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Abstract

End-stage liver failure is a condition of collapsing liver function with mortality rates up to 80. Liver transplantation is the
only lifesaving therapy. There is an unmet need for therapy to extend the waiting time for liver transplantation or regenera-
tion of the native liver. Here we review the state-of-the-art of non-cell based and cell-based artificial liver support systems,
cell transplantation and plasma exchange, with the first therapy relying on detoxification, while the others aim to correct also
other failing liver functions and/or modulate the immune response. Meta-analyses on the effect of non-cell based systems
show contradictory outcomes for different types of albumin purification devices. For bioartificial livers proof of concept has
been shown in animals with liver failure. However, large clinical trials with two different systems did not show a survival
benefit. Two clinical trials with plasma exchange and one with transplantation of mesenchymal stem cells showed positive
outcomes on survival. Detoxification therapies lack adequacy for most patients. Correction of additional liver functions, and

also modulation of the immune system hold promise for future therapy of liver failure.

Keywords Acute liver failure - Acute on chronic liver failure - Artificial liver - Liver transplantation

Introduction

End-stage liver failure (ESLF) is a life-threatening condition
of patients with collapsing liver function, caused by massive
death of liver cells. The clinical syndrome comprises bleed-
ing risks or thrombosis, disturbed acid—base homeostasis,
systemic inflammatory response, hemodynamic instabil-
ity, hepatic encephalopathy (HE) with the risk of increased
intracranial pressure (ICP) and multi-organ failure.

Different types of ESLF are distinguished: acute liver fail-
ure (ALF), when ESLF occurs in a person with a previous
healthy liver and Acute on Chronic Liver Failure (ACLF)
in a patient with an already compromised liver, mostly
cirrhosis.

The incidence of ACLF in the Western World is about
70.000 patients per year and for ALF about 8000 [1]. At
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present, standard medical therapy consists of treating the
cause of deterioration, maintaining hemodynamic stability,
fluid-, acid/base- and electrolyte balance, supplying fresh
frozen plasma in case of bleeding, preventing increasing ICP
and, optionally hemodialysis [2].

Nevertheless, mortality rates are high, up to 80%, depend-
ing on the cause of ESLF and the number of failing organs
[3]. The heterogeneity between the pathophysiology of the
ESLF patients severely complicates the standardization of
an effective treatment [4]. At present liver transplantation
(LTX) is the only lifesaving therapy. In the EU one-year
survival rates after liver LTX are 74% for ALF patients and
85% for ACLF patients (European Liver Transplant Registry
1988-2015), however, the low supply of donor livers limits
the impact of LTX [5].

There is an unmet need for improving standard medical
therapy to such extent that the waiting time for LTX can be
prolonged and the patient enters surgery in a better condition
or, ideally, that the native liver regenerates.

Different liver support strategies have been developed,
including non-cell based and cell-based artificial liver sup-
portive systems (ALSS), cell transplantation and high vol-
ume plasma exchange.
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Here, we summarize the state-of-the-art of liver support .
strategies for ESLF and analyze remaining problems and ":% & %
possible solutions. = E E é é g
Non-cell-based ALSS § é %D é 3 §
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All the non-cell-based ALSS rely on extracorporeal albumin ;_E "E’ C; % ug =§ § _ g = 2
purification, either by albumin dialysis, fractionated plasma = & E & g fgj £8 ) % %’
separation, or replacement of albumin and/or adsorption g - g 5 § El 2 ER= ==
techniques. These therapies aim to remove albumin-bound Slz gz g= § 2 & § é
toxins which accumulate in the plasma. A limited number Sl ER E”T°?2R7Z
of studies has been performed on pigs with ALF caused
by complete liver ischemia or overdose of acetaminophen ? g‘ ‘:3 < § @
(APAP). No ACLF models were tested. These experiments 5 535 E s 3 2
show that non-cell based albumin purification devices have 90 a i 2 N a2 2 g,
the potential to improve biochemical parameters and ICP, ‘:’ i/ i/ 2 f’ 2 f’ g E e
while ADVOS and DIALIVE also improve survival time g g o g
(Table 1). g gg£88 gE&e

Table 2 shows the results of clinical studies of non-cell £ 222 En £8 g5
based ALSS: two randomized clinical trials (RCTs), one B2 =221 2] 21 E Z
controlled clinical trial (CCT) and one uncontrolled trial, as 8 E E E E E E E f = §
well as seven retrospective studies comparing two or more g’ E E i é ;5) g ;5) g E é
groups. Most of the studied treatments positively affected wlo 0L U o U
biochemical parameters and secondary endpoints, like HE, & .§ &
but whether a significant effect on the primary endpoint, E 5 - é; -

i.e. improved survival rates, has been established, remains Z2 g8 2= g g
controversial [6]. A meta-analysis in 2013 of eight RCTs 2 § é E § g
showed that non-cell based ALSS reduced mortality in E § % % 3 % E
ACLF patients (p <0.018), but not in ALF patients [7]. In 2 28 = £ g =
contrast, a meta-analysis in 2015 [8], comparing MARS é < § § § E g’ § ;D
treatment with standard medical therapy, showed signifi- 2|3 g Ez232 &2 _ s 8
cant effect on survival in 93 ALF patients (p =0.04), and £ :% = ”é 3 é § 3 %08 Zg 8 5 —
no survival effect in 453 ACLF patients. Subsequent clini- 3 2 s £ 585 E £ % sE g g
cal studies continued to produce contradictory results with (g g 3 ER g g 2 .§ g g S B S
albumin dialysis systems. Gerth et al. [9], in a retrospective 5 Ol= "<k < =<
study of 101 ACLF patients, confirmed improved short-term g 2 E, " é @
mortality in ACLF by MARS, but the same group failed to E 8 %ﬂ z g Q ‘g 3
improve 28-day mortality in ALF [10]. These apparent con- = f;’ = § g g2 £ E
tradictory results need further clarification. It is most likely 2loloe = a o <+
that only specific subgroups of ESLF patients, i.e. those £ § § § § 3 S S
with less severe liver failure, may profit from non-cell based 8 o

ALSS. A combination with plasma exchange (PE) seems to é o o -§ 2 I
improve the impact of non-cell based ALSS therapy; con- k= E g 50 =5 20

trolled studies on non-cell based ALSS showed predomi- & s S a g % )

nantly improved survival in those combination therapies (2 é s 3 ‘g 2 ‘5 ‘g

out of 2 studies [11, 12]), while stand-alone non-cell based 2. E S £ E2 e

ALSS therapies predominantly failed to provide any survival g % ;, ; S ; 5 5

benefit (negative studies: [10, 13—15]) with the exception of f e % % % % £ % é % %
two positive studies [9, 16]. pl&lE E5ECE . B & g

In summary, different albumin purification devices une- - % % % % i =§ é g E i g
quivocally reduce elevated plasma bilirubin, and haemodi- % é 'E "é 2 8 s 5 g 5 8 j
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grade might be improved. This reduction of HE, may, in
combination with removal of albumin-bound toxins amelio-
rate ESLF. According to the meta-analyses [7, 8] in a minor-
ity of cases, non-cell based ALSS improved survival time,
but it is unlikely that stand-alone non-cell based ALSS will
prevent liver transplantation, as normalization of coagula-
tion, electrolyte balance, body homeostasis and cardiovas-
cular stability requires a more complete restoration of failing
liver function. Nevertheless, new systems, like DIALIVE
and ADVOS, which show short-term survival benefit in ani-
mals with ALF, are under investigation, but we have to wait
for their clinical benefit on survival.

Cell-based ALSS
Bioartificial liver (BAL) devices

A BAL is an extracorporeal device containing liver cells to
be connected temporarily to the patient’s circulation com-
pensating the failing detoxification, synthetic and homeo-
static function of the diseased liver. An optimal BAL device
promotes liver cell differentiation by allowing medium
perfusion, 3-dimensional growth and supplying oxygen
and contains sufficient liver cell mass (at least 20% of the
native liver, approximating 15.10° or 150 g hepatocytes) that
provides stable support of multiple liver-specific functions
[17]. Therefore, a BAL has more potency to be effective
than non-cell ALSS. Besides highly functional, the ideal
biocomponent of BALs should be of human origin, safe and
cost effective.

Many BAL-devices have been studied in experimental
models of large animals with ALF (Table 3); only few have
reached clinical application (Table 4).

Preclinical BAL studies

The applied large animal models relied on ALF caused by
complete liver ischemia, total hepatectomy, overdose of
drugs, such as D-galactosamine (D-GALN) and APAP, or
intoxication with a-amanitin and lipopolysaccharide. Most
controlled studies (CSs) included three groups; control with
no connection to the system (c), empty-BAL (eB) and cell-
filled-BAL (cB). Studies that did not include the eB group
are less informative, as dilution of plasma or blood by pre-
filling the extracorporeal circuit may lead to attenuation of
ESLF. Most CSs in animals (13 out of 15) showed a benefi-
cial effect on survival and biochemical markers. One study
even reported that BAL treatment accelerated liver regen-
eration (56). So far, BAL systems have not been studied in
animal models of ACLF.

@ Springer

Clinical BAL studies

Four different BAL systems based on freshly isolated por-
cine liver cells (BLSS, MELS, AMC-BAL and TECA-
BALSS/HBAL) were tested in phase I/Ila studies and one,
the HepatAssist, with cryopreserved porcine liver cells, in an
RCT. All studies showed the safety of the system. However,
the RCT with the HepatAssist device could not establish
survival benefit in the whole patient population, analysed by
intention to treat. Unexplained was an increased survival in
the subpopulation of fulminant/subfulminant hepatic failure
patients [18]. In the uncontrolled study of the AMC-BAL
plasma levels of total bilirubin and ammonia decreased by
35 and 45%, respectively, and was associated with improved
neurological state and stabilization of hemodynamics [19].
The ELAD system, based on the human liver cell line
C3A, has been extensively tested in clinical trials with the
largest ones being NCT01471028, an open-label RCT in
203 patients with severe alcoholic hepatitis [20], and very
recently VTL-308 in 151 less severe and relatively young
alcoholic hepatitis patients (age > 18 and < 50 years, MELD
(Model for End-Stage Liver Disease) score < 30). Both
RCTs showed temporary improvement of some biochemical
parameters in ELAD-treated groups vs control groups, but
no significant benefit on survival. By intent to treat analysis,
ELAD did not meet its primary endpoint, overall survival
(https://vitaltherapies.com/research-clinical-trials-devel
opment/elad-rostock-9-29-18/).

Concluding remarks clinically applied cell-based
ALSS

Most BAL systems showed safety and efficacy in animal
models of ESLF, indicating that supply of a broad spec-
trum of liver functions has a high potential to support ESLF
patients. However, a clinical breakthrough has not yet been
obtained, due to different factors. In Europe progress has
been delayed due to the European moratorium on xenotrans-
plantation [21]. The major concerns around BAL applica-
tions with xenogeneic liver cells included immunological
responses and risks associated with zoonotic infections.
So far, transmission of porcine endogenous retroviruses
to patients treated with BAL containing porcine cells has
not been observed [22, 23]. Consequently, outside Europe
researchers continue developing BALs based on porcine
hepatocytes; the SR-BAL and LifeLiver systems are pre-
clinically under investigation (Table 3).

As an alternative for primary porcine hepatocytes, human
liver cell lines have been most extensively applied as bio-
component for BALs. Their human origin, high reproduc-
ibility and relatively cheap propagation make them more
suitable for BAL application. However, the cell lines most
frequently used until now, C3A and HepG2, display a
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Table 3 (continued)
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Device
SRBAL

Year
2018

Mayo Clinics, USA/ Sichuan Uni-

Supplier/expert center
versity, China

Springer

istry [77]

and lipopolysaccharide intoxica-

tion (¢, eB, cB: n

cal vein endothelial cell organoids
(25.6+4.1 billion cells) plus

plasma filtration

=6)

CS in post-hepatectomy pigs (c, eB, Improved survival time, neuroprotec-

Primary porcine hepatocytes

SRBAL

2019

Mayo Clinics USA

tive benefit, improved biochemistry
and accelerated liver regeneration

(78]

cB: n=06)

spheroids (200 g) plus plasma

filtration

limited spectrum of liver functions and even produce lac-
tate and ammonia, instead of eliminating it [17]. This may
be a reason for the disappointing outcomes of the clinical
ELAD trials. Another cell source comprises original or
induced stem cells, which, however, display a limited func-
tional spectrum as well [17, 24]. To date, the most functional
human liver cell line is the HepaRG cell line [25], which
further differentiates by culturing in the AMC-BAL system
[26]. Comparison of the transcriptomes of different prolif-
erative sources of human liver cells showed that HepaRG
cells most closely resembled primary human hepatocytes
[24, 27]. Further improvement of existing cell systems may
be achieved by (conditional) ectopic expression of limiting
regulatory or structural genes and by application of cell cul-
ture systems promoting maturation, e.g. by delivering high
oxygen levels, 3D configuration and perfusion [28].

The development of BAL technology also faces a logis-
tical challenge, as cells need to be provided with preserva-
tion of high functionality at the bedside. Cryopreservation
of primary hepatocytes, however, may further aggravate the
damage already induced by isolation [29], leading to cell
death or dedifferentiation. This may be the reason for the
disappointing results of the HepatAssist RCT [18]. Cryo-
preservation is substantially less damaging for prolifera-
tive cells than mature cells. In addition, liver cells rapidly
deteriorate in the presence of human plasma, which limits
the therapeutic window of the BAL [30, 31]. This negative
effect can be reversed by an intermittent phase of recirculat-
ing culture medium through the bioreactor [32]. Another
challenge that extracorporeal BALs face is the provision of
in vivo like bile secretion [33]. A hybrid BAL containing a
sufficient amount of well-functioning liver cells combined
with integrated haemodialysis or albumin purification might
be the preferred option to improve the patient’s condition to
create time for native liver regeneration or liver transplanta-
tion. It is evident that for clinical application, the cell- and
BAL-cultures need to be produced according to Good Manu-
facturing Practice [34].

Together, these challenges render a BAL system a com-
plex product, and the costs of a BAL treatment will be sub-
stantial. This is actually a general problem for advanced
therapies, based on cell or tissue-engineered products.

Other therapies
High volume plasma exchange

By plasma exchange combined with hemoperfusion or con-
tinuous hemodiafiltration overabundant toxic substances
will be removed and reduced liver-specific products will
be replenished. To our knowledge, no preclinical survival
studies in large animals have been performed. The first large
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Table 4 Clinically applied BAL devices

Supplier/expert center Year Device Characteristics Study design Outcomes [references]
Beijing and Nanjing Uni- 2001 TECA-HALSS/HBAL Hollow fiber hybrid BAL, Uncontrolled study, six Safety, improved grade of
versities, China charcoal adsorption and ALF and three ACLF HE [79]
primary porcine hepato-  patients

cytes (10-20 billion)

Thomas E. Starzl TX 2002 BLSS
Institute Pittsburgh,

Hollow fiber, primary
porcine hepatocytes
USA (70-100 g)

Charité, Berlin, Germany 2003 Cell Module Bioreactor Modular Extracorporeal

Liver Support; primary

Uncontrolled study, one
ALF patient

Safety shown [80]

Uncontrolled study, eight
ALF patients

Successfully bridged to
transplantation [23]

porcine hepatocytes
(1.8-4.4 billion)

Cedars Sinai Medical 2004 HepatAssist
Center, Los Angeles,

HepArt Medical devices 2005 AMC-BAL
B.V./

University of Amsterdam,
the Netherlands

Vital Therapies/ 2018 ELAD
University of Minnesota, cells
Minneapolis, USA

Cryopreserved porcine
hepatocytes (7 billion)
USA and charcoal adsorption
Perfused scaffold; primary Uncontrolled study,
porcine hepatocytes
(7-15 billion) in 3D

Hollow fiber, 440 g C3A

RCT, ALF patients
treated (n =85 treatment
vs n=_86 control group)

No survival benefit by
intent-to—treat [18]

11/12 successfully bridged
to transplantation and
1/12 spontaneous recov-
ery [81]

No survival benefit by
intent-to-treat [20]

twelve ALF patients

RCT, severe alcoholic
hepatitis patients (n=96
treatment vs n=107
control group)

prospective CS in HBV-associated ACLF patients (MELD
score 28-29) showed higher short- and long-term survival in
the treatment group (n=104) vs the control group (n=130)
[35].

In 2016 Larsen et al. [36] showed in a RCT that high vol-
ume plasma exchange (HVPE), with 8—12 L daily volume
exchange, improved survival in patients with ALF (mainly
APAP overdosed) by correcting the hemodynamics and bio-
chemistry, e.g. the ammonia levels, and by modulating the
innate and adaptive immune responses to the necrotic liver
[37]. These two studies indicate a beneficial effect of PE
or HVPE on ESLF patients. Further studies are needed to
consolidate these results.

Hepatocyte or stem cell transplantation

Based on several successful survival studies in large animals
[38-40], cell transplantation has been studied as an alterna-
tive way of filling the treatment gap at the ICU for ESLF
patients [41].

Initially, hepatocytes were the cell source of choice for
cell transplantation of ESLF patients. Five patients with
ALF underwent intrasplenic or/and intrahepatic hepatocyte
transplantation. All patients showed temporary clinical and
biochemical improvement but eventually died [42]. A severe
complication is that for treatment of ESLF large amounts
of successfully engrafting and safe hepatocytes are needed.
Therefore, hepatocyte transplantation is a more promising
strategy for correcting liver-based metabolic deficiencies [43],

requiring lower amounts of engrafted cells, and is less suitable
for ESLF therapy.

Besides hepatocytes, mesenchymal stem cells (MSCs) have
also been applied in cell transplantations in preclinical survival
studies in large animals [44—49]. These cells do not directly
support liver functions, but rather produce paracrine factors
(e.g. cytokines, chemokines, and growth factors) with immu-
nomodulatory and liver regeneration promoting effects [50].

A controlled study in HBV-associated ACLF patients
compared the outcomes of four groups: controls (n=30): PE
(n=30), umbilical cord-MSC transplantation (n=30) and
UC-MSC+PE (n=20) [51]. It was concluded that MSC
transplantation combined with PE treatment was safe, but
could not significantly improve the short-term prognosis of
HBV-ACLEF patients compared to the single treatment.

An RCT on HBV-related ACLF patients showed that four
weekly infusions with 100,000—1 million MSCs improved
the MELD score and bilirubin levels, decreased the inci-
dence of severe infections and increased the 24-week sur-
vival [52]. These studies indicate promising results. How-
ever, further studies are needed to show the benefit of MSC
transplantation in all categories of ESLF patients.

Concluding remarks
Interesting developments are ongoing in the field of liver

support for ESLF patients. From the first non-cell-based
ALSS studies we learned that detoxification modalities may
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Table 5 Comparison of different therapies for ESLF patients

Non-Cell Based Minority Two out of
Artificial Liver positive in | six studies
Support meta positive

analyses
BAL support
High volume No studies
plasma
exchange
Hepatocyte or Two
stem cell studies for
transplantation MSC

transplanta

tion: one

positive

and one

negative

positive

Therapy Survival Survival Complexity | Costs Morbidity/ | Other issues
benefit in | benefit in | procedure mortality
humans large
animals
Liver Scarcity of donor
transplantation grafts
Life-long
immunosuppression
needed

May be most
relevant in mildly
affected patients
Easily combined and
potentially more
effective with BAL
support or PE

Large plasma volume
needed: small risk

negative

temporarily yield improvement of biochemistry and grade
of HE, but the supply of plasma factors, control of homeo-
stasis, and/or modulation of the immune system are needed
to effectively support ESLF patients.

BAL systems were able to improve survival in experi-
mental animal models of ALF, but due to practical and
financial problems and usage of cells with low functionality,
the clinical development remains behind. Other systems as
PE and MSC transplantation, both modulating the immune
responses, with PE also supplying detoxification and plasma
proteins, hold promise for the future as well, as survival
benefit has been shown in clinical trials.

The question rises which therapy should be used in
which patients and at which stage of the disease? Table 5

@ Springer

compares advantages and disadvantages of different treat-
ment modalities for ESLF patients. Apart from providing
survival benefit also other factors are relevant for decision
making, including the complexity, risks and costs of the
procedure, and the status of the patient. For the future, we
need improved metabolic and immunologic monitoring of
ESLF patients in combination with detailed measurement
of the effect of the different therapies. Subsequently, thera-
pies can be selected on the basis of informative biomark-
ers. This will progress the care of ESLF patients towards
a more patient-tailored approach, optionally by combin-
ing different treatment modalities at different stages of the
disease.
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