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Abstract

 Background—Serum caffeine concentrations >20µg/mL (100 µM) in infants treated for apnea 

of prematurity increases TNF-α and decreases IL-10, change that perhaps is linked to co-

morbidities. We hypothesize that this pro-inflammatory cytokine profile may be linked to 

differential binding of caffeine to adenosine receptor subtypes (AR), inhibition of 

phosphodiesterases (PDEs), and modulation of toll-like receptors (TLR).

 Methods—LPS-activated cord blood monocytes (CBM) from 19 infants were exposed to 

caffeine (0 to 200 µM) with or without previous exposure to A1R, A3R, or PDE IV antagonists to 

determine changes in dose-response curves. Cytokines levels (ELISA), intracellular cAMP 

accumulation (EIA) and TLR gene expression (real time qRT PCR) were measured.

 Results—Caffeine at ≤100µM decreased TNF-α levels (~25%, p=0.01) and cAMP. All 

caffeine concentrations decreased IL-10 levels (17 to 35%, p<0.01). A1R, A3R and PDE blockades 

decreased TNF-α (31%, 21%, and 88%, p≤0.01), but not IL-10. Caffeine further decreased TNF-α 

following A3R and PDE blockades. Caffeine concentrations directly correlated to TLR4 gene 

expression (r=0.84; p<0.001).

 Conclusion—Neither A3R, nor PDE blockades are involved in caffeine’s modulation of 

cytokine release by CBM at any concentration. Besides A1R blockade, caffeine’s up-regulation of 

TLR4 may promote inflammation at high concentrations.
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 INTRODUCTION

Adenosine binding to any of the four 7-transmembrane spanning G-protein-coupled 

receptors, A1R, A2aR, A2bR and A3R, modulates inflammation (1,2). Caffeine, a non-

specific adenosine receptor (AR) antagonist, is used to treat apnea in premature infants and 

at concentration of 50 µM in culture (equivalent to 10 µg/ mL in serum) increases 

intracellular cAMP accumulation and attenuates TNF-α secretion by blocking A1R on LPS-

activated human cord blood monocytes (CBM) (3). Although this mechanism may be 

operative in the decreased incidence of BPD and neurodevelopmental disabilities observed 

in infants treated with caffeine (4,5) and in animal models (6), decrease in the anti-

inflammatory cytokine, IL-10, along with increase in TNF-α in tracheal aspirates and 

peripheral blood in preterm infants who have serum caffeine levels ≥ 20 µg/mL (equivalent 

to 100 µM in culture) raise concerns (7). The mechanisms explaining caffeine’s polar 

opposite effects in the inflammatory cascade are still unclear, but highly relevant in the 

design of new strategies to prevent morbidities related to chronic inflammation, like BPD, in 

premature infants (8).

ARs are either negatively (A1R and likely A3R) or positively (A2Rs) coupled to adenylyl 

cyclase, decreasing or increasing intracellular cAMP levels, respectively (1,9). Changes in 

cAMP inversely modulate the expression of transcription factors and their final products, 

cytokines and chemokines, via protein kinase A (PKA)-mediated pathways (10–13). 

Caffeine demonstrates the highest affinity for A1R and the lowest affinity for A2bR, which 

increases or decreases cAMP levels, respectively. At concentrations at least 40 times higher 

than those needed to antagonize A1Rs, caffeine also inhibits phosphodiesterase (PDE) 

activity (14), which further increases cAMP accumulation. Additionally, activation of ARs 

antagonize inflammatory cascades activated by toll-like receptors (TLRs) on mononuclear 

cells (15,16) as shown by the failure of TLR4 agonists to induce TNF-α release following 

pre-treatment with A2aR agonists (17). Although caffeine may inhibit TLR-mediated 

inflammatory cascades in macrophages by suppressing calcium mobilization (18), it may 

also trigger inflammation by preventing the AR-mediated antagonism of TLRs and perhaps 

by changing their expression (19). Hence, we hypothesize that the pro-inflammatory 

cytokine profile observed with high serum caffeine levels (>20 µg/mL, equivalent to > 100 

µM in culture) in premature infant at risk for BPD (7) may be linked to differential binding 

of caffeine to AR subtypes, inhibition of PDEs, and modulation of other components of the 

inflammatory cascade, such as TLRs.

 RESULTS

Cord blood from 19 neonates (mean gestational age ± SD = 39.6 ± 1.2 weeks; birth weight = 

3286 ± 505 g; Table 1) was used for experiments in culture. Cord blood serum caffeine 

levels (mean ± SD = 0.67 ± 1.12 µg/ml) were below the therapeutic range.

 Baseline changes in cAMP and cytokine mRNA and protein levels

Neither caffeine alone nor LPS alone increased intracellular cAMP accumulation in CBM by 

24h. In contrast, caffeine treatment followed by LPS-activation increase cAMP 

accumulation by 4 to 6-fold (p<0.01 vs. LPS-exposed, Fig. 1A). Consistent with these 
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findings, TNF-α gene expression decreased by 60% following caffeine exposure at 

concentrations of 50 or 100µM, but at higher concentrations (200 µM) did not decrease 

TNF-α transcription any longer. Conversely, all tested caffeine concentrations decreased 

IL-10 gene expression by 25 to 60% (p<0.05 in all cases, Fig.1B and 1C). LPS exposure 

increased TNF-α and IL-10 release by CBM (p<0.001 vs. no LPS) and caffeine modulated 

those responses (p=0.01 and p<0.001, respectively). Caffeine at 50 and 100 µM decreased 

TNF-α levels by 25% (IQR −67 to −5%, p=0.01) and 24% (IQR −30 to −2%, p=0.02); 

respectively, while at 200 µM did not produce changes (Fig. 1D). Conversely, caffeine at 50, 

100 and 200 µM decreased IL-10 by 17% (IQR 34 to 8 %, p=0.006), 27% (IQR 34 to 21%, 

p=0.003), and 35% (IQR 46 to 25%, p=0.003), respectively (Fig. 1E).

 The differential role of A1R and A3R in the modulation of cytokines by caffeine

DPCPX, a specific A1R antagonist (10 nM), decreased TNF-α secretion by 31% from 

baseline (IQR − 60 to −6 %, p=0.01). The addition of caffeine at 50 and 100 µM did not 

induce further TNF-α decrease. However, caffeine at 200 µM still significantly decreased 

TNF-α in CBM when pre-treated with DPCPX, unlike in those not pre-treated (p=0.001, 

discontinuous line) (Fig 1D). A1R blockade did not modify the effect of caffeine on IL-10 at 

any concentration (Fig.1E)

In LPS-activated CBM, exposure to caffeine alone (Fig. 1A) or combined with MRS1220 

(A3R antagonist, 10 nM) significantly increased intracellular cAMP levels (Fig 1F). 

MRS1220 alone decreased TNF-α secretion by 21% (−45 to −13%; p=0.008), while the 

addition of caffeine at 50 and 100 µM produced an additional decrease of 40% (IQR −60 to 

−16) and 39% (IQR −62 to −15), respectively (p=0.001 in all cases vs. MRS1220 alone) 

with no additional changes induced by caffeine at 200 µM (Fig. 1G). In contrast, IL-10 was 

not significantly modulated by A3R blockade (Fig. 1H). While MRS1220 inhibited TNF-α 

gene expression by 65% (IQR −72 to −10; p=0.02), it did not change IL-10 gene expression. 

In contrast, caffeine at 50 µM added to MRS1220 inhibited gene expression of both, TNF-α 

and IL-10 (Fig. 1I).

 The effect of caffeine in cytokines is independent of PDE IV blockade

RO-201724 (PDE IV inhibitor, 10µM) increased intracellular cAMP levels by 134% (20 to 

476; p=0.02), while the combined treatment with caffeine (50 µM) increased cAMP levels 

by 283% (167 to 535; p=0.02; Fig. 2A). In CBM, pre-treatment with RO-201724 produced 

an 88% (IQR −90 to −84) decrease in the release of TNF-α (p<0.001 vs. no pre-treatment). 

In the presence of RO-201724, the addition of caffeine at 50, 100 and 200 uM further 

decreased TNF-α release by CBM by 24% (IQR −49 to − 8); 19% (IQR −39 to −5) and 21% 

(IQR −44 to −20) (p<0.001, Fig. 2B). On the other hand, PDE IV inhibition alone did not 

modify IL-10 release by CBM; however, in the presence of caffeine at 100 or 200 µM, IL-10 

levels were 39% and 46% lower than with caffeine exposure alone, (p<0.01). Caffeine, at all 

concentrations, decreased IL-10 secretion regardless of PDE inhibition (p<0.01, Fig 2C).

 Unlike IL-10, TNF-α modulation by caffeine depends on PKA activity

To determine the role of cAMP-dependent PKA in the pathway inhibiting the transcription 

of TNF-α and IL-10 in response to caffeine, CBM were pretreated with RP-cAMPs (50 µM), 
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a PKA inhibitor, prior to caffeine and LPS exposure. Following pre-treatment with RP-

cAMPs, intracellular cAMP accumulation increased by 200-fold (Fig. 2D) in CBM. Despite 

inducing high intracellular cAMP levels, RP-cAMP blocked the decrease in TNF-α induced 

by caffeine (Fig. 2E). In contrast, RP-cAMPs did not modify the effect produced by caffeine 

on IL-10 secretion (Fig. 2F).

 Caffeine alters TLR transcription

While TLR3 mRNA was not detected in CBM by real time qRT-PCR, TLR1, TLR2 and 

TLR4 gene expression was detected and modified by caffeine in a concentration-dependent 

manner. Caffeine at 50 and 100 µM down-regulated the expression of TLR1 by 65% (83 to 

37%; p=0.02) and 55% (75 to 23%; p=0.04), and TLR2 by 75% (90 to 57%; p=0.02) and 

74% (83% to 33%; p=0.04); respectively (Fig.3A and 3B). Caffeine at 200 µM did not alter 

TLR1 or TLR2 mRNA levels. TLR4 gene expression was directly correlated with the 

concentration of caffeine (r=0.84; p<0.001; Spearman’s correlation). While TLR4 gene 

expression was unchanged in CBM exposed to 50 µM of caffeine, it was up-regulated by 

2.6-fold (2.2 to 4.2; p=0.02) when exposed to 200 µM (Fig. 3C).

 DISCUSSION

Caffeine at 50 µM (equivalent to 10 µg/mL in serum) decreases TNF-α secretion by CBM 

via A1R blockade (3), but in-vivo data suggest that higher serum caffeine concentrations are 

associated higher TNF-α, IL-8, IL-6 and lower IL-10, suggesting a pro-inflammatory profile 

potentially linked to BPD and other comorbidities (7). The mechanisms may involve not 

only non-specific ARs blockade, but also inhibition of PDE IV and alteration in TLR 

expression. Using a culture treatment paradigm modeled to replicate the impaired hepatic 

metabolism of caffeine in neonates and the relevant time and concentrations of caffeine in 

infants receiving daily doses to achieve serum concentrations between 10 to 20 µg/ mL or 

higher, we show that caffeine at concentrations of 50 and perhaps 100 µM (equivalent to 10 

and 20 µg/mL, respectively) decrease TNF-α and IL-10 secretions by CBM, while at 

concentrations greater than 100 µM only decrease IL-10 secretion and gene expression. The 

blockade of A1R, but not A3R, is operative in the effect of caffeine on TNF-α secretion via a 

PKA-mediated mechanism, while neither of these receptors is involved in the effects on 

IL-10. PDE IV inhibition does not play a significant role in caffeine’s immunomodulatory 

effects. Additionally, caffeine may promote the activation of TLR-mediated inflammatory 

pathways relevant to sick neonates, by up-regulating TLR 4 in a concentration dependent 

manner.

A1R expression is up-regulated on CBM following LPS exposure (a TLR4 agonist), 

suggesting the important role of this receptor in the control of TLR-mediated inflammation 

in neonates (3). A1R blockade or A2aR activation produces an equally significant increase in 

cAMP accumulation and decrease in TNF-α production by adult monocytes (20). In 

accordance with these findings, our results using CBM suggest that low caffeine 

concentrations (50 µM – equivalent to 10 µg/mL in serum) preferentially block A1R, 

probably allowing adenosine to bind to A2aR (Gαs-coupled), thereby increasing cAMP 
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production (1). At increasing concentrations, this preferential A1R blockade by caffeine may 

be lost.

A3R is highly expressed in inflammatory tissues and mononuclear cells (3,21), but the 

interaction with adenylyl cyclase (protein Gi or Gq) varies by cellular type (1,20). In either 

case, the net effect of A3R blockade is cAMP accumulation and decrease cytokine 

expression. Similar to the effect described in adult peripheral blood monocytes (20), our 

results show that A3R blockade (MRS1220) increases cAMP accumulation and decreases 

TNF-α production. Caffeine significantly intensifies the effect produced by MRS1220 alone, 

suggesting caffeine effects are independent of A3R blockade in CBM.

Xanthines also decrease TNF-α and IL-10 release from mononuclear cells via PDE 

inhibition and cAMP accumulation (14,22–24). However, because caffeine has a 

considerably higher IC50 for PDE inhibition than for cytokine modulation (23), serum 

concentrations 25 times higher than those achieved during standard treatment for apnea of 

prematurity would be required to elicit PDE inhibition in vivo (4,14). Here, we show that 

although RO-201724 decreases TNF-α secretion by CBM, caffeine further decreases this 

cytokine suggesting that PDE inhibition does not explain the effect of caffeine on TNF-α. In 

contrast, the inhibition of PDE IV and the subsequent increase in cAMP accumulation does 

not significantly modify IL-10 levels, suggesting that the pathway mediating the effect of 

caffeine in IL-10 is not primarily cAMP-dependent.

Adult monocytes express TLR1, TLR2 and TLR4, among many others; however, the 

expression profile on CBM has not been well defined. Contrary to TLR2 expression on 

CBM, TLR4 directly correlates with gestational age (25,26), and further expression is 

induced by LPS (27). Because LPS is a TLR4 agonist and caffeine mediates the inhibition of 

LPS – induced TNF-α production by CBM, we hypothesized that changes in TLR 

expression may account for some of caffeine immunomodulatory effects. Here, we report 

the direct correlation between caffeine concentrations and TLR4 expression, as well as the 

inhibitory effect of caffeine at 50 and 100 µM on TLR1 and TLR2 expression. In LPS-

activated CBM, the increase TLR4 expression induced by caffeine at 200 µM, may up-

regulate TNF-α expression via MyD88-NFkB pathway (10,13). The implications of TLR1 

and TLR2 down-regulation induced by caffeine remain unexplored but this novel 

mechanism may explain some of the anti-inflammatory properties derived from clinical 

studies demonstrating decrease incidence of BPD (4).

The pathways mediated by TLR-NFκB (21,28) and cAMP-PKA (10,20) are the main 

biochemical cascades regulating TNF-α production by adult monocytes. NFκB, a 

transcription factor for TNF-α, also up-regulates A2R expression following LPS exposure as 

a delayed feedback attenuating persistent inflammation (29). The decrease in TNF-α 

production following AR activation can be abolished by the blockade of PKA (20). 

Similarly, we show that caffeine inhibitory effect on TNF-α transcription in CBM is 

suppressed by RP-cAMPs, suggesting that this process is PKA mediated.

Adenosine decreases TNF-α and increases IL-10 production by monocytes, although the 

specific signaling cascade remains unknown (30,31). AR activation induces accumulation of 
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the IL-10 transcription factor C/EBPβ (enhancing-binding protein) (32). Transient MAPK-

mediated phosphorylation of histone H3 in the IL-10 promoter may facilitate C/EBPβ 

binding via a cAMP-PKA independent pathway (33,34). Here, we show that caffeine 

produces a transcriptional down-regulation of IL-10, which is not mediated by A1R or A3R 

blockade and unlike TNF-α is PKA independent. We speculate that the modulation of A2R 

expression or function is involved in the effect of caffeine on IL-10 and the mechanisms may 

include: i) the prevention of LPS-induced up-regulation of A2R expression by caffeine (3), 

which by decreasing A2R availability, decreases transcription factors (C/EBPβ) and IL-10 

production; and ii) the non-specific blockade of A2aR, as well as A1R by caffeine, which at 

increasing concentrations further decrease IL-10 and increase TNF-α production, as 

observed in our experiments. The effects of caffeine in other steps of the IL-10 signaling 

pathway are still unexplored.

In conclusion, caffeine decreases the release of TNF-α and IL-10 via distinct mechanisms. 

A1R, but not A3R, is operative in the effect of caffeine on TNF-α, while neither of these 

receptors modulates IL-10 production by CBM. Similarly, caffeine’s immunomodulatory 

effects are not primarily produced by PDE inhibition. The mechanism responsible for the 

decrease of IL-10 produced by caffeine is still unclear, but is potentially related to the 

modulation of A2R expression and/or function. Here, we also describe for the first time the 

inhibition of TLR1 and TLR2, and the induction of TLR4 expression on LPS-activated 

CBM exposed to caffeine, which extends our understanding about the immunomodulatory 

effects of this drug in the newborn population. The understanding of the distinct effects of 

caffeine on cytokines is relevant in the context of the potential side effects of its use in the 

clinical setting in a population at high risk for BPD and other morbidities linked to 

inflammation.

 METHODS

 Subjects

This study complied with the Guidelines for Human Experimentation from the U.S. 

Department of Health and Human Services and received approval from the Johns Hopkins 

Medicine Institutional Review Board (NA_00002034). The work has been carried out in 

accordance with The Code of Ethics of the World Medical Association (Declaration of 
Helsinki) (35). Only cord blood of subjects whose parents provided informed consent for the 

study was considered for experiments. CBM were isolated from full-term infants (≥ 37 

weeks gestation). Cord blood was collected after repeat cesarean section without labor or 

vaginal delivery without evidence of chorioamnionitis. We excluded births with known 

genetic disorder, intrauterine growth restriction or small for gestational age (birth weight < 

10th percentile for gestational age), and suspected viral infection (based on serological or 

clinical findings). Infants who subsequently received antibiotics or had illness sufficient to 

be admitted to the neonatal intensive care unit (NICU) were removed from final 

experiments. Serum caffeine levels were obtained on all blood samples and those with levels 

> 4 µg/ mL were removed from final analysis.

Chavez-Valdez et al. Page 6

Pediatr Res. Author manuscript; available in PMC 2016 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 CBM isolation

Cord blood was collected in EDTA and in no-additive tubes for monocyte isolation and 

caffeine level determination, respectively (BD Biosciences, Franklin Lakes,NJ). Blood 

samples were centrifuged at 2400 × g for 10 m at 25°C, cellular portion was reconstituted in 

Dubelcco’s phosphate-buffered saline (DPBS, pH 7.4; Mediatech Inc, Herndon,VA), and 

CBM were isolated using Ficoll-Hypaque gradient (GE Healthcare Biosciences AB, 

Uppsala, Sweden). CBM were then washed and reconstituted in 4× RPMI 1640 media 

containing 8% (v/v) human AB serum, penicillin/streptomycin (400 IU/ml /400 ug/ml), and 

8 mM L-glutamine (Sigma-Aldrich, St. Louis, MO). Cell count and viability was determined 

using ammonium-chloride-potassium lysing buffer (Quality Biological, Inc., 

Gaithersburg,MD) and the trypan blue exclusion method (Gibco, Grand Island,NY), 

respectively (36). Viable CBM were cultured and used in experiments, as outlined below.

 Treatment protocol in culture

Neonates treated with caffeine citrate for apnea of prematurity receive daily maintenance 

doses to achieve serum levels of 10 to 20 µg/ mL. Due to immaturity of the cytochrome 

P-450 system in neonates, the hepatic metabolism of caffeine is limited for several weeks 

after birth (37,38). To model the array of caffeine’s effects in cytokine levels in the blood of 

neonates with limited hepatic clearance, we used a single dose of caffeine in citrated buffer 

to achieve comparable concentrations in culture (50 to 100 µM) and since some neonates 

achieve levels > 20 µg/ mL, which may switch the cytokine expression response7, we also 

tested a concentration of 200 µM.

Caffeine, A1R antagonist (DPCPX), A3R antagonist (MRS1220), PDE IV inhibitor 

(RO-201724), and cAMP-dependent PKA antagonist (RP-cAMPs) (Table 2) were used to 

investigate the changes in the dose-response curves of increasing caffeine concentrations in 

TNF-α and IL-10 release by CBM. Caffeine was reconstituted in citric acid monohydrate 

based water (pH 7.3), which in solution forms caffeine citrate salts. All other antagonists 

were reconstituted in DMSO (cell-culture-concentration: 2.7 × 10−6 g/ml). RO-201724 was 

purchased from Calbiochem (San Diego, CA), and all other drugs were purchased from 

Sigma Chemical Co (St. Louis, MO). Although caffeine is a non-specific phosphodiesterase 

inhibitor at high concentrations, PDE IV is the most abundant in monocytes and has the 

greatest cAMP degradation activity. Thus, we selected RO-201724 to target this subfamily 

of PDEs.

CBM were treated with DPCPX, MRS1220, RO-201724 or RP-cAMPs 1 h before exposure 

to caffeine at 0, 50, 100 and 200 µM. Following an additional hour in culture (37°C /

5%CO2), CBM were activated using Escherichia coli K235 LPS (100 ng/ml; Sigma-

Aldrich). Twenty-four hours after LPS-activation, media were collected, centrifugated at 

2000 × g for 5 min, and supernatants were used to measure cytokines levels by ELISA, 

while CBM attached to the well were recovered using trypsin-EDTA 0.05%, phenol free 

(Life Technology Corp. Carlsbad, CA), evaluated for viability using Trypan-blue exclusion 

method as described above, and then lysed for RNA isolation and real-time RT PCR or to 

measure intracellular cAMP accumulation by EIA.
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CBM viability was assessed by their property to adhere to the plastic at 24h after LPS-

activation. LPS activated CBM were observed under the inverted microscope to evaluate the 

morphological appearance and the degree of debris and to ascertain good quality of the 

culture. If any concerns, a 1 µl aliquot of recovered CBM from each well was evaluated 

using the trypan blue exclusion method. No difference in cell viability was observed 

between treatments. However, those culture plates that show increased cell death were 

discarded and not used for analysis.

 Enzyme-Linked Immunosorbent Assay (ELISA) / Enzyme Immunoassay (EIA)

TNF-α and IL-10 concentrations were measured by ELISA using multiplex kits according to 

manufacturer’s protocol and concentrations were calculated using the Luminex detection 

platform (Millipore, Billerica, MA).

Intracellular cAMP levels were measured to confirm function of ARs during exposure to 

caffeine and other treatments. After exposure, CBM were lysed using 2.5% 

dodecyltrimethylammonium bromide in assay buffer (pH 5.8; 0.05 M sodium acetate buffer 

and 0.02% bovine serum albumin). Intracellular cAMP levels were measured using the 

Amersham cAMP EIA System (GE Healthcare, Little Chalfont, Buckinghamshire, UK) 

following manufacturer’s protocol as described previously (3), and results were reported 

corrected for 2 × 105 viable CBM.

 Real Time Quantitative Reverse-Transcription Polymerase-Chain-Reaction (Real time 
qRT- PCR)

Total RNA was extracted from LPS-activated CBM to determine changes in cytokines 

(TNF-α, IL-10) and TLRs (TLR1, TLR2, TLR3, TLR4) gene expression following caffeine 

(50, 100 and 200 µM vs 0 µM) and MRS1220 (10nM, specific A3R antagonist) treatment 

alone and combined. RNA mini kit (Invitrogen, Carlsbad, CA) was used according to 

specifications. Approximately 1µg of total RNA was used for generation of cDNA using 

iScript cDNA synthesis kit (BioRad, Hercules, CA). Reverse transcription protocol included 

5 minutes at 25°C; 30 minutes at 42°C and 5 minutes at 85°C. cDNA was then used to 

amplify target genes by real time qRT-PCR using primers at 300 nM [Table 3, (39)]. SYBR 

Green Supermix (BioRad) was used for signal detection by PCR Thermocycler (BioRad). 

The amplification protocols included 40 cycles of: 1 minute at 95.0 °C, 1 minute at 61.0 °C 

(cytokines) or 59.0 °C (TLRs), and 1 minute and 15 seconds at 72.0 °C. GAPDH 

(glyceraldehyde phosphate dehydrogenase), β-actin and G6PDH (glucose-6 phosphate 

dehydrogenase) were preliminarily tested to establish gene expression stability under 

experimental conditions using the BestKeeper approach (40). Based on these results 

GAPDH was used as the reference gene to calculate fold difference in gene expression using 

the Pfaffl method (41) as reported previously (3). Melting curves were used to ascertain 

purity of PCR products.

 Statistical analysis

Nonparametric statistics including Bonferroni adjusted- Wilcoxon signed rank test and 

Friedman two-way ANOVA for ranks were applied. Results are reported as median with 

IQR (25th to 75th percentile) and represented as box-and-whisker plots with outliers (boxes 
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symbolize IQR) for cAMP and RT-PCR data. To better represent dose-response curves for 

measured cytokines, these data are represented as mean ± SEM. Comparison between curves 

was made by two-way repeat measures ANOVA with Bonferroni correction for pair analysis. 

Significance was assigned by p ≤ 0.01. Analysis was performed using IBM SPSS 18.0 

software (IBM corp., Armonk NY).
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Figure 1. 
Effect of caffeine at 50, 100 and 200 µM in (A) intracellular cAMP accumulation (fmol /

2(10)5 CBM; n=7). Box and whiskers plot representing median and IQR. *, p<0.05 

(Wilcoxon rank test); ○, outliers; ●, extremes. (B) Fold-change in TNF-α (gray) and IL-10 

(white) gene expression from reference line (at 1, caffeine at 0 µM; n=9). Box and whiskers 

plot representing median and IQR. *, p<0.05 (Wilcoxon rank test); ○, outliers; ●, extremes. 

(C) Melting curves for TNF-α and IL-10 PCR products. (D) TNF-α and (E) IL-10 release 

from CBM following caffeine exposure (0, 50, 100, 200 µM) alone (continuous line) or 
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combined (dashed line) with DPCPX (A1R antagonist) pre-treatment. Mean ± SEM (n=11). 

*,p<0.01 vs. LPS-activated CBM exposed to 0µM of caffeine (Bonferroni). **, p<0.01 vs. 

pre-treatment counterpart. †, overall p=0.02 (Two-way repeat measures ANOVA). (F) 
Intracellular cAMP concentration (fmol /2(10)5 CBM; n=6) following caffeine (50uM) and 

MRS1220 alone and combined. Box and whiskers plot representing median and IQR. *, 

p<0.05 (Wilcoxon rank test); ○, outliers; ●, extremes. (G) TNF-α and (H) IL-10 release 

from CBM curve in response to caffeine (0, 50, 100, 200 µM) alone (continuous) or 

combined (dashed) with MRS1220 (A3R antagonist) pre-treatment. Mean ± SEM (n=11). 

*,p<0.01 vs. LPS-activated CBM exposed to 0µM of caffeine (Bonferroni). **, p<0.01 vs. 

pre-treatment counterpart. †, overall p=0.002 (Two-way repeat measures ANOVA). (I) Fold 

change of TNF-α (gray) and IL-10 (white) gene expression after MRS1220 pre-treatment 

with and without caffeine (50 µM; n=6). *,p<0.05 (Wilcoxon rank test) vs. reference line (at 

1, no pre-treatment).
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Figure 2. 
(A) Intracellular cAMP accumulation (fmol /2(10)5 CBM; n=6) following RO-201724 (PDE 

IV inhibitor) alone and combined with caffeine (50µM). Box and whiskers plot representing 

median and IQR. *,p<0.05 (Wilcoxon rank test). ○, outliers. (B) TNF-α and (C) IL-10 

release from CBM curve in response to caffeine (0, 50, 100, 200 µM) alone (continuous line) 

or combined (dashed line) with RO-201724 pre-treatment. Mean ± SEM (n=11). *,p<0.01 

vs. LPS-activated CBM exposed to 0µM of caffeine (Bonferroni). **, p<0.05 vs. pre-

treatment counterpart. †, overall p<0.05 (Two-way repeat measures ANOVA). (D) 
Intracellular cAMP accumulation (fmol /2(10)5 CBM; log scale; n=6) following caffeine 

exposure (0, 50, 100, 200 uM) alone (○) and combined (●) with RP-cAMPs (PKA 

inhibitor; 50 uM) pre-treatment. *,p<0.05 (Wilcoxon rank test). (E) TNF-α (gray) and (F) 
IL-10 (white) release from CBM curve in response to RP-cAMP and/or caffeine (n=7). 

*,p<0.05 (Wilcoxon rank test) vs. no treatments. ○, outliers.
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Figure 3. 
Fold change in (A) TLR1; (B) TLR2 and (C) TLR4 gene expression induced by caffeine at 

50, 100 and 200 µM (n=7). *,p<0.05 (Wilcoxon rank test) vs. reference line (at 1, caffeine at 

0 µM). ○, outliers. Melting curves for PCR products are shown.
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TABLE 1

DEMOGRAPHICS AND SERUM CAFFEINE LEVELS

Number of subjects 19

Gestational age (mean ± SD) 39 4/7 ± 1.2 weeks

Birth weight (mean ± SD) 3286 ± 505 grams

Gender 73% male

Race 78 % AA ; 11% C

Apgar 1 minute (median, range) 8 (6–9)

Apgar 5 minute (median, range) 9 (8–9)

Delivery mode 21% C/S

Caffeine level (mean ± SD) 0.67 ± 1.12 ug/ ml

AA, African American; Apgars, Apgar score; C, Caucasian; C/S, cesarean section
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TABLE 2

LIST OF ANTAGONISTS AND INHIBITORS

Antagonist Synonym Dose (s) Target

Caffeine 1,3,7-Trimethylxanthine 50, 100, 200 µM A1 > A2 > A3

DPCPX 1,3-Dipropyl-8cyclopentylxanthine 10 nM A1

MRS1220 9-Chloro-2-(2-furanyl)-5-(phenylacetyl amino)-[1,2,4]triazolo[1,5-c] quinazoline 10 nM A3

RO-201724 4- (3- Butoxy- 4- methoxybenzyl)- 2- imidazolidinone 10 µM PDE IV

RP-cAMPs Rp-Adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate 50 µM cAMP-PKA

A1, A2a, A2b, A3, adenosine receptor subtypes; cAMP, cyclic adenosine monophosphate; PDE, phosphodiesterase; PKA, protein kinase A
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TABLE 3

PRIMERS FOR REAL TIME qRT-PCR.

Gene Direction Sequence (5’-3’) Product UniSTS

TNF-α S CACTAAGAATTCAAACTGGGGC 166 bp 28864

AS GAGGAAGGCCTAAGGTCCAC

IL-10 S ACCTGGGTTGCCAAGCCTTGTC 158 bp Ref 39a

AS AAATCGATGACAGCGCCGTAGC

TLR1 S CACATCAAGTGAAAAATATTCCTCC 151 bp 24274

AS TAAATGGTGAACTGCGACCC

TLR2 S CTACTGGGTGGAGAACCTTATGGT 76 bp 1092

AS CCGCTTATGAAGACACAACTTGA

TLR3 S TCCTAGAAGAGATGTAATTG 169 bp 66831

AS CCCAAAAACTCTGTACATTA

TLR4 S GTTTCTGAGCAGTCGTGCAG 172 bp 480158

AS CAGGGCTTTTCTGAGTCGTC

GAPDH S AACAGCGACACCCACTCCTC 258 bp 270428

AS GGAGGGGAGATTCAGTGTGGT

a
, not listed at UniSTS

AS, antisense; bp, base pair; GADPH, glyceraldehyde phosphate dehydrogenase; IL-10, interleukin-10; qRT-PCR, quantitative reverse-
transcription polymerase-chain reaction; S, sense; TLR, Toll-like receptor; TNF, tumor necrosis factor
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