
sensors

Article

Behavioral Analysis and Individual Tracking Based on Kalman
Filter: Application in an Urban Environment

Amaury Auguste 1,2 , Wissam Kaddah 1, Marwa Elbouz 1, Ghislain Oudinet 2 and Ayman Alfalou 1,*

����������
�������

Citation: Auguste, A.; Kaddah, W.;

Elbouz, M.; Oudinet, G.; Alfalou, A.

Behavioral Analysis and Individual

Tracking Based on Kalman Filter:

Application in an Urban

Environment. Sensors 2021, 21, 7234.

https://doi.org/10.3390/s21217234

Academic Editor: Stefano Mariani

Received: 15 September 2021

Accepted: 27 October 2021

Published: 30 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 L@bISEN, Equipe LSL, Yncrea Ouest, 20 Rue Cuirasse Bretagne, 29200 Brest, France;
amaury.auguste@yncrea.fr (A.A.); wissam.kaddah@isen-ouest.yncrea.fr (W.K.);
marwa.el-bouz@isen-ouest.yncrea.fr (M.E.)

2 ISEN Yncréa Méditerranée, Pl. Georges Pompidou, 83000 Toulon, France; ghislain.oudinet@yncrea.fr
* Correspondence: ayman.al-falou@isen-ouest.yncrea.fr

Abstract: In order to improve behavioral analysis systems in urban environments, this paper pro-
poses, using data extracted from video surveillance cameras, a tracking method through two ap-
proaches. The first approach consists in comparing the position of people between two images of a
video and to perform tracking by proximity. The second method using Kalman filters is based on the
anticipation of the position of an individual in the upcoming image. The use of this method proves
to be more efficient as it allows continuing a detection even when people cross each other or when
they pass behind obstacles. The use of Kalman filters in this domain provides a new approach to
obtain reliable tracking and information on speed and trajectory variations. The proposed method
is innovative in the way the tracking is performed and the results are exploited. Experiments were
conducted in a real situation and showed that the use of some elements of the first method could be
reused to integrate a notion of distance in the method based on the Kalman filter and thus improve the
latter both in tracking and in detecting of abnormal behavior. This article deals with the functioning
of the two methods as well as the results obtained with the same scenarios. The experimentation
concludes through concrete results that the Kalman filter method is more efficient than the proximity
method alone. A sample result is available online for two of the seven videos used in this article
(accessed on 19 July 2021).

Keywords: Kalman filters; video tracking; behavioral analysis; YOLO; anonymity; data analysis;
clustering

1. Introduction

The study of behavior can take several forms. In the computer field, the methods most
often put forward are data monitoring and analysis through “data mining” to analyze,
for example, consumers’ needs [1], but also to prevent terrorist acts [2]. However, since
the amount of data to be processed is often large, these analyses take time and do not
allow prevention of a spontaneous act. Another method that is increasingly used today is
behavioral analysis of real-time data using, for example, video surveillance cameras. These
analyses can be simple, for example, by monitoring by a human operator, or much more
complex thanks to video analysis. The subject of this article is based on the improvement
of these video surveillance systems by adding the possibility of individualized tracking.
The need for individualized tracking arose from research conducted as part of a project to
secure urban spaces in the city of Nice, France [3]. This project aimed at improving security
in urban spaces and allowed to carry out research in several fields such as the use of
artificial intelligence for the detection of intrusions or abnormal behavior [4], the detection
of morphology for the differentiation of an adult or a child [5], or facial recognition based
on neural networks and correlation techniques [6]. During this research, it has been put
forward that the identification and tracking of people visible from a video surveillance
camera could improve the detection of dangerous and abnormal behavior. This article

Sensors 2021, 21, 7234. https://doi.org/10.3390/s21217234 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9157-4920
https://orcid.org/0000-0002-3965-4648
https://doi.org/10.3390/s21217234
https://doi.org/10.3390/s21217234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217234
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217234?type=check_update&version=2


Sensors 2021, 21, 7234 2 of 19

therefore deals with the creation of an individualized tracking system, as a follow-up to
the work carried out in the framework of the security project. The objective is to be able to
make more specific analyses during panic movements, but also to have more information
on an individual and his trajectories.

The desired tracking can be done in several ways, the first would be purely oriented
on video processing. The most used methods today are based on the analysis of the video
and thus of groups of pixels evolving in a short time to detect people and sometimes to
track them [7]. In general, it appears that the part related to detection is powerful and that
the quality of the latter will depend on the tool or technology used such as R-CNN (Region
Based Convolutional Neural Networks) [8] or YOLO (You Only Look Once) [9] which are
both dependent on artificial intelligence and which can detect a multitude of objects once
they have been sufficiently trained. In this paper we will use YOLO detection which is
more efficient than CNN, R-CNN, or Faster R-CNN [10].

For tracking, the results are sometimes more questionable due to the number of
parameters that can change (frame rate, image resolution, camera exposure...). In general,
a good quality of the video (resolution and frequency) and stability of the camera will
allow the best possible detections [11]. Therefore, the method proposed in this paper is
based on individual detections in videos, but also on tracking algorithms that are not
dependent on a video system. However, some methods such as “Kanade-Lucas-Tomasi
feature tracker” [12] allow tracking points or shapes position in a video. This method
can for example be used in addition to the “Harris corner detector” [13] to track multiple
elements. This article proposes a different tracking approach whose primary objective is to
respect complete anonymity when analyzing the trajectory. To do so, no video data will be
transmitted to perform the analysis.

The initial observation is that detection systems have become sufficiently powerful to
give us the position of individuals in each frame of a video as an anonymous point cloud.
It is therefore possible to do our tracking on these sets of point clouds without needing to
use any other image of the video. Our method is therefore based on two main axes, namely
video detection and the tracking of the evolution of points in space as a function of time.

Regarding the detection, several methods can be used to detect elements in an image.
Today, the methods that are most often used are those based on AI and more particularly
on “deep learning”, the use of YOLO mentioned above. The use of one of these methods
allows us to generate a point cloud for each image of the video where each point represents
the center of the person detected and the position of the point in the cloud will represent
the position of the person in the image. Extracting a real situation into a point cloud usually
has an advantage, as only the necessary information is kept, and the processing can then
be much more targeted [14].

For tracking, several methods are possible, the first being algorithmically simple with
distance comparisons within point clouds and probable pairings using only the known
N and N-1 image data. This technique is for example used in some clustering algorithms
such as DBSCAN [15]. In a second step, another method based on Kalman filters [16,17]
would allow using the known data in N-1, but also would keep a trace of the data in N-X
to predict how the point cloud could evolve in N.

The use of these methods, and more particularly the one using Kalman filters in the
field of tracking applied to video surveillance, makes it possible to set up an instantaneous
tracking system and thus a continuous identification of the persons present in the video flow.
This method allows to obtain precise information not only on the position of an individual
in the video stream, but also on the trajectory and the future position of this individual. The
novelty and the finality of this method reside in an optimized algorithmic implementation
in order to allow, through the detection of abnormal trajectory, to define if it is a simple
loss of track and in which case to correct the error or if it is indeed an abnormal behavior
presenting a variation of speed or unusual trajectory. Such a use of this tracking brings
to the current detection methods the possibility to determine abnormal behaviors and to



Sensors 2021, 21, 7234 3 of 19

have a tracking that is both efficient and integrates speed and instantaneous trajectory
information.

This article is therefore presented in several parts. The first part presents a rudimentary
tracking method based on simple comparison rules. This method allowing good results
will, however, be compared to another method based on Kalman filters that is more
complex. Finally, the two methods will be compared on the same data set to quantify the
real efficiency of the two methods.

2. Database

To validate the functioning of the algorithms proposed in this article, we had to
compose a database. To do this, we can use videos from existing fixed cameras, but we
preferred to make our own set of videos to have a greater flexibility in the filmed scenarios
and thus to make stagings of escape, gathering, and dispersion . . . The shooting of these
videos was done using an “OM-D EM-5 mk II” camera capable of filming in 4:2:0 8b,
H.264, BT-709, 29.97 fps set at the same level as a city security camera. The filmed area is
surrounded in red in Figure 1 and is located outside the laboratory in the center of Toulon,
France.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 19 
 

 

this tracking brings to the current detection methods the possibility to determine abnor-
mal behaviors and to have a tracking that is both efficient and integrates speed and in-
stantaneous trajectory information. 

This article is therefore presented in several parts. The first part presents a rudimen-
tary tracking method based on simple comparison rules. This method allowing good re-
sults will, however, be compared to another method based on Kalman filters that is more 
complex. Finally, the two methods will be compared on the same data set to quantify the 
real efficiency of the two methods. 

2. Database 
To validate the functioning of the algorithms proposed in this article, we had to com-

pose a database. To do this, we can use videos from existing fixed cameras, but we pre-
ferred to make our own set of videos to have a greater flexibility in the filmed scenarios 
and thus to make stagings of escape, gathering, and dispersion... The shooting of these 
videos was done using an “OM-D EM-5 mk II” camera capable of filming in 4:2:0 8b, 
H.264, BT-709, 29.97 fps set at the same level as a city security camera. The filmed area is 
surrounded in red in Figure 1 and is located outside the laboratory in the center of Toulon, 
France. 

 
Figure 1. Filmed Area by the study camera, surrounded in red. Location: 43°07′15.5″ N 5°56′21.3″ E. 

It is necessary to have a good quality when we film our scenes, because the algorithm 
of detection of an individual will not be able to detect an individual if it is too blurred. We 
have therefore chosen to use these resolutions which are standard today. The study does 
not deal with the detection part, so we chose to get closer to the specifications of the cam-
eras used by the city of Nice. It should be noted that the resolution of the camera will have 
an impact on the detection part in the sense that the detection will be much more effective 
on an image of the best possible quality. 

Our experiments are based on seven videos among about twenty that were initially 
shot. They were selected for their characteristics presented in Table 1, which are: 
− the number of passages behind an obstacle; 
− the number of people who cross each other; 
− the number of track mergers (due to the detection algorithm); 
− the total number of individuals; 
− the duration of the video. 

Figure 1. Filmed Area by the study camera, surrounded in red. Location: 43◦07′15.5” N 5◦56′21.3” E.

It is necessary to have a good quality when we film our scenes, because the algorithm
of detection of an individual will not be able to detect an individual if it is too blurred.
We have therefore chosen to use these resolutions which are standard today. The study
does not deal with the detection part, so we chose to get closer to the specifications of the
cameras used by the city of Nice. It should be noted that the resolution of the camera will
have an impact on the detection part in the sense that the detection will be much more
effective on an image of the best possible quality.

Our experiments are based on seven videos among about twenty that were initially
shot. They were selected for their characteristics presented in Table 1, which are:

- the number of passages behind an obstacle;
- the number of people who cross each other;
- the number of track mergers (due to the detection algorithm);
- the total number of individuals;
- the duration of the video.



Sensors 2021, 21, 7234 4 of 19

Table 1. Characteristic of the videos.

Video Number 1 2 5 7 12 17 19
Obstacles 3 2 6 2 27 4 1
Crossings 2 0 0 1 13 0 0

Merge 12 4 6 4 14 4 0
Number of
Individuals 10 7 9 7 33 9 1

Video Duration 7 15 22 18 103 26 115

In order not to have to process the videos for each test, all the videos have been
processed beforehand and the detections have been saved in a JSON file. The data is
labeled with all the necessary information to replay the videos in real time.

In the rest of this article, we will consider that the videos have been processed be-
forehand and that we therefore have a set of detection replay. The detection replay allows
us to simulate the evolution of a point cloud in a 2D environment, which allows us to
detach ourselves completely from the video, which is not the object of the study. Indeed,
in the rest of this document, we will consider that the video processing was carried out
by any algorithm, but we will admit that each image of the processed video allowed the
generation of a set of points forming a point cloud. We thus have a set of point clouds
evolving through time. This set of point clouds has been saved in a JSON file with the
following structure:

{Timecode: int, individuals: [{x: int, y: int, width: int, heigth: int}, . . . ]} (1)

Each point cloud contains a number of points corresponding to the number of individ-
uals detected in the image. These points are defined by four characteristics: their abscissa
positions on the image, their ordinate positions on the image, the height of the detection
on the image, and the width of the detection on the image. The points are grouped in a
table whose size varies according to the number of individuals detected in the video and
to which is associated a Timecode. The Timecode value is an integer whose unit is the
millisecond, all the other values of position and size being taken directly from the video
are in pixels.

In this article, we will discuss how this point cloud evolution has been processed
through two methods. All the processing done on these points was done and coded in
Python3 under Windows with the Visual Studio code IDE. No proprietary library was used,
and the matrix calculations were performed using Numpy and the calculations related
to the Kalman filter were programmed in the laboratory. The results obtained after the
different treatments can be reused by a system that would assemble both the image and
the results if necessary to exploit the results visually. In our case of study requiring only to
raise alarms according to abnormal detection it was not necessary to reintroduce the results
on a video, that is why the illustrations present in this article are given as an indication
and are thus a visual transcription of the results which is not in any case necessary to
obtain them.

The algorithms have been tested on all the videos to obtain the data presented in
the following article. The validation of the good functioning of the algorithms will be
done through the stall count. A stall is when the algorithm fails to track by losing a track,
reversing two tracks, or re-identifying a wrong track. These stalls will be counted through
graphs generated from the data of the algorithms, an example of which is presented in
Figure 2.



Sensors 2021, 21, 7234 5 of 19Sensors 2021, 21, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Tracking as a function of time on the x-axis and y-axis, each color represents a tracked 
point (a) Tracking on X of video no.1 at 30IPS with the first method, (b) Tracking on X and Y of 
video no.1 at 30IPS with the first method, (c) Tracking on Y of video no.1 at 30IPS with the first 
method, (d) Highlighting of the stalls of video No. 1 at 30IPS with the first method, each stall is 
circled in red. 

In Figure 2a,c and Figure 3a,c represent the position of each individual for each frame 
of the video, each colored line represents the potential tracking of a person. Figure 2a and 
Figure 3a represent their evolutions on the abscissa axis of the camera as a function of the 
elapsed time. Figure 2c and Figure 3c represent their evolution on the ordinate axis as a 
function of the elapsed time. Figure 2b and Figure 3b are a representation of all the trajec-
tories of the people presents in the entire video. The lines are of different colors, because 
each color corresponds to a known point (with an identifier) which means that the track-
ing has been interrupted if during the walk of an individual the line changes color. Figure 
2d is the same graph as Figure 2b, but what is considered as “stall” is circled in red. The 
video no.1 presented in Figure 2 is a fast dispersion of initially grouped individuals. Fig-
ure 2d shows 12 stalls for video No. 1 at 30IPS (Image Per Second) processed with the first 
method. 

Figure 2. Tracking as a function of time on the x-axis and y-axis, each color represents a tracked point
(a) Tracking on X of video No. 1 at 30IPS with the first method, (b) Tracking on X and Y of video
No. 1 at 30IPS with the first method, (c) Tracking on Y of video No. 1 at 30IPS with the first method,
(d) Highlighting of the stalls of video No. 1 at 30IPS with the first method, each stall is circled in red.

In Figure 2a,c and Figure 3a,c represent the position of each individual for each frame
of the video, each colored line represents the potential tracking of a person. Figures 2a and 3a
represent their evolutions on the abscissa axis of the camera as a function of the elapsed
time. Figures 2c and 3c represent their evolution on the ordinate axis as a function of the
elapsed time. Figures 2b and 3b are a representation of all the trajectories of the people
presents in the entire video. The lines are of different colors, because each color corresponds
to a known point (with an identifier) which means that the tracking has been interrupted
if during the walk of an individual the line changes color. Figure 2d is the same graph as
Figure 2b, but what is considered as “stall” is circled in red. The video No. 1 presented in
Figure 2 is a fast dispersion of initially grouped individuals. Figure 2d shows 12 stalls for
video No. 1 at 30IPS (Image Per Second) processed with the first method.

In most cases, the stalls are accounted for on the graphs as presented in Figure 2b, but
if the number of tracks is too large, it is sometimes necessary to use the graphs as presented
in Figure 2a,c. Figure 3 shows how the same stall is identified on the 3 types of graphs (a),
(b), and (c) as well as a zoom on the areas where the stall occurs: (d) zoom of (a), (e) zoom
of (b), and (f) zoom of (c).

To test both algorithms under the same conditions, the algorithms received the same
data. To validate the robustness of the algorithms, the experimentation was also conducted
by methodically removing some data, thus increasing the time between the reception of
two-point clouds. The objective of this withdrawal is to see how the algorithms behave
if they are fed with data by a slower or slower detection, i.e., 10, 15, 20, 25, and 30 image
processing per second. Each video was processed by the two algorithms to obtain the set
of point clouds labeled with an identifier for each point of each cloud received.



Sensors 2021, 21, 7234 6 of 19
Sensors 2021, 21, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Tracking as a function of time on the x-axis and y-axis, each color represents a tracked 
point with highlighting of a stall (a) Tracking on X of video no.1 at 30IPS with the first method, (b) 
Tracking on X and Y of video no.1 at 30IPS with the first method, (c) Tracking on Y of video No. 1 
at 30IPS with the first method, (d) stall highlighting on (a), (e) stall highlighting on (b), (f) stall high-
lighting on (c). 

In most cases, the stalls are accounted for on the graphs as presented in Figure 2b, 
but if the number of tracks is too large, it is sometimes necessary to use the graphs as 
presented in Figure 2a,c. Figure 3 shows how the same stall is identified on the 3 types of 
graphs (a), (b), and (c) as well as a zoom on the areas where the stall occurs: (d) zoom of 
(a), (e) zoom of (b), and (f) zoom of (c). 

To test both algorithms under the same conditions, the algorithms received the same 
data. To validate the robustness of the algorithms, the experimentation was also con-
ducted by methodically removing some data, thus increasing the time between the recep-
tion of two-point clouds. The objective of this withdrawal is to see how the algorithms 
behave if they are fed with data by a slower or slower detection, i.e., 10, 15, 20, 25, and 30 
image processing per second. Each video was processed by the two algorithms to obtain 
the set of point clouds labeled with an identifier for each point of each cloud received. 

3. Tracking by Proximity 
The most basic approach was to develop an algorithm whose goal is to find a corre-

lation between two point clouds from two images following each other in a video. Indeed, 
as explained in the introduction, the data of the video and more particularly the positions 
and sizes of the persons present in each frame of the video were extracted to obtain a point 
cloud for each frame of the video where each point represents a person in the image to 
which we also attribute information on the size of the detection. The objective of this 
method is to search for the closest points considering that the evolution of a person be-
tween two images depends on three parameters: 
− the distance at which the person is from the camera; 
− the speed at which the person moves; 
− the speed at which the camera records. 

Figure 3. Tracking as a function of time on the x-axis and y-axis, each color represents a tracked
point with highlighting of a stall (a) Tracking on X of video No. 1 at 30IPS with the first method,
(b) Tracking on X and Y of video No. 1 at 30IPS with the first method, (c) Tracking on Y of video
No. 1 at 30IPS with the first method, (d) stall highlighting on (a), (e) stall highlighting on (b), (f) stall
highlighting on (c).

3. Tracking by Proximity

The most basic approach was to develop an algorithm whose goal is to find a correla-
tion between two point clouds from two images following each other in a video. Indeed,
as explained in the introduction, the data of the video and more particularly the positions
and sizes of the persons present in each frame of the video were extracted to obtain a
point cloud for each frame of the video where each point represents a person in the image
to which we also attribute information on the size of the detection. The objective of this
method is to search for the closest points considering that the evolution of a person between
two images depends on three parameters:

- the distance at which the person is from the camera;
- the speed at which the person moves;
- the speed at which the camera records.

We therefore wish to form pairs of points based on the proximity of individuals
between two images of the video. We first evaluate the position of the points in the cloud
using only their XY coordinates. However, to proceed with this evaluation, we must first
know the three observable situations at the beginning:

- the number of points between the two point clouds is the same;
- the number of points in cloud 1 is lower than in cloud 2;
- the number of points in cloud 1 is higher than in cloud 2.

Each of these cases leads to a particularity that the algorithm must be able to handle.
Let us consider the nominal case where the number of individuals remains unchanged

(Figure 4), the most logical solution is to look between the two point clouds to see which
points are closest and thus form pairs of points (Figure 4d).



Sensors 2021, 21, 7234 7 of 19

Sensors 2021, 21, x FOR PEER REVIEW 7 of 19 
 

 

We therefore wish to form pairs of points based on the proximity of individuals be-
tween two images of the video. We first evaluate the position of the points in the cloud 
using only their XY coordinates. However, to proceed with this evaluation, we must first 
know the three observable situations at the beginning: 
− the number of points between the two point clouds is the same; 
− the number of points in cloud 1 is lower than in cloud 2; 
− the number of points in cloud 1 is higher than in cloud 2. 

Each of these cases leads to a particularity that the algorithm must be able to handle. 
Let us consider the nominal case where the number of individuals remains un-

changed (Figure 4), the most logical solution is to look between the two point clouds to 
see which points are closest and thus form pairs of points (Figure 4d). 

 
Figure 4. (a) graphical representation of the algorithmic view at a time t, (b) graphical representation of the algorithmic 
view at a time t + 1, (c) view of the identifiers associated with each point at a time t, (d) passage of the identifiers to each 
new point at a time t + 1. 

The DBSCAN as well as many other clustering algorithms work to cluster points in 
a point set based on specific parameters. The main parameter used here is the distance, as 
our primary goal is to cluster the closest points together. The other parameter that is im-
portant is the quantity of points to group, in our case the grouping can only be done on 
two points maximum. We do not use the whole algorithm, we only use the part consisting 
in forming groups. This part is then modified so as not to form groups in the same point 
cloud, but to form groups between two point clouds. Any point belonging to the first 
cloud can only be grouped with a point belonging to a second cloud. This method works 
very well if the number of points between the first cloud and the second cloud remains 
unchanged, if the points that are present in the first cloud are also present in the second 
cloud and if only their position has changed. Apart from this very specific and ideal case, 
others exist. 

In order to carry out the groupings with DBSCAN, each point of the A cloud is given 
a detection radius. We then simply search in the cloud B for all the points that fit into the 
detection circles previously established. As shown in Figure 5, in a normal use, several 
points can be grouped together if they are inside several detection radii. In our case, we 
will try to have only one point in each detection radius. 

Figure 4. (a) graphical representation of the algorithmic view at a time t, (b) graphical representation
of the algorithmic view at a time t + 1, (c) view of the identifiers associated with each point at a time
t, (d) passage of the identifiers to each new point at a time t + 1.

The DBSCAN as well as many other clustering algorithms work to cluster points in
a point set based on specific parameters. The main parameter used here is the distance,
as our primary goal is to cluster the closest points together. The other parameter that is
important is the quantity of points to group, in our case the grouping can only be done on
two points maximum. We do not use the whole algorithm, we only use the part consisting
in forming groups. This part is then modified so as not to form groups in the same point
cloud, but to form groups between two point clouds. Any point belonging to the first
cloud can only be grouped with a point belonging to a second cloud. This method works
very well if the number of points between the first cloud and the second cloud remains
unchanged, if the points that are present in the first cloud are also present in the second
cloud and if only their position has changed. Apart from this very specific and ideal case,
others exist.

In order to carry out the groupings with DBSCAN, each point of the A cloud is given
a detection radius. We then simply search in the cloud B for all the points that fit into the
detection circles previously established. As shown in Figure 5, in a normal use, several
points can be grouped together if they are inside several detection radii. In our case, we
will try to have only one point in each detection radius.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Clustering by DBSCAN: (Green) Clustered points. (Yellow) End points. (Red) Single 
points. 

As shown in Figure 6, the proximity processing algorithm is as follows: 

 
Figure 6. Operation of the proximity tracking algorithm. 

As explained earlier, the video stream is processed independently of analysis sys-
tems. Once processed, the result is stored as a JSON file. The first step is to convert the 
data in the JSON file into data that can be processed by the language used (in our case 
python3). If it is then the first data of the file, they are automatically integrated into the 
known points. The known points in our case are all the points with an identifier. If it is 
not the first message, the first step is to form the possible pairs between the old known 
points and the new received points. Three results are then possible: 
− The new point is associable with an old point; 
− The new point is not associable with an old point; 
− Several points are associable with an old point. 

In the first case, the solution is simple, there is an old and a new point perfectly asso-
ciable, the new point is thus assigned information from the old one. 

In the second case, if the new point can only be associated with an old one, it may 
mean that either the new point is a bad detection, or that the person represented by this 
point has passed behind an obstacle or has left the field of vision of the camera. In both 
cases, the point is saved in memory to be used later. However, this storage in memory 
must be temporary, because if it is not just a temporary disappearance, the point must not 
be reassigned. 

Figure 5. Clustering by DBSCAN: (Green) Clustered points. (Yellow) End points. (Red) Single points.

As shown in Figure 6, the proximity processing algorithm is as follows:



Sensors 2021, 21, 7234 8 of 19

Sensors 2021, 21, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Clustering by DBSCAN: (Green) Clustered points. (Yellow) End points. (Red) Single 
points. 

As shown in Figure 6, the proximity processing algorithm is as follows: 

 
Figure 6. Operation of the proximity tracking algorithm. 

As explained earlier, the video stream is processed independently of analysis sys-
tems. Once processed, the result is stored as a JSON file. The first step is to convert the 
data in the JSON file into data that can be processed by the language used (in our case 
python3). If it is then the first data of the file, they are automatically integrated into the 
known points. The known points in our case are all the points with an identifier. If it is 
not the first message, the first step is to form the possible pairs between the old known 
points and the new received points. Three results are then possible: 
− The new point is associable with an old point; 
− The new point is not associable with an old point; 
− Several points are associable with an old point. 

In the first case, the solution is simple, there is an old and a new point perfectly asso-
ciable, the new point is thus assigned information from the old one. 

In the second case, if the new point can only be associated with an old one, it may 
mean that either the new point is a bad detection, or that the person represented by this 
point has passed behind an obstacle or has left the field of vision of the camera. In both 
cases, the point is saved in memory to be used later. However, this storage in memory 
must be temporary, because if it is not just a temporary disappearance, the point must not 
be reassigned. 

Figure 6. Operation of the proximity tracking algorithm.

As explained earlier, the video stream is processed independently of analysis systems.
Once processed, the result is stored as a JSON file. The first step is to convert the data in the
JSON file into data that can be processed by the language used (in our case python3). If it is
then the first data of the file, they are automatically integrated into the known points. The
known points in our case are all the points with an identifier. If it is not the first message,
the first step is to form the possible pairs between the old known points and the new
received points. Three results are then possible:

- The new point is associable with an old point;
- The new point is not associable with an old point;
- Several points are associable with an old point.

In the first case, the solution is simple, there is an old and a new point perfectly
associable, the new point is thus assigned information from the old one.

In the second case, if the new point can only be associated with an old one, it may
mean that either the new point is a bad detection, or that the person represented by this
point has passed behind an obstacle or has left the field of vision of the camera. In both
cases, the point is saved in memory to be used later. However, this storage in memory
must be temporary, because if it is not just a temporary disappearance, the point must not
be reassigned.

In the third case, if several new points are sociable to an old point, we simply associate
the closest point to the old point and the other points are kept in memory in the same way
as for the second case.

However, this solution is problematic if between two images one of the individuals
has disappeared and another has appeared elsewhere in the image. Indeed, we have the
same number of points between the two clouds (Figure 7a), so we can form our couples,
however, the distance between some couples will be too large for it to be effectively the
same person (Figure 7b).



Sensors 2021, 21, 7234 9 of 19

Sensors 2021, 21, x FOR PEER REVIEW 9 of 19 
 

 

In the third case, if several new points are sociable to an old point, we simply associ-
ate the closest point to the old point and the other points are kept in memory in the same 
way as for the second case. 

However, this solution is problematic if between two images one of the individuals 
has disappeared and another has appeared elsewhere in the image. Indeed, we have the 
same number of points between the two clouds (Figure 7a), so we can form our couples, 
however, the distance between some couples will be too large for it to be effectively the 
same person (Figure 7b). 

 
Figure 7. (a) Four identified points and four new points received and not identified, one of which 
disappears and one of which appears elsewhere (b) the unidentified points are associated with the 
identified points. 

To correct this problem, a simple solution is to set a radius around each point estab-
lished through observation of the scene and the environment for several hours. Once the 
radius is established, if a point appears outside all the rays present in the cloud, it will 
most likely be a new individual, in which case we can conclude that another person has 
disappeared from the image. This technique follows the logic of a DBSCAN [15] clustering 
method that allows both grouping and identification of single individuals. 

In the case where the number of points in the first cloud is less than that in the second 
cloud, we are faced with the disappearance of an individual. This disappearance can be 
due either to an exit from the area filmed by the camera or to a passage behind an obstacle 
(Figure 8a,b) which would prevent the camera from identifying the individual (Figure 8c). 
In the first case, the simplest solution is to check where the disappearance took place. If 
we are close to the edge of the monitored area, we will consider that the person has effec-
tively left the field, making sure that the value of proximity to the edge used is as small as 
possible to ensure that the person continues to be tracked if he or she passes behind an 
obstacle that is close to an edge for example. In the second case, if the person disappears 
somewhere other than near one of the edges of the monitored area, this means that the 
person has most likely passed behind an obstacle and can potentially reappear. In this 
case, the obvious pairs must be formed, and a record kept of the last known position of 
the person who disappeared. Keeping track of all the positions will potentially allow the 
person to be recovered if he/she were to reappear. If the person is lost for too long and 
then reappears (Figure 8d,e), then they will be identified as a new person (Figure 8f). 

Figure 7. (a) Four identified points and four new points received and not identified, one of which
disappears and one of which appears elsewhere (b) the unidentified points are associated with the
identified points.

To correct this problem, a simple solution is to set a radius around each point estab-
lished through observation of the scene and the environment for several hours. Once the
radius is established, if a point appears outside all the rays present in the cloud, it will
most likely be a new individual, in which case we can conclude that another person has
disappeared from the image. This technique follows the logic of a DBSCAN [15] clustering
method that allows both grouping and identification of single individuals.

In the case where the number of points in the first cloud is less than that in the second
cloud, we are faced with the disappearance of an individual. This disappearance can be
due either to an exit from the area filmed by the camera or to a passage behind an obstacle
(Figure 8a,b) which would prevent the camera from identifying the individual (Figure 8c).
In the first case, the simplest solution is to check where the disappearance took place. If we
are close to the edge of the monitored area, we will consider that the person has effectively
left the field, making sure that the value of proximity to the edge used is as small as possible
to ensure that the person continues to be tracked if he or she passes behind an obstacle that
is close to an edge for example. In the second case, if the person disappears somewhere
other than near one of the edges of the monitored area, this means that the person has most
likely passed behind an obstacle and can potentially reappear. In this case, the obvious
pairs must be formed, and a record kept of the last known position of the person who
disappeared. Keeping track of all the positions will potentially allow the person to be
recovered if he/she were to reappear. If the person is lost for too long and then reappears
(Figure 8d,e), then they will be identified as a new person (Figure 8f).

In order for this method to work, we have to set a number of images during which
the lost points will be kept in memory, because if we keep these points in memory for too
long we could then detect a new individual that would appear at the same location as a
disappearance and thus the tracking would assume that it is the same person.

Finally, in the case where the number of individuals in the first image is greater than
that in the second image and we have not managed to form a pair from points that were in
memory, this means that an individual has appeared in the field of view of the camera. In
this case, we need to check if the appearance took place near one of the edges, because this
would simply mean that there is a new individual in the image, so there will be no pair
associated with the old image for this point.



Sensors 2021, 21, 7234 10 of 19Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. (a) an individual enters the image, (b) the individual passes behind an obstacle, (c) the 
individual is no longer hidden, (d) the point representing the individual in image (a) is identified, 
(e) the individual identified in (d) is lost, (f) the individual identified in (d) is still lost and another 
individual is identified in image (c). 

In order for this method to work, we have to set a number of images during which 
the lost points will be kept in memory, because if we keep these points in memory for too 
long we could then detect a new individual that would appear at the same location as a 
disappearance and thus the tracking would assume that it is the same person. 

Finally, in the case where the number of individuals in the first image is greater than 
that in the second image and we have not managed to form a pair from points that were 
in memory, this means that an individual has appeared in the field of view of the camera. 
In this case, we need to check if the appearance took place near one of the edges, because 
this would simply mean that there is a new individual in the image, so there will be no 
pair associated with the old image for this point. 

In the case where the number of individuals in the first image is greater than in the 
second image (Figure 9), we are then in a case of appearance which may be due to the fact 
that a person enters the field of view of the camera or that a person was hidden behind an 
obstacle and is now observable again. We will then first establish all the obvious pairs 
between the two images using the grouping method explained previously and we then 
consider that the person who has just appeared is a new person to be tracked (Figure 9d). 

 
Figure 9. Changeover of four to five individuals in the field of view of the camera. (a) Graphical 
representation of the algorithmic view at a time t with 4 people, (b) graphical representation of the 

Figure 8. (a) an individual enters the image, (b) the individual passes behind an obstacle, (c) the
individual is no longer hidden, (d) the point representing the individual in image (a) is identified,
(e) the individual identified in (d) is lost, (f) the individual identified in (d) is still lost and another
individual is identified in image (c).

In the case where the number of individuals in the first image is greater than in the
second image (Figure 9), we are then in a case of appearance which may be due to the fact
that a person enters the field of view of the camera or that a person was hidden behind
an obstacle and is now observable again. We will then first establish all the obvious pairs
between the two images using the grouping method explained previously and we then
consider that the person who has just appeared is a new person to be tracked (Figure 9d).

Sensors 2021, 21, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. (a) an individual enters the image, (b) the individual passes behind an obstacle, (c) the 
individual is no longer hidden, (d) the point representing the individual in image (a) is identified, 
(e) the individual identified in (d) is lost, (f) the individual identified in (d) is still lost and another 
individual is identified in image (c). 

In order for this method to work, we have to set a number of images during which 
the lost points will be kept in memory, because if we keep these points in memory for too 
long we could then detect a new individual that would appear at the same location as a 
disappearance and thus the tracking would assume that it is the same person. 

Finally, in the case where the number of individuals in the first image is greater than 
that in the second image and we have not managed to form a pair from points that were 
in memory, this means that an individual has appeared in the field of view of the camera. 
In this case, we need to check if the appearance took place near one of the edges, because 
this would simply mean that there is a new individual in the image, so there will be no 
pair associated with the old image for this point. 

In the case where the number of individuals in the first image is greater than in the 
second image (Figure 9), we are then in a case of appearance which may be due to the fact 
that a person enters the field of view of the camera or that a person was hidden behind an 
obstacle and is now observable again. We will then first establish all the obvious pairs 
between the two images using the grouping method explained previously and we then 
consider that the person who has just appeared is a new person to be tracked (Figure 9d). 

 
Figure 9. Changeover of four to five individuals in the field of view of the camera. (a) Graphical 
representation of the algorithmic view at a time t with 4 people, (b) graphical representation of the 

Figure 9. Changeover of four to five individuals in the field of view of the camera. (a) Graphical
representation of the algorithmic view at a time t with 4 people, (b) graphical representation of the
algorithmic view at a time t + 1 with 5 people, (c) 4 identified points, (d) the unidentified points are
associated to the identified points the points alone get a new identifier.

The results show that the method works in the ideal case where the number of
processed images is sufficiently large (ideally greater than 20), the field of view of the
camera is sufficiently clear and the individuals present in the scene do not have intersecting
trajectories. As soon as these parameters are met, we have an efficient and fast algorithm.
It is efficient because the processing is only done between two clouds of points and each
point will have a most probable identifier which often turns out to be the right one. The
algorithm is also fast, indeed, once all the point comparisons are done, the algorithm is able



Sensors 2021, 21, 7234 11 of 19

to give an identifier to all the points. However, the algorithm is sensitive to the crossing of
individuals and the passage behind obstacles as shown in Table 2.

Table 2. Total stalls in proximity tracking on a set of seven videos with a predefined number of IPS.

IPS
Stall

Video No. 1 Video No. 2 Video No. 3 Video No. 4 Video No. 5 Video No. 6 Video No. 7

10 12 3 5 6 24 18 0
15 12 2 5 7 18 14 0
20 12 5 5 6 16 14 0
25 12 6 5 7 15 12 0
30 12 7 5 7 22 12 1

Our study aims to perform tracking in an urban environment, the crossing and passing
behind an obstacle is therefore regular. We must therefore find a solution that can manage
these stalls.

4. Kalman Filter Tracking

In order to correct the method presented in the previous paragraph, it was neces-
sary to find a way to estimate the probable evolution between two clouds of points by
their distances, but also by their past behavior. Several methods, notably in the maritime
domain [18,19], allow for example to estimate the trajectory of marine or even air vehi-
cles [20,21] which have a strong inertia using Kalman filters. Since Kalman filters can be
used from position and velocity data, they can also be used for airborne guidance when
there is no GPS or other satellite navigation technology [22]. Kalman filters can also be
used in signal processing for smoothing or estimation [23]. The field of application is
therefore very wide, which is why the use of such a filter has become obvious. Such a
method could allow us to make predictions on the position of future points in our point
cloud, because even if the inertia of a vehicle is greater than that of a walking pedestrian,
due to the difference in mass, the evolution of the latter is not random and maintains a
fairly regular trajectory with smooth angles. However, it will be important to integrate
the idea that a trajectory can be disturbed and potentially reveal a trajectory error or an
abnormal behavior. Using Kalman filters, we are able to estimate the future trajectory of an
object moving in 2D or 3D space and not undergoing a sudden change in its inertia. Our
case study applies to urban tracking through video surveillance cameras, so we can use
these filters. We will use Kalman filters in a discrete context. In this context, we will only
need 2 images to set up our filter systems N-1 and N. The data from N-1 will allow us to
make a prediction of the future position of the points in N and N will allow us to validate
the different predictions made. Moreover, the use of Kalman filters remains compatible
with the proximity tracking method. We can also use the association effect by proximity
to reinforce the tracking by Kalman. In addition to the domains mentioned above, uses
of Kalman filters in tracking are possible to allow, for example, in the field of sports to
identify a player at any time [16] or in the field of security to fill the gaps in the movement
of a person who would pass behind an obstacle for example [24]. However, due to the
computational power required to perform both detection and tracking, there is very little
work on the subject in the field of urban tracking. Most of the works using Kalman filters
in the field of video tracking are directly applied on the latter. The method proposed in this
article allows to detach completely from the video part and focuses only on the tracking of
anonymous points. In doing so, the work done here can be applied in various domains
outside urban tracking. Indeed, this method can be used to track any population of objects
as long as they are identifiable by parameters that evolve without abrupt variations.

As for the proximity tracking method, we have the same series of point clouds as input
data where each element of the series is associated with a frame of the video. However, since
the detection size is important in this method, we will use for each point the information on
its height and width in pixels. Thus, we can associate each point with a surface. These point



Sensors 2021, 21, 7234 12 of 19

clouds will then be processed independently of each other, but any point cloud will have
an impact on the analysis of the following points. To perform the analysis, we consider
that we have two types of points: points called “anonymous detected”, because they come
directly from the point clouds, and points called “identified by tracking based on the
Kalman filter” generated and managed by our Kalman filters. The objective is to associate
an “anonymous detected” point with a “Kalman filter-based tracking” point; our “Kalman
filter-based tracking” points are managed by the algorithm which will create one of these
points as soon as an anonymous point cannot be associated with any existing “Kalman
filter-based tracking” point. We end up with a table of points “identified by tracking based
on the Kalman filter” which evolves as we receive clouds of points to process.

Consider the following example:

- The algorithm receives a point cloud N1 that contains X points (Figure 10a);
- The algorithm looks if one of the received “anonymous detected” points shares

enough area (Figure 10c) with that of one of the “Kalman filter-based tracking” points
(Figure 10b);

- If so, the identifier of the “identified by Kalman filter tracking” point is given to the
“anonymous detected” point which becomes an identified point (Figure 10d) and the
position data of the “anonymous detected” point is integrated with the associated
“identified by Kalman filter tracking” point (Figure 10f) so that the trajectory of the
“identified by Kalman filter tracking” point continues to evolve in accordance with its
“anonymous detected” point (Figure 10e);

- Otherwise, a “Kalman filter-based tracking” point is created with the data of the
“anonymous detected” point (Figure 10e).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19 
 

 

would pass behind an obstacle for example [24]. However, due to the computational 
power required to perform both detection and tracking, there is very little work on the 
subject in the field of urban tracking. Most of the works using Kalman filters in the field 
of video tracking are directly applied on the latter. The method proposed in this article 
allows to detach completely from the video part and focuses only on the tracking of anon-
ymous points. In doing so, the work done here can be applied in various domains outside 
urban tracking. Indeed, this method can be used to track any population of objects as long 
as they are identifiable by parameters that evolve without abrupt variations. 

As for the proximity tracking method, we have the same series of point clouds as 
input data where each element of the series is associated with a frame of the video. How-
ever, since the detection size is important in this method, we will use for each point the 
information on its height and width in pixels. Thus, we can associate each point with a 
surface. These point clouds will then be processed independently of each other, but any 
point cloud will have an impact on the analysis of the following points. To perform the 
analysis, we consider that we have two types of points: points called “anonymous de-
tected”, because they come directly from the point clouds, and points called “identified 
by tracking based on the Kalman filter” generated and managed by our Kalman filters. 
The objective is to associate an “anonymous detected” point with a “Kalman filter-based 
tracking” point; our “Kalman filter-based tracking” points are managed by the algorithm 
which will create one of these points as soon as an anonymous point cannot be associated 
with any existing “Kalman filter-based tracking” point. We end up with a table of points 
“identified by tracking based on the Kalman filter” which evolves as we receive clouds of 
points to process. 

Consider the following example: 
− The algorithm receives a point cloud N1 that contains X points (Figure 10a); 
− The algorithm looks if one of the received “anonymous detected” points shares 

enough area (Figure 10c) with that of one of the “Kalman filter-based tracking” points 
(Figure 10b); 

− If so, the identifier of the “identified by Kalman filter tracking” point is given to the 
“anonymous detected” point which becomes an identified point (Figure 10d) and the 
position data of the “anonymous detected” point is integrated with the associated 
“identified by Kalman filter tracking” point (Figure 10f) so that the trajectory of the 
“identified by Kalman filter tracking” point continues to evolve in accordance with 
its “anonymous detected” point (Figure 10e); 

− Otherwise, a “Kalman filter-based tracking” point is created with the data of the 
“anonymous detected” point (Figure 10e). 

 
Figure 10. (a) three points are identified, (b) two points “identified by Kalman filter-based tracking”
exist in memory, (c) calculation of common surfaces and creation of points “identified by Kalman
filter-based tracking” for the points having no pair, (d) three points are identified, (e) three points
“identified by Kalman filter-based tracking” exist in memory, (f) the calculation of common surface
now allows to know the trajectory of A and B.

As shown in Figure 11, the processing algorithm using Kalman filters is as follows:



Sensors 2021, 21, 7234 13 of 19

Sensors 2021, 21, x FOR PEER REVIEW 13 of 19 
 

 

Figure 10. (a) three points are identified, (b) two points “identified by Kalman filter-based tracking” 
exist in memory, (c) calculation of common surfaces and creation of points “identified by Kalman 
filter-based tracking” for the points having no pair, (d) three points are identified, (e) three points 
“identified by Kalman filter-based tracking” exist in memory, (f) the calculation of common surface 
now allows to know the trajectory of A and B. 

As shown in Figure 11, the processing algorithm using Kalman filters is as follows: 

 
Figure 11. Operation of the tracking algorithm with Kalman filters. 

As explained above, the video stream is processed independently of analysis sys-
tems, once processed the result is stored as a JSON file. The first step is therefore to convert 
the data in the JSON file into data that can be processed by the language used (in our case 
python3). If it is the first data of the file, it is automatically integrated to the known points. 
The known points in our case are all the points with an identifier. If it is not the first mes-
sage, the points “identified by Kalman filter” are updated. It is then possible to compare 
the new position of the points “identified by Kalman filter” and the new points received. 
Each new received point will be compared to the set of “Kalman filtered” points and will 
give one of the following results: 
− The point corresponds to one of the known points; 
− The point does not correspond to any known point; 
− One of the points “identified by Kalman filter” does not find a match. 

In the first case, the filters of the points “identified by Kalman filters” are updated 
just as the known points. 

In the second case, a new point “identified by Kalman filter” is created in the known 
points and the known points are updated. 

Finally, in the third case, if the filter has remained without a match for too long, it is 
deleted, otherwise it is left until it finds a match or is deleted. 

Once the algorithm has verified each “anonymous detected” point, it assigns a new 
identifier to points that remained “anonymous detected,” updates the position of the 

Figure 11. Operation of the tracking algorithm with Kalman filters.

As explained above, the video stream is processed independently of analysis systems,
once processed the result is stored as a JSON file. The first step is therefore to convert
the data in the JSON file into data that can be processed by the language used (in our
case python3). If it is the first data of the file, it is automatically integrated to the known
points. The known points in our case are all the points with an identifier. If it is not the
first message, the points “identified by Kalman filter” are updated. It is then possible to
compare the new position of the points “identified by Kalman filter” and the new points
received. Each new received point will be compared to the set of “Kalman filtered” points
and will give one of the following results:

- The point corresponds to one of the known points;
- The point does not correspond to any known point;
- One of the points “identified by Kalman filter” does not find a match.

In the first case, the filters of the points “identified by Kalman filters” are updated just
as the known points.

In the second case, a new point “identified by Kalman filter” is created in the known
points and the known points are updated.

Finally, in the third case, if the filter has remained without a match for too long, it is
deleted, otherwise it is left until it finds a match or is deleted.

Once the algorithm has verified each “anonymous detected” point, it assigns a new
identifier to points that remained “anonymous detected,” updates the position of the filters,
and deletes filters that have remained unidentified for too long or whose coordinates
are no longer in the monitored area. The prediction performed by the Kalman filters is
based on two functions performing a series of matrix calculations. The first function is an
update function that allows the filter to update the information of its known point with
the information of the point that has been reassociated with it. The second method is a
prediction method which from the last known information will predict information of the
future point which could be associated to it. In order to respect the method used by Kalman
filters, we have six main matrices:



Sensors 2021, 21, 7234 14 of 19

- E, the matrix representing the initial state vector containing the position, velocity, and
size information of the point;

- A, the transition matrix allowing to go from the state of Image i-1 to I;
- O, the observation matrix allowing to define the parameters to be monitored, in our

case it is the information known in the point cloud, namely the position and the size;
- Q, the covariance matrix representing the process noise vector;
- R, the covariance matrix representing the vector of measurement noise;
- P, the prediction matrix evolving with each new piece of information;
- The signs +, −, · are used for the basics matrixial operation;
- The (−1) is used to invert matrixes.

In the case of the update, we also receive the matrix J representing the vector of new
information of the point and which allows reinforcing the prediction to come as well as G
an identity matrix of the same dimension as I. In a first step, we update the information
of I:

E = E +
((

P·OT )·
(

O·
(

P·OT
)
+ R

)(−1)
)·(J− (O·E)) (2)

This equation allows to update the position information:

P =
(

G−
((

P·OT )·
((

O·
(

P·OT
))

+ R
)(−1)

)·O)·P (3)

This equation allows to update the prediction matrix.
In the case of prediction, the calculation is simpler:

E = A·E (4)

To predict the future position:

P =
(
(A·P)·AT

)
+ Q (5)

This equation allows to calculate the covariance of the error.
Table 3 shows, for a track, its initial state with its coordinates on X and Y in pixels,

its velocity on X and Y in pixels/second, and its width and height in pixels. At the end
of the initial state, we obtain a prediction for the future position of the track and then the
actual state of the track that was associated with the prediction and those for 17 successive
images. In the case of Table 3, the results were obtained using Kalman filter tracking, but
were also checked manually to be sure that the data extract presented did not show any
dropout. This is only an extract, as the original file is more than 3000 images long.

Table 3. Sample of 17 comparisons between prediction and reality.

In
it

ia
l

Pr
ed

ic
ti

on
N

o.
1

R
ea

lN
o.

1

Pr
ed

ic
ti

on
N

o.
2

R
ea

lN
o.

2

Pr
ed

ic
ti

on
N

o.
3

R
ea

lN
o.

3

Pr
ed

ic
ti

on
N

o.
4

R
ea

lN
o.

4

Pr
ed

ic
ti

on
N

o.
5

R
ea

lN
o.

5

Pr
ed

ic
ti

on
N

o.
6

X Coordinate 1680 1680 1694 1701 1706 1718 1715 1725 1728 1739 1766 1778
Y Coordinate 454 454 449 447 456 463 453 454 445 441 425 419

X Speed 0 0 7 7 12 12 10 10 11 11 12 12
Y SPEED 0 0 −2 −2 7 7 1 1 −4 −4 −6 −6

Width 85 85 92 92 111 111 113 113 111 111 85 85
Height 210 210 213 213 218 218 222 222 219 219 201 201



Sensors 2021, 21, 7234 15 of 19

Table 3. Cont.

R
ea

lN
o.

6

Pr
ed

ic
ti

on
N

o.
7

R
ea

lN
o.

7

Pr
ed

ic
ti

on
N

o.
8

R
ea

lN
o.

8

Pr
ed

ic
ti

on
N

o.
9

R
ea

lN
o.

9

Pr
ed

ic
ti

on
N

o.
10

R
ea

lN
o.

10

Pr
ed

ic
ti

on
N

o.
11

R
ea

lN
o.

11

Pr
ed

ic
ti

on
N

o.
12

X Coordinate 1780 1793 1787 1787 1795 1804 1811 1823 1820 1830 1831 1841
Y Coordinate 422 418 426 426 424 423 420 417 418 415 416 413

X Speed 13 13 10 10 9 9 12 12 10 10 10 10
Y SPEED −4 −4 0 0 −1 −1 −3 −3 −3 −3 −3 −3

Width 83 83 98 98 109 109 96 96 90 90 87 87
Height 207 207 224 224 222 222 216 216 207 207 200 200

R
ea

lN
o.

12

Pr
ed

ic
ti

on
N

o.
13

R
ea

lN
o.

13

Pr
ed

ic
ti

on
N

o.
14

R
ea

lN
o.

14

Pr
ed

ic
ti

on
N

o.
15

R
ea

lN
o.

15

Pr
ed

ic
ti

on
N

o.
16

R
ea

lN
o.

16

Pr
ed

ic
ti

on
N

o.
17

R
ea

lN
o.

17

X Coordinate 1840 1850 1850 1860 1855 1862 1862 1869 1870 1877 1875
Y Coordinate 414 411 409 405 406 402 402 398 398 394 396

X Speed 10 10 10 10 7 7 7 7 7 7 6
Y Speed −3 −3 −4 −4 −4 −4 −4 −4 −4 −4 −3
Width 8 89 91 91 89 89 87 87 85 85 81
Height 198 198 197 197 204 204 198 198 199 199 200

We then see that the predictions are very close to reality. Table 4 shows all the common
surfaces between the predictions and the reality. This exercise was performed on several
samples in order to validate the efficiency of the tracking on the one hand, but also to
determine the threshold from which a prediction can be attached to a real track. The
percentage of common surface chosen for the comparison was first arbitrarily fixed at 70%.
It was then lowered to 50% because, after several tests, it was found that a rate higher
than 50% was indicative of a good match as shown in Table 4 and conversely matches
below 50% are mostly overlaps due to individuals crossing or walking close to each other.
Moreover, since each point “identified by Kalman filter tracking” can only be associated
with one “anonymous detected” point, we find that points “identified by Kalman filter
tracking” that are less than 50% overlapping with an “anonymous detected” point have in
most cases another “anonymous detected” point on which more than 50% of the surface is
common. This effect allows in all cases to select only the matches with more than 50% of
the surface and allowed to validate this value.

Table 4. Common area between reality and prediction on a sample of 17 images.

Im
ag

e
N

o.
1

Im
ag

e
N

o.
2

Im
ag

e
N

o.
3

Im
ag

e
N

o.
4

Im
ag

e
N

o.
5

Im
ag

e
N

o.
6

Im
ag

e
N

o.
7

Im
ag

e
N

o.
8

Im
ag

e
N

o.
9

Common Area in Pixels 14,768 17,748 23,320 23,100 15,540 16,434 16,517 19,800 20,448
Prediction + Actual Area 22,678 26,046 25,964 26,295 25,854 17,832 22,616 26,350 24,486

Common Area in % 65.12 68.14 89.82 87.85 60.11 92.16 73.03 75.14 83.51

Im
ag

e
N

o.
10

Im
ag

e
N

o.
11

Im
ag

e
N

o.
12

Im
ag

e
N

o.
13

Im
ag

e
N

o.
14

Im
ag

e
N

o.
15

Im
ag

e
N

o.
16

Im
ag

e
N

o.
17

Common Area in Pixels 18,009 17,400 17,226 17,355 16,464 17,226 16,830 15,563
Prediction + Actual Area 21,357 18,630 17,796 18,194 19,619 18,156 17,311 17,552

Common Area in % 84.32 93.40 96.80 95.39 83.92 94.88 97.22 88.67



Sensors 2021, 21, 7234 16 of 19

We thus have two possible cases for each “anonymous detected” point: either the
“anonymous detected” point can be associated with a point “identified by tracking based
on the Kalman filter”, this association is done if the common surface between the two
points is sufficient. In the case where several “anonymous detected” points have a sufficient
common surface, it is the point with the largest common surface that will be kept. Either
the “anonymous detected” point is not associable with any point “identified by Kalman
filter tracking” and in this case a point is created using the position and size information
associated with the “anonymous detected” point. Once this check is done, our point cloud
is no longer “anonymous detected” and we can wait for the next cloud.

This method also notes cases of stalling when the number of images per second is not
sufficient or if the trajectory of an individual is not “natural” enough; the number of stalls
is presented in Table 5.

Table 5. Total dropouts in tracking with Kalman filter on a set of seven videos with a predefined number of IPS.

IPS
Stall

Video No. 1 Video No. 2 Video No. 3 Video No. 4 Video No. 5 Video No. 6 Video No. 7

10 8 2 2 2 4 3 1
15 4 0 2 2 2 1 2
20 3 2 3 2 4 0 1
25 3 2 3 1 3 0 1
30 1 3 2 3 4 0 1

We can see that Table 5 shows better results, because the number of dropouts is less
important. We can therefore compare the two methods with the help of these results.

5. Discussion and Analysis

All results are presented and compared in Table 6. Table 6 shows in green the method
that revealed the least dropouts, in red the one that did the most, and in orange the ties. In
general, the most reliable method is the one using Kalman filters. This efficiency can be
observed by averaging the dropouts (all videos combined) of each IPS frequency, which
shows a minimum of 209% more dropouts with the first method (Table 7).

Table 6. Comparison of the number of stalls between the two versions of the algorithm.

IPS
Stall V1 Stall V2

1 2 3 4 5 6 7 1 2 3 4 5 6 7
10 12 3 5 6 24 18 0 8 2 2 2 4 3 1
15 12 2 5 7 18 14 0 4 0 2 2 2 1 2
20 12 5 5 6 16 14 0 3 2 3 2 4 0 1
25 12 6 5 7 15 12 0 3 2 3 1 3 0 1
30 12 7 5 7 22 12 1 1 3 2 3 4 0 1

Table 7. Comparison of dropouts at variable IPS frequency, all videos combined.

IPS Average Error IPS with
Tracking by Proximity

Average Error IPS with
Kalman Filter Tracking

Difference Tracking by Proximity on
Kalman Filter Tracking

10 10 3 +209.09%
15 8 2 +346.15%
20 8 2 +286.67%
25 8 2 +338.46%
30 9 2 +371.43%

On the other hand, it was identified that in some video cases the first method would
prove more effective. Indeed, the video No. 19 features the raiding of a single person
throughout the video. It turns out that the advantage of Kalman filters to be able to
anticipate the trajectory of an individual can become a disadvantage if the latter stops



Sensors 2021, 21, 7234 17 of 19

abruptly and does not resume his walk. Indeed, the filter allowing to predict the future
position of the point, cannot anticipate a sudden stop which has for effect to make the
tracking stall. Moreover, the first method consisting in comparing the closest points to
connect them will necessarily perform a perfect tracking if there is only one point in each
image, because there is no other possibility (Table 8). However, these problems were
identified in advance and do not affect the results enough to reveal a real advantage to
using the proximity tracking method alone.

Table 8. Comparison of dropouts on all videos with all IPS.

Video No. Average Error with Tracking
by Proximity

Average Error with Kalman
Filter Tracking

Difference Tracking by Proximity on
Kalman Filter Tracking

1 12 4 +215.79%
2 5 2 +155.56%
3 5 2 +108.33%
4 7 2 +230.00%
5 19 3 +458.82%
6 14 1 +1650.00
7 0 1 −83.33%

The experimental results show that the Kalman filter method performs, in most cases,
a much more efficient tracking than the proximity method. This result comes from the
integration of a trajectory estimation. This integration in an urban environment is very
efficient because it allows us to anticipate the evolution of the position of a person walking
normally. However, as soon as the movement of an individual is more random or abrupt,
the algorithm will no longer be able to estimate trajectories. The combination of the two
methods allows us to be as efficient as possible by having both a short term prediction
that generally matches the future image with the prediction made, but also a matching
system by proximity. Indeed, in some cases, predictions may not correspond to reality,
either because the track has disappeared and in this case, a future prediction should be able
to find the track; or because the information used to make the prediction is not necessary,
in this case, the association by proximity will allow to find the track and to reinforce the
future prediction. Nevertheless, there are still some stalls at the end of the experiments. In
most cases, it is a question of stalling due to the passage behind an obstacle or when several
people are passing. More rarely, it can happen that the stall is linked to a bad detection and
in this case it would be necessary to improve the detection system.

6. Conclusions

This paper highlights the advantage of using Kalman filters for human tracking in
urban environments. Results are available online for videos used to obtain the data for
this paper: https://youtu.be/R-NkqDYEAjM (accessed on 19 July 2021). The proposed
methods show that a frame-by-frame tracking can only be efficient if a trace of the past
positions is kept. A simple position comparison method already allows obtaining efficient
results in a controlled environment: without obstruction and with a controlled number
of individuals moving at a distance from each other. The use of this same method with
the association of a prediction of future positions makes the tracking system much more
efficient and allows it to succeed in tracking individuals in real conditions: with disap-
pearances behind obstacles, crossings of individuals, and abrupt changes of trajectories.
However, the system is not infallible, indeed it is possible that the tracking stalls when
there are too many individuals in the image that move too quickly. To overcome this
problem, several solutions are possible. In this case, the solution implemented is the one
presented in [3]. The objective is to focus on a group movement through their evolution in
time by studying for example the variation of the standard deviation and the barycenter.
This method allows to make much faster conclusions when the number of individuals is
too large. Another solution would be the integration of a form factor provided during the
video detection and which would be calculated in the same way for all. This value or these

https://youtu.be/R-NkqDYEAjM


Sensors 2021, 21, 7234 18 of 19

values could be calculated using information that is not yet used by the previous methods
such as a value related to the color of the detection or to the morphology of the detection
for example using the method presented in [5]. This factor, if it evolves smoothly, could
even be integrated into the method using Kalman filters and perhaps even used directly
in the filter. Another possible solution would be to use the results of the method using
Kalman filters to train artificial intelligence through simulations. Indeed, as the method is
already working correctly, the results of the latter could allow us to have enough data to
train a neural network, for example. Work is in progress to try to improve the method and
will be the subject of other publications.

Author Contributions: Validation, A.A. (Ayman Alfalou); Writing—original draft, A.A. (Amaury Auguste);
Writing—review & editing, W.K., M.E. and G.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the L@bISEN laboratory of Yncréa Ouest for
financial and scientific support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zin, T.T.; Tin, P.; Toriu, T.; Hama, H. A Big Data application framework for consumer behavior analysis. In Proceedings of the

2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 1–4 October 2013; pp. 245–246.
2. Nie, S.; Sun, D. Research on counter-terrorism based on big data. In Proceedings of the 2016 IEEE International Conference on Big

Data Analysis (ICBDA), Hangzhou, China, 12–14 March 2016; pp. 1–5.
3. Auguste, A.; Oudinet, G.; Kaddah, W.; Elbouz, M.; Alfalou, A. Implementation of a behavioral analysis method of crowd

movement in the service of video surveillance. In Proceedings of the Pattern Recognition and Tracking XXXII, Online Event,
12–17 April 2021; Volume 11735, p. 117350K.

4. Kaddah, W.; Gooya, E.S.; Elbouz, M.; Alfalou, A. Securing smart cities using artificial intelligence: Intrusion and abnormal
behavior detection system. In Proceedings of the Pattern Recognition and Tracking XXXII, Online Event, 12–17 April 2021;
Volume 11735, p. 117350J.

5. Gooya, E.S.; Aram, F.; Kaddah, W.; Elbouz, M.; Alfalou, A. A human body morphology detector: A distinctive filter to differentiate
the image-based process depending on whether the person is a child or an adult. In Proceedings of the Pattern Recognition and
Tracking XXXII, Online Event, 12–17 April 2021; Volume 11735, p. 117350Q.

6. Ehsan, S.; Ayman, A.; Wissam, K. Robust and discriminating face recognition system based on a neural network and correlation
techniques. In Tenth International Conference on Image Processing Theory; Tools and Applications (IPTA): Paris, France, 2020.

7. Xu, R.; Liu, Q. Multi-pedestrian tracking for far-infrared pedestrian detection on-board using particle filter. In Proceedings of the
2015 IEEE International Conference on Imaging Systems and Techniques (IST), Macau, China, 16–18 September 2015; pp. 1–5.

8. Chen, E.; Tang, X.; Fu, B. A Modified Pedestrian Retrieval Method Based on Faster R-CNN with Integration of Pedestrian
Detection and Re-Identification. In Proceedings of the 2018 International Conference on Audio, Language and Image Processing
(ICALIP), Shanghai, China, 16–17 July 2018; pp. 63–66.

9. Lan, W.; Dang, J.; Wang, Y.; Wang, S. Pedestrian Detection Based on YOLO Network Model. In Proceedings of the 2018 IEEE
International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 1547–1551.

10. Maity, M.; Banerjee, S.; Chaudhuri, S.S. Faster R-CNN and YOLO based Vehicle detection: A Survey. In Proceedings of the 2021
5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 8–10 April 2021; pp.
1442–1447.

11. Ray, B.; Halder, K.K. Multi-Mask Based Stabilization of Turbulence Degraded Videos Containing Moving Objects. In Proceedings
of the 2019 IEEE International Conference on Signal Processing, Information, Communication & Systems (SPICSCON), Dhaka,
Bangladesh, 28–30 November 2019; pp. 64–67.

12. Tomasi, C.; Kanade, T. Detection and Tracking of Point Features. In Shape and Motion from Image Streams: A Factorization Method
Part 3; School of Computer Science Carnegie Mellon University: Pittsburgh, PA, USA, 1991.

13. Harris, C.; Stephens, M. A combined corner and edge detector. In Alvey Vision Conference; The Plessey Company: Ilford, UK, 1988.



Sensors 2021, 21, 7234 19 of 19

14. Liu, D.; Luo, Z.; Xiao, Z.; Li, J. Extracting Vehicles in Point Clouds of Underground Parking Lots Based on Graph Convolution.
In Proceedings of the IGARSS 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26
September–2 October 2020; pp. 1695–1698.

15. Dingsheng, D. DBSCAN Clustering Algorithm Based on Density. In Proceedings of the 7th International Forum on Electrical
Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020.

16. Quanan, G.; Yunjian, X. Kalman Filter Algorithm for Sports Video Moving Target Tracking. In Proceedings of the 2020 International
Conference on Advance in Ambient Computing and Intelligence (ICAACI), Ottawa, ON, Canada, 12–13 September 2020;
pp. 26–30.

17. Sun, Y.; Xie, J.; Guo, J.; Wang, H.; Zhao, Y. A modified marginalized Kalman filter for maneuvering target tracking. In Proceedings
of the 2nd International Conference on Information Technology and Electronic Commerce, Dalian, China, 20–21 December 2014;
pp. 107–111.

18. Fossen, S.; Fossen, T.I. Extended Kalman Filter Design and Motion Prediction of Ships Using Live Automatic Identification
System (AIS) Data. In Proceedings of the 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS),
Bern, Switzerland, 20–22 December 2018; pp. 464–470.

19. Hong, J.; Zhao, D.; Sun, Y.; Zhang, J.; Liu, B. Straight Track Tracking of Paddle Boat Based on Kalman Filter. In Proceedings of the
2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 24–26 October
2019; pp. 260–265.

20. Selezneva, M.; Neusypin, K.; Babichenko, A. Modification of Non-Linear Kalman Filter in Correction Scheme of Navigational
Systems of Carrier-Based Aircraft. In Proceedings of the 2018 International Russian Automation Conference (RusAutoCon),
Sochi, Russia, 9–16 September 2018; pp. 1–5.

21. Haojie, P.; Jie, Z.; Weisheng, S. An Adaptive Cubature Kalman Filter Algorithm for Passive Location. In Proceedings of the
2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP),
Chengdu, China, 18–20 December 2020; pp. 420–423.

22. Kumar, S.V.; Yokeshraj, P.V.; Kotteeswaran, R. Optimized Inertial Navigation System with Kalman Filter based altitude determina-
tion for aircraft in GPS Deprived Regions. In Proceedings of the 2019 3rd International Conference on Computing Methodologies
and Communication (ICCMC), Erode, India, 27–29 March 2019; pp. 672–678.

23. Gál, J.; Caimpeanu, A.; Nafornita, I.; Campeanu, A. Estimation of Chirp Signals in Gaussian Noise by Kalman Filtering. In
Proceedings of the 2007 International Symposium on Signals, Circuits and Systems, Iasi, Romania, 13–14 July 2007; Volume 1,
pp. 1–4.

24. Heimbach, M.; Ebadi, K.; Wood, S. Improving Object Tracking Accuracy in Video Sequences Subject to Noise and Occlusion
Impediments by Combining Feature Tracking with Kalman Filtering. In Proceedings of the 2018 52nd Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1499–1502.


	Introduction 
	Database 
	Tracking by Proximity 
	Kalman Filter Tracking 
	Discussion and Analysis 
	Conclusions 
	References

