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SUMMARY

Brain activity is highly variable during a task. Discovering, characterizing, and linking variability in brain
activity to internal processes has primarily relied on experimental manipulations. However, changes in in-
ternal processing could arise frommany factors independent of experimental conditions. Herewe utilize a
data-driven clustering method based on modularity-maximation to identify consistent spatial-temporal
EEG activity patterns across individual trials. Subjects (N = 25) performed a motion discrimination task
with six interleaved levels of coherence. Clustering identified two discrete subtypes of trials with
different patterns of activity. Surprisingly, Subtype 1 occurredmore frequently in trials with lowermotion
coherence butwas associatedwith faster response times. Computationalmodeling suggests that Subtype
1 was characterized by a lower threshold for reaching a decision. These results highlight across-trial vari-
ability in decision processes traditionally hidden to experimenters and provide a method for identifying
endogenous brain state variability relevant to cognition and behavior.

INTRODUCTION

Variability in performance is present in many day-to-day activities and cognitive tasks.1–7 Alongside variability in performance, brain activity

during a task is highly variable1,4 andmay impact the efficiency and accuracy of task performance.8–11 Trial-to-trial variability in brain activity is

present at all levels of cortical organization from individual neurons12 to large-scale brain networks.13 This variation in brain activity impacts

cognition and behavior in social situations,14 economic decisions,15 and in low-level perception.16 Despite the widespread variability in brain

activity during a task, standard analyses aim to identify event-related changes in brain activity that are consistent across all trials.17

Whenmeasuring brain activity with Electroencephalography (EEG), stimulus-driven activity can be identified with event-related potentials

(ERPs), which provide the average time-locked response to an experimental event.18 However, it is also possible that subsets of trials exhibit

brain activity that is not well represented by the average.19,20 Indeed, brain activity measured with EEG is both spatially and temporally var-

iable during a task, with at least some of this variability likely stemming from meaningful variation in internal processing rather than simply

noise.8–11 Additionally, averaging across all trials might eliminate the ability to observe distinct forms of stimulus-driven activity (i.e., the

ERP) that are engaged differentially on individual trials or contexts but that are, nonetheless, relevant for behavioral performance.

Here, we link trial-to-trial variation in brain activity measured with EEG and decision-making processes during a perceptual decision-mak-

ing task using a data-driven classification method we developed previously.19 Briefly, modularity-maximization identified unique stimulus-

driven brain activity variation among repeated trials of a motion discrimination task.21 To anticipate our results, modularity-maximation iden-

tified two distinct subtypes of stimulus-driven brain activity. Further, we establish the behavioral profile associated with each subtype and link

this variation to underlying latent cognitive processes. Overall, our results indicate that multiple brain activity patterns can co-exist in the

context of the same task.

RESULTS

Here, we identify multiple consistent patterns of stimulus-driven activity among individual trials and link this variation to behavior and under-

lying latent cognitive processes. Subjects performed a motion discrimination task where they judged the global direction of a set of moving

dots (left/right) with six levels of coherence (Figure 1A). Even in a simple and repetitive task such as this, trial-to-trial spatial and temporal

variation in brain activity measured with EEG is evident (Figure 1B).

To identify consistent patterns in brain activity across trials, we pooled all trials across subjects together to calculate the spatial and tem-

poral similarity using Pearson correlation from stimulus onset (0 ms) to 500ms after onset. Themodularity-maximization classification proced-

ure identified two subgroups of trials, Subtype 1, which accounted for 50.87% of trials (Ntrials = 10674), and Subtype 2 accounted for 49.01% of

trials (Ntrials = 10284; Figure 1C), across all subjects (Figure 1D).
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To understand the nature of the two subtypes, we plotted their average event-related potentials (ERPs) to test for differences in stimulus-

driven activity.18 Qualitatively, the ERPs for each subtype exhibited an opposite pattern of anterior vs. posterior event-related potentials (Fig-

ure 2A). These qualitative topographical differences were present even when comparing ERPs for each motion coherence level (Figures S1A

and S1B). To confirm these impressions, we compared the topographical similarity of ERPs estimated for each subtype using a topographic

analysis of variance (TANOVA).22 We found strong and consistent differences between subtypes in the post-stimulus period (p < 0.001, FDR

corrected; Figure 2A). Further, focusing on the centro-parietal sensor, which has been linked with decision-making processes23 and evidence

accumulation,24–26 significant differences were present in amplitude between the subtypes (independent samples t-tests: p < 0.001, FDR cor-

rected; Figure 2B) and for each motion coherence level (independent samples t-tests: p < 0.001, FDR corrected; Figure S1C). Subtype 1 con-

tained significant positive amplitude in the parietal area compared to Subtype 2 from stimulus onset (0 ms) to 1000ms, extending beyond the

500 ms window used in the clustering.

One possibility is that these subtypes reflect ERPs associated with different experimental or behavioral factors, such as leftward/rightward

moving trials or fast/slow responses. To better assess the nature of these subtypes, we compared the topographical similarity between sub-

type-derived ERPs to ERPs derived by averaging trials associated with experimental (motion direction and coherence levels) and behavioral

(accuracy, response times, and confidence) factors. The topographical similarity was estimated between ERPs from stimulus onset (0 ms) to

1000 ms after. Interestingly, a strong similarity was found in Subtype 1 (r > 0.60) but not in Subtype 2 (r < 0.10) to ERPs derived from exper-

imental and behavioral factors, indicating that in 49.01% of trials from our study, the variation in the stimulus-locked ERP was induced by other

factors (Figure 2C).

Additionally, we tested if subtypes were associated with differences in pre-stimulus brain activity. Pre-stimulus brain activity has been

found to impact post-stimulus brain activity and behavioral performance.27–30 To investigate differences in the pre-stimulus brain activity,

we tested for differences in power from�200 ms to 0 ms in the delta, theta, alpha, and beta frequency bands (Figure 3). We found the stron-

gest differences between the subtypes in alpha (paired-samples t-test, t(24) = 5.95, p = 3.83 10�6; Figure 3C) and beta bands (paired-samples

t-test, t(24) = 4.79, p = 3.53 10�5; Figure 3D). These findings add to the growing body of literature showing that pre-stimulus activity affects

post-stimulus processing.31–33

Importantly, we examined whether the subtypes reflect differences in the composition of trials based on experimental factors. We found

that the distribution of trials with leftward and rightward motion was the same between subtypes (Wilcoxson rank-sum test: Z = 0.13, p = 0.89;

Figure 4A). However, Subtype 1 contained a higher proportion of trials with lower motion coherence (Wilcoxson rank-sum test: Z =�4.06, p =

4.723 10�5; Figure 4B), this difference accounted for less than 3% of trials per condition (Figure 4C). Thus, experimental factors were not the

main driver of the spatial-temporal variation in brain activity among trials.

A B

C D

Figure 1. Subtypes of individual trials in a motion perception task

(A) Subjects viewed a dot motion stimulus for 300 ms with net motion direction either to the left or the right at varying levels of motion coherence (arrowed dots).

Using a single button press, subjects provided a choice and confidence (1–4) judgment.

(B) EEG activity from two trials from stimulus onset (0 ms) to 500 ms after onset from the same subject. The brain activity between the trials exhibits stark

differences.

(C) Modularity-maximization based clustering identified two subtypes of trials, Subtype 1 and Subtype 2. The colored squares correspond to the trials composing

each subtype. Pearson correlation was used to calculate the spatial-temporal similarity of the EEG activity among individual trials from 0 to 500 ms post-stimulus.

(D) The proportion of trials in each subject classified as either subtype 1 or 2.
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Further, we investigated the average number of consecutive trials (dwell time) for each subtype in order to test if the subtypes reflect slow

processes spanning multiple trials. We compared the dwell times between Subtype 1 and Subtype 2 to a randomized re-ordering of subtype

labels. We found no significant differences in dwell time between each of the comparisons (paired-samples t-test, p > 0.05; Figure S2A), sug-

gesting that the two subtypes occur in a largely random fashion with no clear repeating patterns. Additionally, we examined if there were

differences in the proportion of trials between the first and second half of the experiment and found that the proportion of Subtype 1 trials

increased from the first to the second half of the experiment (paired-samples t-test, p < 0.01; Figure S2B), but the differences between the

two-halves were relatively small, 3.1% and 3.2% trial, respectively. These results suggest that the subtypes do not reflect associated slow pro-

cesses spanning multiple trials or learning-associated changes.

Critically, we investigated whether the subtypes reflect differences in behavioral performance. We utilized a mixed-effect model to assess

the effects of the subtype, motion coherence, and motion direction on reaction times, accuracy, and confidence. As expected, we found that

increasedmotion coherence led to lower reaction time (t(20956) =�4.34, p = 1.403 10�5), higher accuracy (t(20956) = 6.54, p = 6.433 10�11),

and higher confidence (t(20956) = 9.00, p = 2.44 3 10�19). Critically, the subtypes significantly differed in reaction time (t(20956) = 3.53, p =

4.53 10�5), but not accuracy (t(20956) = 1.02, p = 0.31) or confidence (t(20956) = �0.66, p = 0.50). The differences in reaction times between

subtypes can be observed when comparing within each motion coherence level, Subtype 1 trials consistently exhibited faster response times

(independent samples t-test: t(20956) = �6.97, p = 3.293 10�12; Figures 4D and 4E). On the other hand, no significant differences were pre-

sent between the two subtypes in accuracy (independent samples t-test: t(20956) = 1.35, p = 0.17; Figures 4F and 4G), and only marginally

higher confidence in Subtype 1 (independent samples t-test: t(20956) = 1.79, p = 0.07; Figures 4H and 4I).

Having identified two trial subtypes with underlying differences in stimulus-driven brain activity and decision-making processes, we sought

to determine the latent cognitive processes that would give rise to the behavioral differences by computationally modeling response times

and accuracy using the drift-diffusionmodel.34We fit the drift-diffusionmodel to the behavioral data from each subtype separately.We let the

drift rate vary withmotion coherence level, but the decision boundary and non-decision time were fixed across the different coherence levels.

The drift-diffusion model was able to reflect behavioral data quite well. The predicted reaction times for Subtype 1 were consistently faster

(independent samples t-test; p < 0.05; Figure 5A) and with accuracy exhibiting no differences (independent samples t-test; p > 0.05; Fig-

ure 5B). Critically, examining the latent factors, we found the drift rate was the same between subtypes (paired-samples t-test: p > 0.05;

A

B C

Figure 2. Differential patterns of stimulus-driven brain activity between subtypes

(A) ERP topographies of Subtype 1 and Subtype 2 from 200ms before stimulus onset to 1000ms after stimulus offset (top). Note that the clustering algorithm was

applied to the data from stimulus onset (0 ms) to 500 ms, black box. Topographical ANOVA identified periods of topographic differences between subtypes.

Black regions indicated periods where the differences were significant, p < 0.05 FDR corrected (bottom).

(B) ERP activity from the centro-parietal sensor per subtype. Each waveform shows themean (thick line) and standardizedmeasurement error of themean (shaded

area).27 Statistical testing was conducted using independent samples t-tests, and FDR corrected for multiple comparisons. Statistically significant differences in

amplitude are marked at the top of the panel. * p < 0.05 FDR corrected.

(C) The topographical similarity between subtype-derived ERPs and ERPs derived from experimental – motion direction (Left/Right), motion coherence (0.01,

0.045, 0.08, 0.12, 0.25 0.4) – and behavior factors – Correct/Incorrect response, Fast/Slow response time, High/Low confidence. Pearson correlation was used

to calculate the spatial-temporal similarity of the EEG activity from 0ms to 1000 ms after the stimulus. The ERP from Subtype 1 exhibits strong similarity

(r > 0.60) to ERPs derived from experimental and behavioral factors highlighting the utility of Modularity-Maximization based clustering to identify variation

in internal processing relevant to cognition.
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Figure 5C), but Subtype 2 trials had a significantly higher response boundary (paired-samples t-test: t(24) = �3.81, p = 0.001; Figure 5D).

Further, no differences were present in the non-decision time (paired-samples t-test: t(24) = 0.28, p = 0.81; Figure 5E).

Lastly, we conducted two additional analyses to ensure our results were generalizable and robust. First, we performed a 5-fold cross-vali-

dation analysis using Support VectorMachine (SVM). An SVM classifier correctly predicted subtype labels with greater than 98% accuracy (Fig-

ure S3A). Further, the classification weights were consistent across EEG channels and time, suggesting that the EEG activity used to separate

the trials was spatially and temporally distributed (Figures S3B–S3D). Second, we replicated the analysis with a longer time clustering window

(1000 ms) to verify that the results were not dependent on the time range used in the clustering analysis. The classification similarity between

the 500 ms and 1000 ms time windows was strong (>84%; Figures S4A–S4C) which is reflected in the ERP and behavioral analysis

(Figures S4D–S4O).

DISCUSSION

Behavior and brain activity are highly variable. Behavioral variability is ubiquitous in social situations,14 economic decisions,15 and even low-

level perception.16 Variability in brain activity is present from the levels of individual neurons12 to large-scale brain networks.13 However, iden-

tifying the underlying neuronal mechanism associated with behavioral variability has been challenging.35 Nonetheless, variation in internal

processing that impacts behavior still needs to be discovered and characterized.36

To address this issue, we utilized a data-driven clustering method based on modularity-maximation. The key component in the analysis is

that individual trials are clustered based on their spatial-temporal similarity in the post-stimulus period to identify consistent patterns of brain

activity. Here spatial-temporal similarity is estimated across sensors and time.We found that individual trials could be separated into clusters,

which we called Subtype 1 and Subtype 2.

Critically, for each subtype we can determine the underlying stimulus-driven brain activity by averaging the trials in each subtype to esti-

mate the ERP. The two subtypes contained ERPs with different spatial-temporal activity patterns and differed in reaction times. Further, we

found stronger posterior alpha and beta power in the pre-stimulus period from �200 ms to stimulus onset in Subtype 1. Computational

modeling indicated that differences in reaction time arose from alterations in the threshold for reaching a judgment. These results demon-

strate that brain activity measured with EEG can be used to distinguish subtypes of trials differing in their underlying internal processes.

Traditionally, identifying variation in stimulus-driven internal processing has relied on examining predefined brain features such as EEG

low-frequency power37–39 or the slope of the 1/f spectrum.40,41 However, these approaches could limit the identification of brain activity pat-

terns relevant to cognition because it limits the sources of neuronal activity that could be contributing to behavioral variability. Our data-

driven analytical framework overcomes these limitations and was able to identify brain activity important for cognition and behavioral

performance.

These two different subtypes could indicate the existence of different cognitive modes. Recent studies have suggested that humans42 and

other animals43 switch between different modes of processing during perceptual decision-making tasks. These modes could arise from

changes in a single information processing sequence induced by alteration in the balance between top-down44 and bottom-up signaling.45

Alternatively, the different stimulus-driven activity could indicate the existence of two independent information processing sequences.

Lastly, it is important to highlight the limitations of our methodology and analysis. One limitation pertains to the specific set of decisions

made regarding the clustering, such as the time window, trial-to-trial similarity estimation, and the clustering method. For example, phase-

basedmeasures of similarity instead of Pearson correlation might result in different clusters. Future research should investigate how different

ways of clustering affect the results to determine the consistency of the clusters identified here. A second limitation pertains to the interpre-

tation one can draw from our results. The analysis yielded two clusters, which can naturally be interpreted as indicating the existence of two

discrete states. However, it is possible that the states are continuous instead of discrete, and only appear discrete due to the clustering in

discrete bins. Future research should dissociate between these two possibilities.

In conclusion, we find two forms of stimulus-driven brain activity present in all subjects but exhibiting stark differences in topographical

organization and affecting behavioral performance. These results have strong implications for the common practice of identifying

A B C D

Figure 3. Differences in pre-stimulus brain activity between subtypes

(A–D) Differences in average power from�200ms to 0ms for the A) delta (1–3 Hz), B) theta (4–7 Hz), C) alpha (8–12 Hz), and D) beta (13–30 Hz) bands. The average

power was calculated for the centro-parietal sensor after first filtering the EEG signal and followed by Hilbert transformation. Error bars show the meanG sem.
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stimulus-driven brain activity by averaging across trials such that the brain may contain multiple mechanisms for reaching a decision. The

analytical approach and findings presented here open a new avenue for understanding the brain-behavior relationship.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
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B Materials availability

B Data and code availability
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B Participants

B Stimulus and apparatus
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d METHOD DETAILS
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B Modularity-maximization based clustering
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Figure 4. Experimental and behavioral differences between subtypes

(A–I) Corresponding differences in (A) Motion Direction and (B) Motion Coherence level between subtypes. C) Differences in the percent of trials between

subtypes per motion coherence level. Differences in (D–E) response times, (F–G) accuracy, and (H-I) confidence between subtypes. Error bars show the

mean G sem. ***p < 0.001, **p < 0.01, *p < 0.05 FDR corrected; #p < 0.05 uncorrected.
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Figure 5. Drift-diffusion model

(A–E) Drift-diffusion modeling results reflected behavioral performance with (A) reaction times being faster in Subtype 1 and (B) no significant differences in

accuracy. Left panels in A and B represent the average reaction times and accuracy. Right panels show the performance for each motion coherence level.

Drift-diffusion parameters showed that (C) the drift rate was the same between subtypes, (D) the response boundary was higher in Subtype 2, and (E) the

non-decision time exhibited no differences between subtypes. Statistical testing was conducted using independent samples t-tests, and FDR corrected for

multiple comparisons. Error bars show the mean G sem. *p < 0.05; ns = not significant.
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24. Parés-Pujolràs, E., Travers, E., Ahmetoglu, Y.,
and Haggard, P. (2021). Evidence
accumulation under uncertainty - a neural
marker of emerging choice and urgency.
Neuroimage 232, 117863. https://doi.org/10.
1016/j.neuroimage.2021.117863.

25. Twomey, D.M., Murphy, P.R., Kelly, S.P., and
O’Connell, R.G. (2015). The classic P300
encodes a build-to-threshold decision
variable. Eur. J. Neurosci. 42, 1636–1643.
https://doi.org/10.1111/ejn.12936.

26. Dou, W., Arango, L.J.M., Castaneda, O.G.,
Arellano, L., Mcintyre, E., Yballa, C., and
Samaha, J. (2023). Neural Signatures of
Evidence Accumulation Encode Subjective
Perceptual Confidence. Preprint at bioRxiv.
https://doi.org/10.1101/2023.04.28.538782.

27. Kloosterman, N.A., de Gee, J.W., Werkle-
Bergner, M., Lindenberger, U., Garrett, D.D.,
and Fahrenfort, J.J. (2019). Humans
strategically shift decision bias by flexibly
adjusting sensory evidence accumulation.
Elife 8, e37321. https://doi.org/10.7554/eLife.
37321.

28. Bonnefond, M., Kastner, S., and Jensen, O.
(2017). Communication between Brain Areas
Based on Nested Oscillations. eNeuro 4.
ENEURO.0153, 16.2017, ENEURO.0153-16.
2017. https://doi.org/10.1523/ENEURO.
0153-16.2017.

29. Busch, N.A., Dubois, J., and VanRullen, R.
(2009). The Phase of Ongoing EEG
Oscillations Predicts Visual Perception.
J. Neurosci. 29, 7869–7876. https://doi.org/
10.1523/JNEUROSCI.0113-09.2009.

30. Chaumon, M., and Busch, N.A. (2014).
Prestimulus Neural Oscillations Inhibit Visual
Perception via Modulation of Response Gain.
J. Cogn. Neurosci. 26, 2514–2529. https://doi.
org/10.1162/jocn_a_00653.

31. Barne, L.C., de Lange, F.P., and Cravo, A.M.
(2020). Prestimulus alpha power is related to
the strength of stimulus representation.
Cortex 132, 250–257. https://doi.org/10.
1016/j.cortex.2020.08.017.

32. van Dijk, H., Schoffelen, J.-M., Oostenveld, R.,
and Jensen, O. (2008). Prestimulus Oscillatory
Activity in the Alpha Band Predicts Visual
Discrimination Ability. J. Neurosci. 28, 1816–
1823. https://doi.org/10.1523/JNEUROSCI.
1853-07.2008.

33. Romei, V., Gross, J., and Thut, G. (2010). On
the Role of Prestimulus Alpha Rhythms over
Occipito-Parietal Areas in Visual Input
Regulation: Correlation or Causation?
J. Neurosci. 30, 8692–8697. https://doi.org/
10.1523/JNEUROSCI.0160-10.2010.

34. Ratcliff, R., and McKoon, G. (2008). The
Diffusion Decision Model: Theory and Data
for Two-Choice Decision Tasks. Neural
Comput. 20, 873–922. https://doi.org/10.
1162/neco.2008.12-06-420.

35. Waschke, L., Kloosterman, N.A., Obleser, J.,
and Garrett, D.D. (2021). Behavior needs
neural variability. Neuron 109, 751–766.
https://doi.org/10.1016/j.neuron.2021.
01.023.

36. Dinstein, I., Heeger, D.J., and Behrmann, M.
(2015). Neural variability: friend or foe?
Trends Cogn. Sci. 19, 322–328. https://doi.
org/10.1016/j.tics.2015.04.005.

37. Kira, S., Yang, T., and Shadlen, M.N. (2015). A
Neural Implementation of Wald’s Sequential
Probability Ratio Test. Neuron 85, 861–873.
https://doi.org/10.1016/j.neuron.2015.
01.007.

38. Pachitariu, M., Lyamzin, D.R., Sahani, M.,
and Lesica, N.A. (2015). State-Dependent
Population Coding in Primary Auditory
Cortex. J. Neurosci. 35, 2058–2073.
https://doi.org/10.1523/JNEUROSCI.3318-
14.2015.

39. Reimer, J., Froudarakis, E., Cadwell, C.R.,
Yatsenko, D., Denfield, G.H., and Tolias,
A.S. (2014). Pupil Fluctuations Track
Fast Switching of Cortical States during
Quiet Wakefulness. Neuron 84, 355–362.
https://doi.org/10.1016/j.neuron.2014.
09.033.

40. Cui, Y., Liu, L.D., McFarland, J.M., Pack, C.C.,
and Butts, D.A. (2016). Inferring Cortical
Variability from Local Field Potentials.
J. Neurosci. 36, 4121–4135. LP – 4135. https://
doi.org/10.1523/JNEUROSCI.2502-15.2016.

41. Ecker, A.S., Berens, P., Cotton, R.J.,
Subramaniyan, M., Denfield, G.H., Cadwell,
C.R., Smirnakis, S.M., Bethge, M., and Tolias,
A.S. (2014). State Dependence of Noise
Correlations in Macaque Primary Visual
Cortex. Neuron 82, 235–248. https://doi.org/
10.1016/j.neuron.2014.02.006.

42. Weilnhammer, V., Stuke, H., Standvoss, K.,
and Sterzer, P. (2022). Bimodal Inference in
Humans and Mice. Preprint at bioRxiv.
https://doi.org/10.1101/2021.08.20.457079.

43. Ashwood, Z.C., Roy, N.A., Stone, I.R.,
International Brain Laboratory, Urai, A.E.,
Churchland, A.K., Pouget, A., and Pillow, J.W.
(2022). Mice alternate between discrete
strategies during perceptual decision-
making. Nat. Neurosci. 25, 201–212. https://
doi.org/10.1038/s41593-021-01007-z.

ll
OPEN ACCESS

iScience 26, 107750, October 20, 2023 7

iScience
Article

https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1126/science.273.5283.1868
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1371/journal.pbio.0020264
https://doi.org/10.1371/journal.pbio.0020264
https://doi.org/10.1038/nn.3711
https://doi.org/10.1038/nn.3711
https://doi.org/10.1523/jneurosci.18-10-03870.1998
https://doi.org/10.1523/jneurosci.18-10-03870.1998
https://doi.org/10.1016/j.neuroscience.2006.12.072
https://doi.org/10.1016/j.neuroscience.2006.12.072
https://doi.org/10.1016/0006-8993(74)90438-7
https://doi.org/10.1016/0006-8993(74)90438-7
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref8
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref8
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref8
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref8
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref8
https://doi.org/10.1152/jn.00648.2010
https://doi.org/10.1152/jn.00648.2010
https://doi.org/10.1038/s41593-019-0371-x
https://doi.org/10.1038/s41593-019-0371-x
https://doi.org/10.1038/s41598-017-17766-4
https://doi.org/10.1038/s41598-017-17766-4
https://doi.org/10.1038/nrn3025
https://doi.org/10.1016/j.neuroimage.2007.08.008
https://doi.org/10.1016/j.neuroimage.2007.08.008
https://doi.org/10.1111/0081-1750.00089
https://doi.org/10.1038/nn2007
https://doi.org/10.1016/j.cub.2010.11.017
https://doi.org/10.1016/j.cub.2010.11.017
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref17
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref17
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref17
http://refhub.elsevier.com/S2589-0042(23)01827-8/sref17
https://doi.org/10.1118/1.4736938
https://doi.org/10.1118/1.4736938
https://doi.org/10.1016/j.neuroimage.2023.119895
https://doi.org/10.1016/j.neuroimage.2023.119895
https://doi.org/10.1101/2021.11.28.469673
https://doi.org/10.1126/science.1184819
https://doi.org/10.1126/science.1184819
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1007/s10548-008-0054-5
https://doi.org/10.1073/pnas.0812589106
https://doi.org/10.1073/pnas.0812589106
https://doi.org/10.1016/j.neuroimage.2021.117863
https://doi.org/10.1016/j.neuroimage.2021.117863
https://doi.org/10.1111/ejn.12936
https://doi.org/10.1101/2023.04.28.538782
https://doi.org/10.7554/eLife.37321
https://doi.org/10.7554/eLife.37321
https://doi.org/10.1523/ENEURO.0153-16.2017
https://doi.org/10.1523/ENEURO.0153-16.2017
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
https://doi.org/10.1162/jocn_a_00653
https://doi.org/10.1162/jocn_a_00653
https://doi.org/10.1016/j.cortex.2020.08.017
https://doi.org/10.1016/j.cortex.2020.08.017
https://doi.org/10.1523/JNEUROSCI.1853-07.2008
https://doi.org/10.1523/JNEUROSCI.1853-07.2008
https://doi.org/10.1523/JNEUROSCI.0160-10.2010
https://doi.org/10.1523/JNEUROSCI.0160-10.2010
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1162/neco.2008.12-06-420
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.tics.2015.04.005
https://doi.org/10.1016/j.tics.2015.04.005
https://doi.org/10.1016/j.neuron.2015.01.007
https://doi.org/10.1016/j.neuron.2015.01.007
https://doi.org/10.1523/JNEUROSCI.3318-14.2015
https://doi.org/10.1523/JNEUROSCI.3318-14.2015
https://doi.org/10.1016/j.neuron.2014.09.033
https://doi.org/10.1016/j.neuron.2014.09.033
https://doi.org/10.1523/JNEUROSCI.2502-15.2016
https://doi.org/10.1523/JNEUROSCI.2502-15.2016
https://doi.org/10.1016/j.neuron.2014.02.006
https://doi.org/10.1016/j.neuron.2014.02.006
https://doi.org/10.1101/2021.08.20.457079
https://doi.org/10.1038/s41593-021-01007-z
https://doi.org/10.1038/s41593-021-01007-z


44. Zanto, T.P., Rubens, M.T., Thangavel, A., and
Gazzaley, A. (2011). Causal role of the
prefrontal cortex in top-down modulation of
visual processing and working memory. Nat.
Neurosci. 14, 656–661. https://doi.org/10.
1038/nn.2773.

45. Mechelli, A., Price, C.J., Friston, K.J., and
Ishai, A. (2004). Where Bottom-upMeets Top-
down: Neuronal Interactions during
Perception and Imagery. Cereb. Cortex 14,
1256–1265. https://doi.org/10.1093/cercor/
bhh087.

46. Delorme, A., and Makeig, S. (2004). EEGLAB:
an open source toolbox for analysis of single-
trial EEG dynamics including independent
component analysis. J. Neurosci. Methods

134, 9–21. https://doi.org/10.1016/j.
jneumeth.2003.10.009.

47. Jeub, L.G.S., Bazzi, M., Jutla, I.S., and Mucha,
P.J. (2011). A Generalized LouvainMethod for
Community Detection Implemented in
MATLAB. http://netwiki.amath.unc.edu/
GenLouvain. https://github.com/
GenLouvain/GenLouvain.

48. Mahini, R., Xu, P., Chen, G., Li, Y., Ding, W.,
Zhang, L., Qureshi, N.K., Hämäläinen, T.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Johan Nakuci (jnakuci@

gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Preprocessed EEG data and code are available at https://osf.io/ad7zu/

d Raw EEG data are available from the lead contact on request.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Twenty-eight subjects (twelve men; age range 18-30) took part in the experiment (three excluded due to not completing the full experiment)

that has been described elsewhere.26 All subjects were recruited from the University of California, Santa Cruz (UCSC) for course credit. All of

them had normal or corrected-to-normal vision, no history of psychiatric illness or head injury, reported no color-blindness They provided

written informed consent. All procedures were approved by the ethical review board of UCSC.

Stimulus and apparatus

Stimuli were presented on a black background on a 53.4 cm electrically-shielded VPixxEEGmonitor with a viewing distance of approximately

69.5 cm. Themonitor operates at a refresh rate of 120 Hz with a resolution of 1920x1080. Stimulus presentation and behavioral data collection

were controlled by Psychtoolbox-3 running in MATLAB. The stimuli consisted of 150 white dots presented within a 5-degree circular aperture

centered on fixation. For each stimulus, a proportion (1%, 4.5%, 8%, 12%, 25%, or 40%) of the dots were randomly selected on each frame to be

displaced by a fixed distance of .5 degrees in either the left or right direction on the following frame. The rest of the dots were placed

randomly and independently within the circular aperture. A small red fixation dot was presented at the center of the stimulus throughout

the entire trial.

Procedure

Participants first completed a practice block with 180 trials, with an equal number of trials for each coherence level. Auditory feedback was

presented only on the practice trials. Participants were able to proceed to the main task once they reached over 80% accuracy at the highest

coherence level. Participants who failed to reach these criteria in the very first practice block performedmore practice blocks until theymet the

criteria.

Each trial began with a red dot presented in the center of the screen for a random inter-trial interval between 1000 and 1500 ms. The dots

appeared for 300ms, with the red dot remaining on the screen. Participants gave their choice and confidence response (1-4; 1 = guessing, 4 =

highly confident) with a single button press using their left hand (from pinky finger to index finger) respectively on keys ‘A’, ‘S’, ‘D’, and ‘F’ to

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

EEG Data https://osf.io/ad7zu/ N/A

Software and algorithms

EEGLab https://sccn.ucsd.edu/eeglab/index.php N/A

community_louvain.m https://sites.google.com/site/bctnet/ N/A

Modularity-Maximization http://netwiki.amath.unc.edu/GenLouvain/

GenLouvain

N/A

Consensus Iterative http://commdetect.weebly.com/ N/A
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indicate left motion with the confidence rating from 4-1. and their right hand (from index finger to pinky finger) respectively on key ‘J’, ‘K’, ‘L’,

and ‘;’’ representing right motion with the confidence rating from 1-4. Participants had unlimited time to respond.

Each participant completed 1080 trials in total, consisting of 180 trials with each motion coherence level. The trials were presented in six

blocks with 180 trials in each block. Motion direction and coherence level varied independently and randomly on a trial-by-trial basis.

METHOD DETAILS

EEG recording and analysis

EEG was acquired from 64 active electrodes (BrainVision ActiChamp), with each impedance kept below 30kU. Data was digitized at 1000 Hz

and FCz was used as the online reference. EEG was processed offline using custom scripts in MATLAB (version R2019b) and with EEGLAB

toolbox.46 Recordings were down-sampled to 500 Hz and high-pass filtered at 0.1 Hz using a zero-phase, Hamming-windowed FIR filter.

Data were re-referenced offline to the average of all electrodes. EEG data were segmented into epochs centered on stimulus onset using

a time window of -2000 to 2000 ms. Individual trials were rejected if any scalp channel exceeded 100 mV at any time during the interval ex-

tending from -500 to 500 ms relative to the stimulus onset. On average, 209 trials were rejected for each participant. These trials were not

involved in the analysis of behavioral data. Noisy channels were spherically interpolated and independent components analysis was per-

formed to remove components reflecting eye-blinks or eyemovements. A pre-stimulus baseline of -200 to 0mswas subtracted fromeach trial.

Modularity-maximization based clustering

EEG data for each trial were pooled from all 25 participants resulting in 20983 trials. The trials were pooled among participants to ensure

consistency in clustering correspondence. A trial-by-trial similarity matrix was created using the Pearson Correlation between trials calculated

from stimulus onset (0 ms) to 500 ms after across 63 sensors, corresponding to 15813 data points per trial. The correlation period used was

limited to an interval from stimulus onset (0 ms) to 500 ms post-stimulus because this period encompassed the time window associated with

sensory processing. We note that we also performed a control analysis where we extended the time window to encompass the period from

0 to 1000 ms and still found similar results (Figure S4).

The similarity between trials was calculated using Pearson correlation because this is a commonly used measure to estimate the similar-

ity.19 The clustering utilized both spatial and temporal activity. The spatial data is represented fromall EEG sensors (63 channels) and temporal

activity is from stimulus onset to 500 ms post-stimulus sampled every 2 ms for a total of 63 (channels) x 251 (timepoints) = 15813 data points

from each trial. This many data points raise the possibility that clustering might be noisy. To ensure maximum signal quality, we eliminated

bad trials (see above) and validated the robustness of our clustering results using cross-validation. Critically, trials from both subtypes were

present in all subjects suggesting that the brain activity identified is consistent and robust a consistent pattern of activity.

The clustering procedure was conducted in the same manner as previously described in Nakuci et al..19 Modularity-maximization was im-

plemented with the Generalized Louvain algorithm47 to cluster the similarity matrix.21 We opted for modularity-maximization because unlike

other clusteringmethods, such as k-means,modularity-maximization does not require the number of clusters to be a prioridefined.Neverthe-

less, it is possible for this type of analysis to be conductedwith other clusteringmethods.48,49 Conceptually, our analysis is similar to themicro-

state analyses which aim to identify the brain state at each time point.22 Our framework and analysis extend the concept of a microstate to

states that last for hundreds of milliseconds.

To avoid suboptimal partition results that can depend on the initial seeding, the clustering was repeated 100x, and the final partition was

based on the consensus across iterations using consensus_iterative.m.50 Specifically, consensus clustering identifies a single representative

partition from the set of 100 iterations. This process involves the creation of a thresholded nodal associationmatrix which describes how often

nodes are placed in the same cluster. The representative partition is then obtained by using a Generalized Louvain algorithm to identify clus-

ters within the thresholded nodal association matrix.50

Identification of event-related potentials (ERPs)

ERPs for each subtype were generated by averaging all trials within the corresponding clusters across all sensors. Similarly, for experimental –

motion direction and coherence levels – and behavioral factors – accuracy, response times, and confidence – ERPs were derived by using trials

for each factor, respectively. Motion direction andmotion coherence ERPs were derived by averaging left/rightmoving trials and each of the 6

motion coherence levels. ERPs for the behavioral factor were derived by averaging correct/incorrect trials. For response times trials were first

separated into fast/slow bins if they were higher or lower than themedian response time, then trials in each bin were averaged to obtain ERPs

representing fast and slow responses, respectively. In the samemanner for confidence, trials were first separated into high/low confidence bin

based on if the confidence for a trial was above or below the average confidence values and then all trials within the high or low confidence bin

were averaged, respectively. The similarity between the ERPs from Subtype 1 and Subtype 2 to experimentally and behaviorally defined ERPs

was based on estimating the Pearson correlation across all sensors from 0 to 1000 ms.

Drift-diffusion modeling

We fit the diffusion model34 to the data using the hierarchical drift-diffusion model (HDDM) python package.51 The model allowed the drift

rate parameter to vary across motion coherence levels, but the other parameters, boundary and non-decision time, were fixed. The boundary

and non-decision time parameters were estimated as part of the model fitting. Model fitting was conducted separately for each trial subtype.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Topographic analysis of variance

To identify the time periods in which the ERP topographies differed between subtypes, we used a topographic analysis of variance (TANOVA).22

TANOVA calculates the topographical similarity at each time period between the subtype-derived ERPs to ERPs derived from permuted labels.

For eachperiod, the labels were randomized1000x. Timeperiods inwhich the empirical topographic similarity was less than the similarity derived

from randomized labels with p < 0.05 following FDR correction were considered significant.

Reliability and robustness analysis

A 5-fold cross-validation analysis using Support Vector Machine (SVM) classifier was performed using MATLAB’s fitcsvm.m. Trials were

randomly separated into 5 bins containing 20%of trials. The SVM classifier was trained on EEGdata from 4 of the bins (80%of trials) and tested

on the remaining bin (20% of the trials). This procedure was repeated until each bin was tested. Second, we replicated the clustering analysis

with a longer time window (1000 ms).

Statistical analysis and software

All data processing and statistical analyses were performed in MATLAB 2019b.
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