able to improve survival in experi-
mental animal models of ALF, but due to practical and 
financial problems and usage of cells with low functionality, 
the clinical development remains behind. Other systems as 
PE and MSC transplantation, both modulating the immune 
responses, with PE also supplying detoxification and plasma 
proteins, hold promise for the future as well, as survival 
benefit has been shown in clinical trials.

The question rises which therapy should be used in 
which patients and at which stage of the disease? Table 5 

compares advantages and disadvantages of different treat-
ment modalities for ESLF patients. Apart from providing 
survival benefit also other factors are relevant for decision 
making, including the complexity, risks and costs of the 
procedure, and the status of the patient. For the future, we 
need improved metabolic and immunologic monitoring of 
ESLF patients in combination with detailed measurement 
of the effect of the different therapies. Subsequently, thera-
pies can be selected on the basis of informative biomark-
ers. This will progress the care of ESLF patients towards 
a more patient-tailored approach, optionally by combin-
ing different treatment modalities at different stages of the 
disease.

Table 5  Comparison of different therapies for ESLF patients
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