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GMZ2 is a malaria vaccine candidate evaluated in a phase 2b multi-centre trial. Here we
assessed antibody responses and the association of naturally acquired immunity with
incidence of malaria in one of the trial sites, Banfora in Burkina Faso. The analysis included
453 (GMZ2 = 230, rabies = 223) children aged 12-60 months old. Children were followed-
up for clinical malaria episodes for 12 months after final vaccine administration. Antibody
levels against GMZ2 and eleven non-GMZ2 antigens were measured on days 0 and 84
(one month after final vaccine dose). Vaccine efficacy (VE) differed by age group
(interaction, (12-35 months compared to 36-60 months), p = 0.0615). During the
twelve months of follow-up, VE was 1% (95% confidence interval [CI] -17%, 17%) and
23% ([CI] 3%, 40%) in the 12 - 35 and 36 – 60 months old children, respectively. In the
GMZ2 group, day 84 anti-GMZ2 IgG levels were associated with reduced incidence of
febrile malaria during the follow up periods of 1-6 months (hazard ratio (HR) = 0.87, 95%
CI = (0.77, 0.98)) and 7-12 months (HR = 0.84, 95%CI = (0.71, 0.98)) in the 36-60 months
old but not in 12-35 months old children. Multivariate analysis involving day 84 IgG levels
to eleven non-vaccine antigens, identified MSP3-K1 and GLURP-R2 to be associated
with reduced incidence of malaria during the 12 months of follow up. The inclusion of these
antigens might improve GMZ2 vaccine efficacy.

Keywords: GMZ2, MSP3-K1, GLURP-R2, Plasmodium falciparum, malaria vaccine, naturally acquired immunity
INTRODUCTION

GMZ2 is a Plasmodium falciparum candidate vaccine, and is designed with the aim to emulate
naturally acquired anti-malarial immunity (1). It is composed of conserved domains of two asexual
blood-stage antigens of P. falciparum, glutamate-rich protein (GLURP) and merozoite surface
protein (MSP) 3 which are major epitopes for antibodies (2, 3). The rationale for including these
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antigens is based on a series of immune epidemiological studies
from diverse malaria endemic regions. Individuals living in
malaria endemic areas gradually acquire immunity to clinical
malaria (4, 5). This naturally acquired immunity (NAI) takes
years of exposure to develop and is characterized by a low grade
parasitemia in the presence of strong P. falciparum-specific
immune responses (6). Immunoglobulin (Ig) G antibodies are
thought to play a particularly important role in NAI (4, 7).
Immuno-epidemiological studies of responses to GLURP and
MSP3 have consistently demonstrated that high levels of specific
antibodies are associated with protection against febrile malaria
(8–16), in areas with different transmission intensity [ranging
from >200 infective bites per person per year in a study in
Senegal (16) to approximately 2 to 3 infective bites per person
per year in a study in Sudan (15)], and with respect to their
geographical locations, suggesting that GMZ2 might potentially
confer immunity against clinical malaria in diverse endemic
settings. Further, one of these studies suggested that antibodies
against GLURP and MSP3 act in a complementary manner to
control parasite multiplication (12). It is now generally accepted
that protective immunity depends on a robust antibody response
against multiple antigens (17–20), and it has been proposed that
the magnitude and breadth of specific responses are critical in
this respect (17).

While the exact immune mechanism(s) involved in NAI
remains elusive, we and others have shown that monocyte
mediated opsonic phagocytosis (OP) of P. falciparum blood-stage
merozoites (8, 21, 22) and antibody-dependent cellular inhibition
(ADCI) (23) are elicited during the acquisition of NAI. Recently, we
further demonstrated that neutrophils may also help to eliminate
circulating merozoites from blood during NAI (24).

Collectively, immuno-epidemiological studies together with pre-
clinical studies in rodents and New World monkeys (25–27) led to
the manufacturing and clinical testing of GMZ2 adjuvanted with
alhydrogel® (alum). GMZ2/alum was well tolerated and
immunogenic in three phase 1 studies (28–30) and a phase 2b
multi-centre trial in African children 12-60 months old (31).
Overall, the trial showed that GMZ2 had a modest efficacy in the
target population (31). In a sub-analysis we found that VE was
higher in children 3–4 years of age (20% (4%, 33%)] compared to
children 1–2 years of age [6% (-8%, 18%). An interaction with age is
consistent with the proposed mode of action of GMZ2, which aims
to mimic, boost, and broaden the breadth of NAI.

Here, we present the detailed immunological evaluation of
samples from the GMZ2/alum phase 2b study collected at the
Banfora site in Burkina Faso. Antibodies against GMZ2 and
established targets of NAI were measured and evaluated against
the incidence of clinical malaria.
METHODS

Ethics Statement
Data for this study was obtained from the GMZ2/alum phase 2b
clinical trial. The trial was monitored by the GMZ2 Scientific
Coordinating Committee, local safety monitors, independent
Frontiers in Immunology | www.frontiersin.org 2
clinical monitors and an independent data safety monitoring
committee (IDMC). The local Ethics Committees and regulatory
authorities for each site and country approved the clinical trial
protocol before the start of the trial. Signed informed consent was
obtained from parent/guardian of children before their inclusion in
the study. The protocol was registered with the Pan African clinical
trial registry with registration number ATMR2010060002033537.

Study Site and Design
The study used 453 (GMZ2 = 230, rabies=223) children’s
specimen collected from Banfora, Burkina Faso in the GMZ2/
alum phase 2b clinical trial. Malaria is endemic in Burkina Faso
and occurs throughout the year, with seasonal peak between June
and October, a period when rainfall is highest. P. falciparum is
responsible for nearly 100% of all clinical malaria cases and
children under five years and pregnant women are the
populations at highest risk. Study design and details were
previously described (31). Briefly, children were randomized to
either receive three doses of GMZ2/alum or rabies vaccine on
days 0, 28 and 56 and were passively followed in the ensuing
months for febrile malaria episodes up to month 12 from the last
vaccine dose. Any child reporting to the local health facility and/
or to study team with fever or history of fever 48 hours prior to
reporting at the health facility had peripheral blood taken for
malaria parasitaemia determination by microscopy. Febrile
malaria episode was defined as parasitaemia count of ≥ 5000
parasites/µl and fever or history of fever within the past 48 hours
prior to reporting sick. Since age-dependent pyrogenic
thresholds have not been determined in the present study,
which is spanning multiple age groups and transmissions
seasons, we have used a single parasite threshold throughout.
Sera were collected at scheduled intervals betweenMay, 2011 and
February, 2012 and stored at -80°C until this analysis. To assess
immune responses following the GMZ2/alum immunization and
the risk of clinical malaria, baseline (Day 0) sera and sera
collected one month (Day 84) after final vaccine dose were used.

Blood Smear for Malaria Parasite Detection
Thin and thick blood films were prepared from a finger prick. The
thin film was fixed with methanol for a few seconds. Both blood
films were then stained with 10% Giemsa stain for 15 minutes for
malaria parasite identification and quantification. The stained blood
smears were rinsed with running tap water for about 10 seconds and
allowed to air dry. Malaria parasites were counted (trophozoites)
against 200 white blood cells (WBCs) on the thick film by two
independent experienced microscopist using a light microscope
under oil immersion at 100x magnification. Negative result was
assigned after examining 200 high power fields of the thick film at
x100 magnification. Parasite counts were converted to parasites
density/mL of blood assuming 8000 WBCs/mL of blood. Malaria
species identification was done using thin blood smears.

Multiplex Luminex Assay for
Antibody Quantification
IgG antibody levels were determined against a panel of 11 antigens
(nMSP3-K1, MSPDBL2, GLURP-R2, MSP6, MSP3.3, MSP3.7,
June 2022 | Volume 13 | Article 899223
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MSP2-3D7, SERA5, Pf38, Pf12 and MSP1-19) and GMZ2 in a
multiplex assay as described elsewhere (32). Briefly, recombinant
proteins were coupled to 1.25x107 microspheres beads per bead
region. 100µL of the beads mixture containing 1250 beads per bead
region were added to a pre-wetted 96 well microtiter plate. Serum
samples diluted at 1:1000 were added and incubated for 2 hours. A
secondary antibody, phycoerythrin (PE) -labelled goat antihuman
IgG (Jackson Immuno Research) was added at 1:3500 for the
detection of IgG bound antibodies and incubated for 1 hour. For
the quantification of IgG subclasses, mouse antihuman IgG1 or
IgG3 diluted 1:5000 were added followed by a PE-labelled goat
antimouse IgG diluted 1:200. Between steps, plates were washed 3
times each with assay buffer E (ABE: PBS [pH = 7.4], 0.1% bovine
serum albumin [BSA], 0.02%Tween 20 and 0.05% sodium azide).
Mean fluorescent intensity (MFI) was measured with Luminex 200
Bio-Plex analyser (Bio-Rad Laboratories, Inc.).

Statistical Analysis
Data were analyzed using Stata version 15 (College Station, Texas)
and GraphPad Prism version 8. Differences in geometric mean
antibody levels were compared using a t-test after log transforming
antibody data to base 10. Cox regression was used to estimate
vaccine efficacy and to determine the association of antibody levels
with incidence of clinical malaria, using a robust standard error to
allow for repeated events in the same child. To compare effects by
age group and time period, Wald tests were used to assess
interactions. To standardise the antibody levels to the 12 antigens,
levels were transformed to logarithms and the logged values, x, then
transformed to z-scores (x−�x)

s , where �x is the mean and s the
standard deviation of the logged values.
RESULTS

Baseline Characteristics
The phase 2b efficacy trial of GMZ2/alum was conducted at 5 sites
in East- West- and Central-Africa (31). The present analysis include
Frontiers in Immunology | www.frontiersin.org 3
participants from one of the sites, Banfora, a village with high
malaria transmission in Burkina Faso where 590 children were
randomized. Of these, 547 received all three doses of the vaccine
(272 in the GMZ2 group and 275 in the rabies vaccine group).
Samples and data were available from 453 children (82.82% of the
ATP population), 223 in the GMZ2 group and 230 in the rabies
vaccine group. The distribution of gender, age, and bed net use were
similar in the two groups (Table 1).

Febrile Malaria Episodes During Follow-Up
During the 12-months of follow-up (after dose 3 of vaccine was
administered), 98.9% of the malaria episodes were P. falciparum
mono-infections. The remaining episodes were mixed infections of
P. falciparum and P. ovale or P. malariae. Children from the study
cohort were stratified into younger (12-35 month) and older (36-60
month) age groups (based on age groups reported in the phase 2b
trial) (31). The incidence of malaria episodes decreased per 1000
person years at risk with increasing age in both vaccine groups
(Figure 1A) consistent with age-dependent acquisition of naturally
acquired immunity (NAI) in the study population. We also plotted
the geometric mean parasite density of each age group for all
malaria cases (Figure 1B). The geometric mean parasite densities
during febrile malaria cases decreased with increasing age.
A B

FIGURE 1 | Clinical malaria incidence rate per randomization arm and parasite density by age group. (A) Incidence rate of febrile malaria by vaccine group per
1000-person year at risk (PYAR). (B) Geometric mean P. falciparum density by age group in both vaccine groups. P values were determined by t-test after log (base
10) transforming parasite density. Error bars represent geometric mean with 95% confidence intervals.
TABLE 1 | Demographic characteristics of participants by trial arm, stratified by
age and gender.

Variable Rabies group n = 223
(%)

GMZ2 group n = 230
(%)

Age
category

12 - 35
months

120 (53.8) 104 (45.2)

36 – 60
months

103 (46.2) 126 (54.8)

Gender Female 104 (46.6) 114 (49.6)
Male 119 (53.4) 116 (50.4)

Bed net use No 32 (14.3) 38 (16.5)
Yes 191 (85.7) 192 (83.5)
June 2022 | Volu
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Importantly, geometric mean parasite densities were significantly (t-
test, p ≤ 0.005) lower in the GMZ2 compared to the rabies groups in
both age groups (Figure 1B).

Vaccine Efficacy Is Age-Dependent in the
Study Population
We have previously observed a significant vaccine efficacy (VE)
in the ATP analysis (31). In Banfora, we found that VE (using
parasite density ≥ 5,000/uL and fever/history of fever) was higher
in older children during the twelve months of follow-up
(Figure 2). VE was 1% (95% confidence interval [CI] -17%,
17%) and 23% ([CI] 3%, 40%) in the younger and older children,
respectively (Figure 2). To identify antibody specificities
involved in VE, we investigated not only vaccine-induced
antibodies but also naturally acquired antibodies against
merozoite surface proteins not present in the vaccine because
such antibodies may act in concert with GMZ2 antibodies.

GMZ2 IgG Increase With Vaccination and
Correlates With Decreased Parasitaemia
GMZ2 IgG levels were first compared between vaccine groups
at days 0 and 84 (one month after final vaccine dose),
respectively. Levels of GMZ2 IgG were similar between the
vaccine groups at day 0, however, at day 84, the GMZ2 group
had significantly higher levels than the rabies group (t-test, p <
0.001) (Figure 3A). To assess whether antibody boosting
depends on age, we compared GMZ2 antibody levels at days
0 and 84 for each age group. GMZ2 IgG levels were higher at
day 84 compared to day 0 in both age groups (Figure 3B). The
fold increase in GMZ2 specific IgG (i.e. day 84 GMZ2-IgG/day
0 GMZ2-IgG) was significantly higher in GMZ2 vaccinated
children than those in the rabies vaccine group for each age
group (Figure 3C). While the fold increase in the rabies group
Frontiers in Immunology | www.frontiersin.org 4
reflects natural exposure the increase in GMZ2 IgG levels in the
GMZ2 vaccine group is a result of vaccination as well as natural
exposure. Finally, we assessed the effect of a 10-fold increase in
GMZ2 antibody level on parasite densities during febrile
malaria in each vaccine group and in the overall cohort in
separate multiple linear regression analysis adjusting for age of
children. There was a significant decrease in parasitaemia
associated with a 10-fold increase in GMZ2 specific
antibodies in the overall study population and in the rabies
group. However, although the same trend was observed in the
GMZ2 group, the decrease in parasitaemia was not statistically
significant [b = -0.23, 95%CI=(-0.56;0.11), p = 0.187],
(Figure 3D). This suggests other non-GMZ2 IgG antibodies
may have contributed to the decreased parasitaemia observed
in the GMZ2 group (Figure 1B).

GMZ2 IgG Was Associated With Reduced
Incidence of Febrile Malaria
The relationship between GMZ2 IgG levels on day 84, and the
incidence of febrile malaria from that time point until 12 months
post dose 3, was investigated separately in each vaccine group.
The association differed by age group (interaction p-value 0.011).
In the rabies group, there was no association between GMZ2 IgG
levels and incidence of malaria in any of the age groups at any of
the defined follow up periods (months 1-6 and 7-12,
respectively) (Figure 4A). Similarly, in the GMZ2 group, there
was no association between levels of GMZ2 IgG and malaria
incidence in the younger children at any of the defined follow up
periods. However, in the older children, GMZ2 IgG levels were
significantly associated with reduced incidence of malaria during
months 1-6 [hazard ratio (HR) = 0.87, 95%CI = (0.77, 0.98)] and
7-12 [HR = 0.84, 95%CI = (0.71, 0.98)] months of the follow-up
period (Figure 4B).

GMZ2 Vaccine Induced Antibodies
Promote Opsonic Phagocytosis
Recently we developed a bead-based phagocytosis assay (BPA)
to measure the functional activity of antibodies against distinct
merozoite surface antigens (20). The GMZ2 vaccine antigen
was immobilized on the surface of internally dyed microsphere
beads and BPA activities of vaccine-induced antibodies were
quantified in samples collected at days 0 and 84 from all study
participants. A wide range of phagocytic activities were
observed (Figure 5). At day 0, samples from both vaccine
groups showed similar functional activities (Figure 5A). At
day 84, there was a significant difference in BPA activity
between the GMZ2 and rabies groups, demonstrating that
GMZ2/alum elicit functional antibodies. The increase in
functional activities was significant (t-test, p<0.0001) in both
age groups (Figure 5B).

Anti-Merozoite IgG Levels Increased in
Both Vaccine Groups During Follow-Up
First, we used a flow cytometry-based immunofluorescence assay
(FC-IFA) to quantify anti-merozoite antibodies (33). In each age
group, day 84 levels of merozoite IgG were higher than those at
baseline (day 0) irrespective of the vaccine group (Figure 6A).
FIGURE 2 | Vaccine efficacy stratified by age. Vaccine efficacy (VE) (using
parasite density ≥ 5,000/uL and fever/history of fever) after 12 months of follow
up stratified by age group. Error bars represent 95% confidence intervals. Cox
regression model was used to calculate hazard ratios, 95% confidence intervals
and p values for each age group. VE was defined as 100 × (1-HR), where HR is
the hazard ratio from the Cox regression. The horizontal dashed line indicates (VE
= 0). Asterisks represent P values (*P < 0.05).
June 2022 | Volume 13 | Article 899223
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When the study population was categorized according to vaccine
group, there was no difference between merozoite IgG levels in
children who received GMZ2/alum and those who received the
rabies vaccine at either day 0 or day 84 (Figure 6B). In contrast,
levels of merozoite IgG did increase between days 0 and 84 in
either vaccine group suggesting the contribution of naturally
acquired antibody boosting. Next, we used the merozoite opsonic
phagocytosis (OP) assay to assess the functional activity of anti-
parasite IgG at day 0 and day 84 (8, 24). Irrespective of the
vaccine group, day 84 merozoite OP values were higher than day
0 values in both younger and older children (Figure 6C).
However, there were no differences when merozoite OP values
were compared between the vaccine groups on day 0 and day 84,
respectively (Figure 6D).

Collectively, these findings are consistent with the notion that
anti-merozoite immunity develops in the present study
population irrespective of vaccine group.
Frontiers in Immunology | www.frontiersin.org 5
Dissecting Merozoite Specific IgG
Responses Associated With Febrile
Malaria in the Study Population
Having shown through the FC-IFA that natural exposure
boosted anti-merozoite IgG responses in the study population,
we next sought to delineate the potential specific merozoite
antigens involved. Levels of merozoite specific antibodies were
measured against a panel of 11 merozoite antigens not present in
GMZ2 (Supplementary Table S1). There was a high variability
in the IgG levels for the different antigens in the different vaccine
groups. However, for each antigen, day 84 IgG levels appeared
higher than day 0 IgG levels irrespective of the vaccine group
suggesting a boosting through natural exposure (Supplementary
Table S1). After transforming to logarithms (base=10) and
calculating a z-score for the transformed variable, the
association between incidence of malaria and day 84 antigen-
specific antibody levels was assessed using Cox regression with a
A B

C D

FIGURE 3 | Antibody responses after GMZ2 vaccination and association with parasite density. (A) Mean fluorescent intensity (MFI) representing GMZ2 specific
IgG levels compared between the two vaccine groups at day 0 (D0) and day 84 (D84). (B) Mean fluorescent intensity (MFI) representing GMZ2 specific IgG levels
compared between day 0 (D0) and day 84 (D84) for the two age groups. (C) Fold increase (day 84 GMZ2-IgG/day 0 GMZ2-IgG) in GMZ2-IgG levels between
day 0 and day 84 compared between the vaccine groups for each age group. All P values in panels (A–C) respectively were determined by t-test after log (base
10) transforming data. Horizontal lines represent geometric means. (D) Association between GMZ2 specific IgG levels and parasite density during febrile malaria
in the overall study population, the GMZ2 vaccine group alone and the rabies vaccine group alone. Beta (b) coefficients, confidence intervals and p values were
calculated using separate multiple linear regressing models adjusting for age. Antibody and parasite density data were both log (base 10) transformed prior to
use in the models. The vertical dotted line indicates no association with between GMZ2 IgG and parasite density (b = 0).
June 2022 | Volume 13 | Article 899223
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robust standard error to allow for repeated events within the
same child and adjusted for age group and trial arm (GMZ2/
alum or rabies vaccine) (Table 2). Antibodies against MSP3-K1
(HR = 0.87, 95% CI: 0.81 - 0.94 for a unit increase in z-score),
MSPDBL2 (HR = 0.89, 95% CI: 0.83 - 0.97), GLURP-R2 (HR =
0.90, 95% CI: 0.84 - 0.97) and MSP3.7 (HR = 0.93, 95% CI: 0.87 –
1.00) were associated with reduced incidence of malaria in the
study population. There was no evidence that the associations
differed between the arms of the trial. Antibodies against all 11
antigens were then entered into the model to obtain estimates of
independent association for each antibody adjusted for effects of
the other antibodies. In the multivariate analysis, antibodies
against only two antigens, MSP3-K1 (HR = 0.88, 95% CI: 0.80 –
0.97, p = 0.007) and GLURP-R2 (HR = 0.88, 95% CI: 0.80 – 0.98,
p = 0.015), were independently associated with reduced incidence of
malaria (Table 2). In the multivariate model, age remained strongly
associated with malaria incidence indicating that the panel of
immune responses measured only partially explained the
Frontiers in Immunology | www.frontiersin.org 6
reduction in incidence with age. A limitation is that we were not
able to measure exposure to malaria, an important confounder, we
may therefore have underestimated the strength of associations.
Nonetheless, the data suggest that antibodies against MSP3-K1 and
GLURP-R2 may have independently contributed to reducing
malaria incidence in the study population during the clinical trial
period and future GMZ2 designs could benefit from
their incorporation.
DISCUSSION

In summary, we showed VE in Banfora increased with increasing
age of the children at enrolment, and older children (36-60
months) benefitted most from GMZ2/alum vaccination in the 12
months of follow-up. We further showed that naturally acquired
antibodies to MSP3-K1 and GLURP-R2 measured at day 84 (one
A B

FIGURE 5 | GMZ2 bead OP index in relation to age and vaccine group. (A) GMZ2 coated bead OP compared between the vaccine groups at day 0 (D0) and day
84 (D84). (B). GMZ2 coated bead opsonic phagocytosis (OP) levels compared between day 0 (D0) and day 84 (D84) for the different age groups. P values were
determined by t-test after log (base 10) transforming data. Horizontal lines represent geometric means.
A B

FIGURE 4 | Association between GMZ2 antibody levels and clinical malaria stratified by age group. Cox regression model was used to calculate hazard ratios, 95%
confidence intervals and p values for antibody levels in the rabies vaccine group (A) and GMZ2 vaccine group (B) for each age group. Error bars represent 95%
confidence intervals. The horizontal dashed line indicates no association with protection (HR = 1). Asterisks represent P values (*P < 0.05). Malaria episodes were
collected over 12 months of follow up.
June 2022 | Volume 13 | Article 899223
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A B

C D

FIGURE 6 | Merozoite IFA levels in relation to age and febrile malaria. (A) Merozoite IFA levels compared between day 0 (D0) and day 84 (D84) for the different age
and vaccine groups. (B) Merozoite IFA levels compared between the vaccine groups at day 0 (D0) and day 84 (D84). (C) Merozoite opsonic phagocytosis (OP) index
compared between day 0 (D0) and day 84 (D84) for the different age groups. (D) Merozoite opsonic phagocytosis (OP) index compared between the vaccine groups
at day 0 (D0) and day 84 (D84). P values were determined by t-test after log (base 10) transforming data. Error bars represent geometric mean and 95% confidence
intervals. IFA, Immunofluorescence assay; AU, Antibody unit.
TABLE 2 | Association of non-GMZ2 antibodies with malaria incidence in the study population.

Variable Hazard ratio a (95%CI) P-value AdjustedHazard ratio b (95%CI) P-value

nMSP3-K1 0.87 (0.81,0.94) <0.001 0.88 (0.80,0.97) 0.007
MSPDBL2 0.89 (0.83,0.97) 0.006 0.98 (0.88,1.09) 0.686
GLURP-R2 0.90 (0.84,0.97) 0.008 0.88 (0.80,0.98) 0.015
MSP6 0.92 (0.85,1.00) 0.054 1.01 (0.91,1.12) 0.901
MSP3.3 0.93 (0.86,1.00) 0.060 0.93 (0.86,1.01) 0.094
MSP3.7 0.93 (0.87,1.00) 0.048 0.96 (0.87,1.06) 0.375
SERA5 1.00 (0.93,1.07) 0.942 1.05 (0.96,1.15) 0.263
nMSP2-3D7 0.95 (0.88,1.02) 0.147 0.99 (0.90,1.10) 0.897
Pf38 1.00 (0.93,1.07) 0.935 1.01 (0.91,1.12) 0.867
Pf12 1.01 (0.94,1.09) 0.820 1.01 (0.91,1.11) 0.907
MSP1-19 1.04 (0.97,1.12) 0.283 1.10 (0.99,1.22) 0.092
Frontiers in Immunology | www
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aAssociation of each variable with malaria incidence, adjusted for age and trial arm.
bIndependent association for each variable adjusted for effects of all the other variables.
95% confidence interval (95%CI). MSP, merozoite surface protein; MSPDBL2, merozoite surface protein duffy binding-like domain 2; GLURP-R2, glutamate rich protein region 2; SERA5,
serine rich antigen 5; Pf, Plasmodium falciparum.
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month after final vaccine dose), were associated with reduced
malaria incidence in the study population during the trial period.
Incorporation of these antigens in some form into future GMZ2
designs may help improve VE.

Considering all sites in the GMZ2 efficacy study, we observed
that children in the GMZ2/alum group with high levels of GMZ2
IgG had a lower incidence of clinical malaria, after adjusting for
age, compared with children with low levels (31). Here, we
performed a series of association analyses in the GMZ2/alum
vaccine group to further examine possible effects of GMZ2 IgG
on protection against febrile malaria. Anti-GMZ2 antibody
responses were investigated with respect to quantity and
functional activity in the phagocytosis assay. Collectively, these
assays demonstrated that GMZ2 vaccine elicited high levels of
cytophilic IgG antibodies, which were capable of promoting
phagocytosis of GMZ2-coated beads. Thus, supporting the
notion that GMZ2 IgG may enhance merozoite-phagocytosis
by blood leukocytes (24, 34). Contrary to expectations
merozoite-phagocytosis was not stronger in the GMZ2 group
compared to the rabies group suggesting that children in Banfora
possesses relatively high levels of pre-existing anti-merozoite
antibodies. We also, cannot rule out possibilities of antibodies
against GMZ2 vaccine to mediate anti-malaria activity through
other antibody-dependent mechanisms like Antibody
Dependent Cellular Inhibition (ADCI) and inhibition of
merozoite invasion,

We found that increasing anti-GMZ2 IgG levels were
associated with reduced incidence of febrile malaria in older
children 36-60 months of age during the first 12 months of
follow-up. However, these analyses did not establish anti-GMZ2-
IgG as the sole correlate of vaccine protection as they did not
exclude potential confounders such as acquisition of antibodies
to other blood stage antigens and age-dependent maturation of
cell mediated immunity (35). Although IgG antibodies are
thought to be the main effector molecule mediating protection
against febrile malaria, cellular immune responses may also play
a role through T-cell help for producing a robust antibody
response or through multifunctional effector memory T cells
producing IFN-g, TNFa, and IL-2 (36). Whether GMZ2/alum
enhance antigen-specific pluripotent lymphocytes remains to be
investigated. Likewise, IgM antibodies may also play a role in
malaria immunity. Recently, it was convincingly demonstrated
that levels of specific IgM antibodies are associated with a
reduced risk of clinical malaria in a longitudinal cohort study
of children and that such antibodies may block merozoite
invasion of red blood cells in a complement-dependent
manner (37). Whether GMZ2-vaccine specific IgM antibodies
play a similar role in the present cohort remains to
be investigated.

We further observed that older children had lower parasite
densities during febrile malaria attacks than the younger ones
and that this difference was most pronounced in the GMZ2
vaccine group. This finding is consistent with observations that
the parasite threshold at which fever is triggered depends on the
age of the affected child. Older individuals were found to have a
much lower pyrogenic threshold compared to younger ones (38,
39). When considering all study participants in Banfora, we
Frontiers in Immunology | www.frontiersin.org 8
further observed that increased levels of GMZ2 IgG were
significantly associated with decreased parasitemias in these
febrile attacks. This association was not observed in the GMZ2
group suggesting that these children have a lower pyrogenic
threshold compared to children in the rabies vaccine group. It
might be speculated that GMZ2 vaccination modulate the
dynamics of parasitemia and the occurrence of fever. Pyrogenic
cytokines Interlukin-1 IL1, IL6, and Tumor Necrosis Factor
(TNF) are produced in response to malaria parasites (40). Of
these, IL6, together with prostaglandin E2 (PGE2), is considered
to be a major pyrogenic mediator of fever (reviewed in (41).
Whether GMZ2 vaccination is affecting pyrogenic cytokine
production and modulation of pyrogenic threshold triggered
by malaria parasites through this inflammatory cytokines-
neuronal body temperature regulatory axis mechanism remains
to be determined.

It has previously been proposed that multiple anti-merozoite
antibody specificities act in concert to provide protection against
clinical malaria (17, 20) after a certain threshold has been
reached (17). To determine whether several antibody
specificities might also be involved in reducing clinical malaria
incidence in Banfora, levels of distinct antibody specificities were
assessed in the study population. We found, in a multivariate
analysis involving eleven naturally acquired antibodies where the
association of each antibody is adjusted for the effect of all the
others, that levels of IgG against MSP3-K1 and GLURP-R2 were
independently associated with reduced incidence of clinical
malaria. Interestingly, both of these protein sequences are
related to the GMZ2 constituent antigens, as they are derived
from MSP3 and GLURP, respectively. The MSP3 antigen is a
well-established target of naturally acquired immunity (42, 43)
and analysis of sequences from most parasite isolates from
malaria endemic populations show a distinct dimorphism
belonging to either MSP3-3D7 or MSP3-K1 type alleles (44).
In a Kenyan study, MSP3-K1 specific IgG was significantly
associated with reduced risk of clinical malaria after adjusting
for the effect of antibodies against other antigens such as AMA1
and MSP2 (45). Similarly, antibodies against GLURP-R2 have
been associated with protection against malaria in several
endemic populations including Burkina Faso, Ghana, and
India (9, 14, 46). The finding that naturally acquired antibodies
against variable regions of GLURP and MSP3 are associated with
protection against febrile malaria in children from Banfora
support the notion that antibodies against both conserved and
variable domains are involved in protective mechanisms (16, 42,
47). While antibodies against the variable domains are thought to
contribute to allele-specific immunity (42), antibodies against the
conserved domains may provide protection against multiple
parasite strains prevailing in the endemic population [reviewed
in (48)]. Taken together, these findings suggest that future design
of GMZ2 may benefit from the inclusion of variable epitopes
from the MSP3 and GLURP antigens to improve efficacy.
Whether such vaccine specific responses would be strain-
specific remains to be investigated.

Other blood-stage malaria vaccines such as MSP-1 and AMA-1
intended to block or reduce the invasion of erythrocytes by malaria
merozoites (4, 49, 50) have either shown no or little protection in
June 2022 | Volume 13 | Article 899223
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Phase 2b efficacy studies (51–54). The main reason for these failures
might be related to difficulties associated with the production of
recombinant antigens with native conformations. However,
polymorphisms observed for several of these malaria antigens in
different parasite strains may also explain the lack of protective
efficacy. Allele-specific vaccine efficacy has been reported in
multiple trials of malaria vaccines, such as AMA1 (55), RTS,S
(56) as well as those containing attenuated whole sporozoites (57).
Considering the worldwide dynamics of P. falciparum parasites with
different distributions among different regions and the finding that
parasites may evolve over time possibly as a result of immune
selection [reviewed in (58)], polymorphisms in key malaria antigens
is considered a major obstacle to vaccine development. Although,
the GMZ2 constituent antigens are relatively conserved (11, 59), it is
possible that the limited VE might be due to some degree of strain-
specific immunity. Overall, allelic-specific protection analysis of the
GMZ2 trial may provide critical insights into putative strain-specific
responses resulting in the development of more efficacious vaccine.

In conclusion, GMZ2/Alhydrogel VE was more pronounced
in older children, and this may reflect a synergistic interaction
between vaccine-induced and naturally acquired immune
responses. Interestingly, additional epitopes from the variable
regions of GLURP and MSP3 were identified as potential
candidates for inclusion in future GMZ2 designs for improved
efficacy. The study contributes important insights that could be
useful in developing more efficacious blood-stage malaria
vaccines that will benefit from a positive influence of naturally
acquired immunity.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
ETHICS STATEMENT

The local Ethics Committees and regulatory authorities for
Burkina Faso, Gabon, Ghana and Uganda reviewed and
approved the clinical trial protocol before the start of the trial.
Frontiers in Immunology | www.frontiersin.org 9
Signed informed consent was obtained from parent/guardian of
children before their inclusion in the study. The protocol was
registered with the Pan African clinical trial registry with
registration number ATMR2010060002033537.
AUTHOR CONTRIBUTIONS

SD, RT, and SKS performed the experiments. MT and SBS
designed the clinical study. BA and MT designed the
experiments and analysis. BA and MT wrote the manuscript.
All authors reviewed the manuscript. All authors contributed to
the article and approved the submitted version.
FUNDING

This study was supported by grants from the European and
Developing Countries Clinical Trials Partnership (grant
IP.2007.31100.001), the German Federal Ministry of Education
and Research (BMBF, grants 01KA0804 and 01KA1402) and
Ministry of Foreign Affairs of Denmark (DFC file no.14-
P01-GHA).
ACKNOWLEDGMENTS

We thank the children and their parents and guardians who
volunteered to participate in the study, and without whose
cooperation this study would have been impossible. We thank
the Data and Safety Monitoring Board (Trudie Lang (CHAIR),
Brian Faragher, Blaise Genton, Angelina Kakooza, Grégoire
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