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vaccines in the near future. How advances in the field of glycoconjugate vaccine production (conjugation of natural polysaccharides, chemo-enzymatic
approaches, glycoengineering) can support the development of efficacious novel well-defined vaccines is also discussed.
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ABSTRACT

Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a
carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are
produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus,
pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides,
wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins
alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and
additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly
invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria
which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia
pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and
provide protection by herd immunity also to individuals who are not vaccinated.
This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging
pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.

Keywords: carbohydrates; glycoconjugates; vaccines; glycoengineering; antimicrobial resistance

INTRODUCTION

Surface carbohydrates, particularly capsular polysaccharides
(CPS), have been proven optimal targets for bacterial vaccines
development. Polysaccharide-based vaccines against meningo-
coccus, pneumococcus and Haemophilus influenzae type b were
licensed between the 1970s and the early 1980s. Due to
their T-cell independent character, they are efficacious in
adults, but fail to elicit adequate protection in high-risk

groups, such as infants and children under 2 years of age
(Peltola et al. 1977a,b).

This limitation of polysaccharide vaccines can be over-
come by conjugation to a carrier protein, which triggers a
T-cell-dependent immune response to the carbohydrate moi-
ety (Costantino, Rappuoli and Berti 2011) and assures efficacious
vaccination of children and elderly.

Glycoconjugate vaccines have been used to control a variety
of bacterial infections in recent years, and more vaccines are
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either under development at preclinical level or in clinical tri-
als (Costantino, Rappuoli and Berti 2011).

The glycoconjugate vaccines licensed so far are obtained
from CPS or derived fragments (Table 1). However, pathogenic
bacteria also display other classes of carbohydrates that might
represent good candidates for vaccine development, especially
when the pathogen does not produce a capsule (e.g. most of
the Shigella species or Vibrio cholerae) or the capsule mimics self-
structures (e.g. α-(2→8) polysialic acid capsule ofNeisseria menin-
gitidis serogroup B, and the polyhyaluronic acid capsule of Group
A Streptococcus) or the pathogen has a high number of strains
with different CPS, making vaccine formulation development
very complicated.

In these cases, other glycans, such as the O-antigen portion
of lipopolysaccharide (LPS) molecules in Gram-negative or cell
wall-associated glycans in Gram-positive bacteria, can be suffi-
ciently accessible to the immune system to be taken into consid-
eration as vaccine candidates. Notable examples are V. cholerae
(Sayeed et al. 2015), Shigella species (Mani, Wierzba and Walker
2016) and Escherichia coli (Huttner et al. 2017).

The emerging of antimicrobial resistance (AMR) for some
pathogens including, among others, Staphylococcus aureus, Pseu-
domonas aeruginosa, Klebsiella pneumoniae,Acinetobacter baumannii
and Clostridium difficile, which are currently not treated by vacci-
nation, is rendering the identification of future candidates more
urgent (Garcia-Quintanilla et al. 2016). In fact, vaccination could
aid reducing the use of broad spectrum antibiotics and provide
protection (herd immunity) also for individuals who are not vac-
cinated (Lipsitch and Siber 2016).

This review is intended to analyze structural and functional
differences of surface-exposed polysaccharides from emerg-
ing pathogenic bacteria and, combined with epidemiological,
medical need and technological considerations, identify po-
tential targets for glycoconjugate vaccines in the near future.
How advances in the field of glycoconjugate vaccine production
(conjugation of natural polysaccharides, chemo-enzymatic ap-
proaches, glycoengineering) can support the development of ef-
ficacious novel well-defined vaccines is also discussed.

THE SURFACE CARBOHYDRATE STRUCTURES
OF BACTERIA
AND FUNGI

The bacterial cell envelope is surrounded by a dense layer of fi-
brous polysaccharides and glycoproteins, named glycocalyx. This
structure helps bacteria to survive in unpredictable and often
hostile environment, while it allows the selective passage of nu-
trients from the outside and waste products from the inside.

Generally, the capsule is the outermost surface polysac-
charide of both Gram-negative and Gram-positive bacteria
(Hendrickx et al. 2011; Brown et al. 2015; Filloux and Whit-
field 2016). A given bacterial species might have strains with
structurally different CPS resulting in different serogroups or
serotypes. Immediately below the capsule, Gram-negative bac-
teria are characterized by an outer membrane (OM) from which
anchored LPS, CPS and membrane proteins protrude. A thin
peptidoglycan cell wall is sandwiched between OM and the
inner cytoplasmic cell membrane. In contrast, Gram-positive
bacteria lack an OM, and are surrounded by a much thicker
layer of peptidoglycans compared to Gram-negatives (Fig. 1).
Carbohydrates, like β-glucans, mannans, and others, are pre-
dominant components of the surface of fungal species (Gow,
Latge andMunro 2017). Furthermore, glycosylphosphatidylinos-
itol molecules, which are present on the surface of virtually all

eukaryotic cells serving as surface protein anchors, occur at rel-
atively high levels and with specific structures in parasitic pro-
tozoa, such as Plasmodium falciparum (Gowda, Gupta and David-
son 1997). The use of parasite carbohydrates as potential vaccine
antigens has been recently reviewed and will not be in the scope
of the present work (Jaurigue and Seeberger 2017).

A general description of the different glycans present in bac-
teria and fungi is given below, and structures of glycans with
potential of being used to extend the coverage of licensed gly-
coconjugate vaccines or for the development of future vaccines
are given in Table 2.

Polysaccharide capsule

CPS are typically made of negatively charged and highly hy-
drophilic long-chain polysaccharides, firmly anchored to the cell
membrane.

CPS are well-established virulence factors, and they can
interfere with innate immunity preventing the activation of
the alternate complement pathway. Their hydrophilic charac-
ter protects microorganisms from desiccation, thus facilitating
host-to-host transmission, and their chemical structure some-
times mimics molecules produced by human cells so that the
pathogen is not recognized as foreign by the immune system.

A paradigm of the remarkable structural diversity in CPS is
embodied by almost 80 capsular serotypes in E. coli, more than
90 in Streptococcus pneumoniae and about 70 capsular serotypes
in K. pneumoniae (Willis and Whitfield 2013). The most studied
system for the biosynthesis of CPS is E. coli (Whitfield 2006). Its
CPS are classified into four groups, numbered from 1 to 4 on the
basis of genetic and biosynthetic criteria. In terms of biosynthe-
sis three main pathways have been identified (Fig. 2): Wzx/Wzy,
ATP-binding cassette (ABC) transporter and synthase dependent
(Cuthbertson, Kos andWhitfield 2010;Willis andWhitfield 2013).
TheWzx/Wzy- and ABC transporter-dependent pathways share
some similarities: the polysaccharide is built on a lipid accep-
tor, usually undecaprenol diphosphate (UndPP), starting from
activated building blocks, that are typically cytosolic sugar nu-
cleotides (Fig. 2A). Glycosyltransferase reactions transfer sugars
to UndPP, at the cytoplasmic face of the membrane. The final
lipid-linked polysaccharide is located outside the cytoplasmic
membrane. In the Wzx/Wzy-dependent pathway, the individ-
ual repeating units are first assembled and then exported across
the membrane by a flippase Wzx protein. The exported UndPP-
linked glycans are finally polymerized by a Wzy polymerase,
which extends the growing chain one repeat unit at a time at the
periplasmic face of the cytoplasmic membrane. A polysaccha-
ride copolymerase controls the polymerization process. Groups
1 and 4 CPS are synthesized according to Wzy-dependent pro-
cesses. These types of CPS are found in isolates causing intesti-
nal infections, including enteropathogenic, enterotoxigenic and
enterohemorrhagic E. coli, and other relevant pathogens, com-
prising St. pneumoniae and S. aureus (Yother 2011).

In the ABC transport-dependent pathway, the polysaccharide
is completed at the cytoplasmic face of the innermembrane (IM),
and then exported by the ABC transporter (Fig. 2B). Group 2 and
3 capsules, generally found in isolates causing extra intestinal
infections, are both assembled via this pathway. Their structural
features vary extensively and seem reminiscent ofN.meningitidis
and H. influenzae CPS (Whitfield 2006).

In the synthase-dependent pathway (Fig. 2C), which is the
less known of the three mechanisms, a polymerizing glycosyl-
transferase (the synthase) assembles the polysaccharide at the
cytoplasmic face of the IM and is also believed to be involved in
its export across the IM (Willis and Whitfield 2013). Serotypes
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Figure 1. Structures of the cell walls of Gram-negative and Gram-positive bacteria. Both classes of bacteria can produce a capsule (CPS). Gram-negative bacteria express
lipopolysaccharide (LPS) or lipooligosaccharide (LOS). Unlike Gram-negative bacteria which possess an outer membrane with an outmost layer rich of phospholipids
and LPS molecules, Gram-positive bacteria lack of the outer membrane and possess lipoteichoic acids (LTA) and the more exposed wall teichoic acids (WTA).

3 and 37 of St. pneumoniae are known to follow the synthase-
dependent pathway for their CPS biosynthesis (Yother 2011).

Unlike the CPS biosynthesis, structure and biochemical path-
way for the anchor to the cell membrane is less known. In E. coli,
N. meningitidis, H. influenzae and other Gram-negative pathogens,
this anchor ismade of (lyso)phoshatidylglycerolmoiety towhich
CPS is attached via an oligosaccharide of five to nine β-linked
3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residues (Fig. 3A)
(Willis et al. 2013). The CPS of Salmonella Typhi (Vi antigen) has a
unique lipid terminus composed of a reducing terminal HexNAc
residue modified with two β-hydroxy fatty acids that resembles
one half of lipid A structure (Liston, Ovchinnikova andWhitfield
2016). Some bacteria, in addition to the LPS molecules carrying
the serological O-antigen, produce a CPS linked to a lipid A core,
and therefore termed KLPS or K antigen (Whitfield 2006).

In most of capsule-forming Gram-positive bacteria, the ma-
jority of the polymers is covalently linked to the peptidogly-
cans or to membrane components, although some may be re-
leased from the cell (Yother 2011). There are exceptions, such
as St. pneumoniae type 3, where the CPS is bound to the mem-
brane through a phosphatidylglycerol anchor (Cartee, Forsee
and Yother 2005).

Glycans associated to Gram-negative bacteria OM

The OM is a distinguishing feature of Gram-negative bacteria.
Unlike most biological membranes, the OM is an asymmetrical
lipid bilayer. Typically, the inner leaflet is composed predomi-
nantly of phospholipids and the outer leaflet of LPS (Raetz and
Whitfield 2002; Filloux and Whitfield 2016).

The human innate immune system is sensitized to LPSwhich
is generally an indicator of infection. LPS is responsible for
the endotoxic shock associated with the septicemia caused by
Gram-negative organisms (Raetz and Whitfield 2002). LPS is
made of three components (Fig. 3B): lipid A, core-oligosaccharide
and O-polysaccharide (O-PS) or O-antigen (O-Ag). The OM gen-
erally contains a complex mixture of LPS molecules, including
molecules with only the lipid A and core-oligosaccharide (rough
LPS), as well asmolecules cappedwith O-PS (smooth LPS) (Knirel
et al. 2001).

The typical lipid A structure consists of a glucosamine disac-
charide, substituted with fatty acids (Raetz and Whitfield 2002).
The acyl chains are largely saturated and facilitate tight pack-
ing of OM, playing a critical role in the barrier function of the
OM. The core-oligosaccharide is divided into two regions: the
inner core consisting of Kdo and L-glycero-D-manno-heptose
residues that is highly conserved, and the outer core, which dis-
plays limited structural diversity and consists mainly of hexose
sugars. The O-Ag domain is made up of repeating units of one
ormore sugar residues and exhibits remarkable structural diver-
sity. Variations in its composition are often the basis for serotyp-
ing classification by serological methods. Although not essential
for growth in laboratory culture, O-Ag helps the bacterium to re-
sist certain antimicrobial molecules, the complement system,
and environmental stresses in its natural environment (Raetz
and Whitfield 2002; Greenfield and Whitfield 2012).

Some Gram-negative bacteria, such as Neisseria spp.,
Haemophilus spp. and Bordetella pertussis, and in general mucosal
pathogens are unable to synthesize O-Ag and produce instead
a LPS form called lipooligosaccharide (LOS) that contains the
inner core from which one or more mono- or oligosaccharide
branches (which determine serological specificity) extend. Pseu-
domonas aeruginosa can produce a rough LPS, once colonization
has been established (Knirel et al. 2001).

Biosynthesis of the lipid A is a highly conserved process
among Gram-negative species, which occurs partly in the cy-
toplasm, and partly at the inner leaflet of the IM (Green-
field and Whitfield 2012). The O-Ag is assembled following the
same pathways than the CPS, except that the ABC transporter-
dependent mechanism of O-Ag biosynthesis seems the most
widespread (Fig. 2). The completed O-Ag is transferred from the
UndPP linked intermediate and ligated to the lipid A-core in the
periplasmic face of the IM. Very seldom the synthase-dependent
mechanism is involved.

Glycans associated to Gram-positive bacterial cell wall

Peptidoglycan
Peptidoglycan (PG) is made up of repeating units of the disac-
charideN-acetyl glucosamine-N-acetylmuramic acid, which are
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Figure 2.Mechanisms for polysaccharide biosynthesis in bacteria. (A) In theWzx/Wzy-dependent pathway, the polysaccharide is built on a undecaprenol diphosphate
(UndPP) acceptor, onwhich cytosolic sugar nucleotides are attached by glycosyltransferase (GT) catalyzed reactions an then exported across themembrane by a flippase
Wzx protein for final polymerization by aWzy polymerase, under the control of a polysaccharide copolymerase (PCP). (B) In the ABC transport-dependent pathway, the
polysaccharide is built up at the cytoplasmic face of the inner membrane by GTs, and then exported by the ABC transporter. (C) In the synthase-dependent pathway,

the polysaccharide is assembled at the cytoplasmic face of the inner membrane by a synthase that is also involved in its transportation across the membrane.

Figure 3.General structures of bacterial surface polysaccharides. (A) Capsules are homopolymeric or heteropolymeric carbohydrate chains inserted into themembrane.
(B) LPS is made of three components: lipid A, core-oligosaccharide and O-polysaccharide or O-antigen. LPS lacking of the O-antigen is termed LOS. (C) Teichoic acids
are differentiated into lipoteichoic acids (LTA) and wall teichoic acids (WTA).

cross-linked by pentapeptide side chains (Vollmer, Blanot and
de Pedro 2008). The PG sacculus is a very large polymer that, be-
cause of its rigidity, determines cell shape. The PG layer is much
thicker in Gram-positive than in Gram-negative bacteria.

Teichoic and lipoteichoic acids
In Gram-positive bacteria, threading through the layer of
peptidoglycans, there are teichoic acids (TA), zwitterionic

glycopolymers containing phosphodiester-linked polyol repeat
units (Armstrong et al. 1958). TA play crucial roles in cell shape
determination, regulation of cell division and other fundamen-
tal aspects of Gram-positive bacterial physiology. They are di-
vided into lipoteichoic acids (LTA), which are anchored in the
bacterial membrane via a glycolipid, and wall teichoic acids
(WTA), which are covalently attached to peptidoglycans (Fig. 1)
(Brown, Santa Maria and Walker 2013; Sewell and Brown 2014).
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Fully extended membrane-linked LTA may not be able to
completely penetrate the PG layer and only reach the bacte-
rial surface once released from the membrane (Reichmann and
Grundling 2011). WTA extend through and beyond the cell sur-
face more than LTA do (Silhavy, Kahne andWalker 2010), as con-
firmed by cryo-EM images for S. aureus.WTA are highly abundant
modifications of Gram-positive cell walls (Brown, Santa Maria
and Walker 2013): in Bacillus subtilis and S. aureus, for instance,
they represent up to 60% of the cell wall (Xia, Kohler and Peschel
2010). WTA are made by two components (Fig. 3C): a disaccha-
ride unit that is highly conserved across bacterial species and a
main chain polymer composed of phosphodiester-linked polyol
repeating units, generally composed of 1,5-D-ribitol-phosphate
(RibP) or (1→3)-L-α-glycerol-phosphate (GroP) (Endl et al. 1983;
Neuhaus and Baddiley 2003).

Structural diversity of WTA can derive from the presence or
absence of substituents attached to the backbone (Fig. 2), includ-
ing cationic D-alanine esters and a variety of mono- or oligosac-
charides, commonly Glc or GlcNAc (Collins et al. 2002).

LTA has a simpler and more conserved structure that typ-
ically consists of a polyglycerolphosphate (PGP) chain (Fischer,
Koch and Haas 1983; Fischer et al. 1993) (Fig. 3C). Similarly to
WTA, the PGP backbone chain of LTA is modified with D-alanine
residues, and in many bacteria with additional glycosyl groups.

Other glycans

Another polysaccharide structure found in many species is the
poly-β-D-(1→6)-N-acetylglucosamine (PNAG), a polymer with
partial N-deacetylation and O-succinyl substituents which is
one of the major component of biofilms in S. epidermidis and
S. aureus (Joyce et al. 2003). Besides cell-to-cell adherence, PNAG
also acts as an important virulence factor and protects bacteria
against innate host defenses (Little et al. 2014).

Synthesis of PNAG in Staphylococci is controlled by an operon,
icaADBC, codifying for four proteins responsible of biosynthe-
sis and transport across the IM. A similar operon, pgaABCD,
has been found in A. baumannii as well as in the genomes of
a number of Gram-negative bacteria, including Yersinia pestis,
Y. enterocolitica, E. coli, B. pertussis, B. parapertussis, B. bronchisep-
tica, Burkholderia cepacia, P. fluorescens, Actinobacillus pleuropneu-
moniae andAggregatibacter actinomycetemcomitans (Wang, Preston
andRomeo 2004; Tiwary et al. 2016), indicating that PNAG is ubiq-
uitous in a number of species.

Mycobacteria and fungal glycans

The architecture of Gram-positive bacteria shares some similar-
ities with mycobacteria and fungi, since they all possess a thick
wall outside of their cellular membrane. The cell walls of my-
cobacteria consist of thin internal layers of peptidoglycans and
arabinogalactans, surrounded by a thick layer of micolic acids,
glycolipids and cell membrane anchored lipoarabinomannans
protruding on the surface. The cell wall of fungi is instead dom-
inated by polysaccharides like mannans (in the form of manno-
proteins) and β-(1→3) and β-(1→6) glucans, while a chitin layer
is located below (Masuoka 2004; Brown et al. 2015; Gow, Latge
and Munro 2017).

A particular case is encountered in Cryptococcus neoformans,
an important cause of meningitis in Africa especially in those
categories who are immunocompromised as a consequence of
underlying disease like AIDS. Cryptococcus neoformans displays a
polysaccharide capsule which is essential for its virulence and

is composed primarily of glucuronoxylomannan and galactoxy-
lomannan (McFadden, De Jesus and Casadevall 2006).

APPROACHES FOR PRODUCTION
OF GLYCOCONJUGATE VACCINES

There are a number of methods to prepare glycococonjugate
vaccines: some of themarewell established and used in licensed
products, others are emerging and increasingly applied to vac-
cines under development. They are mainly based on covalent
linkage between CPS and carrier protein; however, it is worth
to mention strategies for non-covalent interaction based on CPS
biotinylation followed by association to carrier proteins fused
with avidin like peptides (Zhang et al. 2013), CPS entrapped in
cross-linked protein (Thanawastien et al. 2015), and liposomal
encapsulation of CPS and proteins (Jones et al. 2017). Histori-
cal attempts to develop glycoconjugate vaccines based on non-
covalent association of CPS with proteins, although promising
in animal models, have failed in humans (Anderson et al. 1985),
thus anticipating an intense validation effort for these new at-
tempts. Below themain approaches for glycoconjugate vaccines
are discussed, and some examples are schematically reported in
Fig. 4.

Semisynthesis: extraction of polysaccharide and carrier
protein moieties from bacteria

The classical approach used for glycoconjugate vaccines is based
on polysaccharide extraction from bacterial fermentation, sub-
sequent purification and chemical modification to install a co-
valent linkage between the saccharide and the carrier protein
(Costantino, Rappuoli and Berti 2011; Ravenscroft et al. 2015;
Khatun et al. 2017). The carrier protein is also derived frombacte-
ria by fermentation and subsequent purification and, depending
on the chemistry used, it can be conjugated via its functional
groups or alternatively derivatized before polysaccharide link-
age. Adequate linkers are often used to facilitate the conjuga-
tion, reducing steric hindrance between protein and saccharide.

In some cases specific chemical moieties of the polysac-
charide, such as the carboxyl group of sialic acid residues, are
randomly derivatized and subsequently conjugated to the car-
rier protein. In some other cases, cis-diols present on the sac-
charide chain can be modified by NaIO4 oxidation in order to
generate aldehydes (Fig. 4B). These chemical groups can be di-
rectly linked to the ε-amine of the protein lysine residues by
reductive amination, or further derivatized before linkage to
the protein (Anderson et al. 1986; Marburg et al. 1986; Zou and
Jennings 2009; CDC 2016). Alternatively, the polysaccharides
can be fragmented, for example, by acid treatment, and sub-
sequently sized, by means of chromatography or ultrafiltration,
to obtain more defined oligosaccharide populations for protein
conjugation (Costantino et al. 1999; Broker, Berti and Costantino
2016). In this case the protein coupling is generally carried out
using the end reducing sugar which can be modified with a
spacer bearing appropriate functional group reacting with the
protein (Fig. 4C).

Depending on the polysaccharide structure (e.g. H. influen-
zae type b CPS), NaIO4 oxidation results in simultaneous frag-
mentation and generation of terminal aldehyde groups avail-
able for conjugation. Similarly, treatment of polysialic acids (e.g.
N. meningitidis serogroup C) with hydrogen peroxide results in
depolymerization and concomitant activation through intro-
duction of carbonyl groups (Ryall 2003; Neyra, Paladino and Le
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Figure 4. Approaches for the production of glycoconjugate vaccines include (A) engineering of E. coli for expression of carbohydrate, carrier protein and in vivo conju-
gation, resulting in glycans radially oriented relative to protein; (B) polysaccharides activation of sugar residues along the chain and conjugation to the carrier protein,
resulting in cross-linked structures; (C) polysaccharide fragmentation (hydrolysis or other methods discussed in the text), sizing and conjugation via end terminal

residues, resulting in glycans radially oriented relative to protein; (D) construction of the oligosaccharide from appropriate building blocks with an in-built linker for
conjugation, also resulting in glycans radially oriented relative to protein.

Borgne 2015). Hydrogen peroxide has been used also for depoly-
merization of Salmonella Typhi (Vi CPS) (Arcuri et al. 2017).

Many licensed glycoconjugate vaccines to prevent St. pneu-
moniae, N. meningitidis and H. influenzae caused infections are
prepared based on these approaches. Five carrier proteins have
been used in these vaccines: tetanus toxoid (TT), diptheria
toxoid (DT), CRM197, the outer membrane protein complex of
meningococcus B (OMPC) and Protein D from H. influenzae. For
a more technical discussion on this topic, we refer the reader to
other reviews (Broker et al. 2011, 2017; Costantino, Rappuoli and
Berti 2011).

Often the polysaccharides are attached to multiple points of
the carrier proteins in a random fashion (Adamo et al. 2013).
However, recently the possibility to chemically conjugate the
glycan at predetermined sites of the carrier protein is emerg-
ing (Nilo et al. 2015; Stefanetti et al. 2015). Also, by means of re-
combinant techniques, unnatural amino acids with side chains
suitable for specific conjugation to the polysaccharide can be in-
serted in specific regions of the protein sequence (Hu, Berti and
Adamo 2016; Kapoor et al. 2018). These approaches render the
conjugation procedures more selective, allowing for a more ra-
tional design of the vaccine and preservation of the key protein
epitopes.

Recently, an alternative glycoconjugation method based on
dry glycation following periodate oxidation of pneumococcal
CPS has been reported (Turner et al. 2017).

Synthetic approach: production of the saccharide
moiety by means of organic synthesis

The immense progress in the chemical synthesis of carbohy-
drates seen over the last decades has led to developing protocols
for the preparation of a variety of complex bacterial oligosaccha-
rides (Smoot and Demchenko 2009; Morelli, Poletti and Lay 2011)
(Fig. 4D).

The climax of this approach has been the development and
introduction in Cuban routine vaccination schedule of a con-
jugate vaccine against H. influenzae type b, where the carbohy-
drate moiety has been obtained by large-scale synthesis of the
capsular oligosaccharide (Verez-Bencomo et al. 2004). A glyco-
conjugate based on synthetic carbohydrate of Sh. flexneri type
2a has recently entered clinical trials (van der Put et al. 2016).
Synthetic oligosaccharides are generally prepared with a built-
in spacer for conjugation at the downstream end, and offer ad-
vantages including the avoidance of handling pathogens, lack
of bacterial impurities, minimal batch-to-batch variability and
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higher quality control standards during process manufacturing
(Adamo 2017).

The introduction of methods for solid phase automated
oligosaccharides synthesis (Seeberger 2015; Hahm et al. 2017)
and automated polymer supported by HPLC-assisted flow chem-
istry (Ganesh et al. 2012) could simplify and accelerate large-
scale production of oligosaccharides. A study of the database
‘glycoscience.de’ showed that a minimal set of 36 monosaccha-
ride building blocks would be sufficient to construct 75% of the
catalogued 3299 mammalian oligosaccharides (Werz et al. 2007).
Despite bacterial glycans are generally characterized by more
complex structures than mammalian ones, with numerous
branchings and substituents, like acetyl or phosphate groups,
this approach has been proven applicable for the fast produc-
tion of a variety of carbohydrates (Schumann et al. 2017).

In addition, other methods, including one-pot protocols
(Huang et al. 2004; Wu et al. 2017) and chemo-enymatic ap-
proaches (Wang et al. 2013; Fiebig et al. 2016; Li and Wang 2016),
are accelerating the production of synthetic saccharides ren-
dering their use increasingly attractive, particularly when the
polysaccharide is difficult to be purified at high yields, or for the
production of more stable sugar mimics (Gao et al. 2013).

Bioconjugation approach: engineering E. coli for in vivo
glycoconjugate production

The in vivo production of glycoproteins has recently found ap-
plication in the delivery of a series of glycoconjugate vaccine
candidates (Wacker et al. 2002). Escherichia coli is engineered with
genome integrated pathogen glycan clusters, with an oligosac-
charyl transferase (PglB) from Campylobacter jejuni, integrated in
the genome or plasmid encoded, and with a plasmid encod-
ing for the carrier protein with N-glycosylation consensus se-
quences Asp/Glu-Asn-X-Ser/Thr (where X can be any amino acid
except proline) in selected sites (Feldman et al. 2005; Kowarik
et al. 2006; Wacker et al. 2006) (Fig. 4A). In detail, pathogen gly-
cans repeating units are expressed in the cytoplasm, assembled
onto the E. coli lipid carrier UndPP and then flipped across the
cytoplasmic membrane. The repeats are polymerized by a poly-
merase in the periplasmic space, where PglB enables the trans-
fer of the resulting lipid linked oligosaccharides to asparagine
residues of the N-glycosylation consensus sequences of the car-
rier protein.

Biosynthesis of glycoproteins from a number of bacterial
polysaccharides, including Salmonella enterica, Shigella spp, E. coli
LPS and S. aureus serotype 5 or 8 CPS and St. pneumoniae CPS has
been achieved through this technology (Wetter et al. 2012, 2013;
Wacker et al. 2014; van den Dobbelsteen et al. 2016; Ravenscroft
et al. 2017). Selective glycosylation allows for a better exploita-
tion of proteins with the dual carrier/antigen role, as demon-
strated for S. aureus α toxin Hla used as carrier for type 5 and 8
CPS (Wacker et al. 2014). Phase-1 trials of monovalent vaccines
against Shigella dysenteriae O1 and Sh. flexneri 2a (Hatz et al. 2015),
and a tetravalent anti-extra intestinal pathogenic E. coli (ExPEC)
vaccine have been successfully completed (Huttner et al. 2017).

Recently, glycoengineering of outer membrane vescicles (ge-
OMVs) for expression of heterologous polysaccharides attached
to O-Ag negative lipid A core has been proposed as a novel
platform for polysaccharide vaccines (Chen et al. 2016; Price
et al. 2016; Valguarnera and Feldman 2017). OMVs combine anti-
gen presentation with optimal size for immune stimulation and
proper adjuvant properties for the presence of Toll-like receptors
(TLR) 2 and 4. Price et al. (2016) showed the efficacy of geOMVs as

vaccines against St. pneumoniae inmice, and Ca. jejuni in chicken.
In another study, Francisella tularensis O-Ag expressed on E. coli
OMVs provided protection against F. tularensis (Chen et al. 2016).

Cell surface glycans as target for
glycoconjugate vaccines

The currently licensed glycoconjugate vaccines (Table 1) were
developed based on the epidemiology of bacterial infectious dis-
eases, which registered in the past decades a high incidence of
bacterial meningitis caused by N. meningitidis, H. influenzae type
b and St. pneumoniae (Pace and Pollard 2007; Pace 2013; Vella and
Pace 2015). A number of new glycoconjugate vaccines are be-
ing advanced building up on the success of this first generation.
Some of them address new pathogens, while others can be con-
sidered an extension of current ones to cover additional emerg-
ing serotypes.

For example, with the evolving of the pneumococcal epi-
demiology, non-vaccine serotypes are emerging. Therefore, ex-
tension from the current 10- and 13-valent conjugate vaccines
(Geno et al. 2015; Delgleize et al. 2016) up to a 15-valent using
CRM197 as carrier is under development (McFetridge et al. 2015)
(Table 1). The increasing medical need in elderly population
and the additional emergence of non-vaccine-serotype disease
is expected to driving the development of even higher valence
vaccines.

Recent outbreaks in Africa (Boisier et al. 2007) have high-
lighted the need for an anti serogroup X meningococcal vac-
cine (Xie et al. 2013), in addition to the already available A, C,
W and Y. Conjugates of CPS X (Table 2) (Bundle, Smith and
Jennings 1974) were immunogenic and induced bactericidal an-
tibodies inmice (Micoli et al. 2013a). Oligomers of various lengths
have also been produced by enzymatic and synthetic methods
(Morelli et al. 2014; Harale et al. 2015; Fiebig et al. 2016).

Among the novel targets, a recent analysis from WHO (WHO
2017) and CDC (CDC 2013a) highlights bacteria that are increas-
ingly developing resistance to current antimicrobial therapies
and are considered an emerging and serious threat for the pub-
lic health (Garcia-Quintanilla et al. 2016). Most of the resistant
bacteria belong to the category of nosocomial pathogens, but
there are also examples in the community acquired infectious
diseases.

In addition to the CPS, other cell surface glycans are being
taken into consideration in the development of novel conju-
gate vaccines. Moreover, along with the classical semisynthetic
chemistry, other approaches, including the use of synthetic car-
bohydrates or E. coli glycoprotein expression, are increasingly
taking place.

Table 1 reports a list of glycoconjugate vaccines which are at
different stage: licensed (L), in clinical trials (C) or discovery (D).
Proposed surface glycan antigens and utilized approaches are
also included.

Below we describe the more relevant pathogens for which
a medical need has been identified and the different classes of
microbial glycans (CPS, O-Ag and other surface carbohydrates)
that have been targeted for vaccine development.

Capsular polysaccharides

Acinetobacter baumannii
The Gram-negative bacterium A. baumannii is the major cause
of nosocomial infections and it has frequently been reported
in times of war and natural disasters (Fournier and Richet
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2006). It affects different human organs, particularly the lungs,
causing ventilator-associated pneumonia (VAP) which usually
develops to septicemia in intensive care unit residents. Patients
at risk are immunocompromised, elderly, premature neonates
and patients undergoing surgeries, and its danger has increased
due to emerging antibiotic resistance (Peleg, Seifert and Paterson
2008). Recently, a monoclonal antibody against A. baumannii K1
capsule was produced and shown protective in a rat challenge
model (Russo et al. 2013). The K1 CPS (Table 2) was also demon-
strated as a potential vaccine antigen via passive immunization.
However, an anti K1 CPSmonoclonal antibody (mAb) recognized
only 13% of the tested strains, and there is little information on
the prevalence in clinical isolates (antigen epidemiology) of the
nearly 40 serovars identified so far, which complicate the devel-
opment of a CPS-based vaccine (Chen 2015).

Burkholderia pseudomallei and mallei
Burkholderia pseudomallei (Bp) is a Gram-negative saprophyte that
causes melioidosis. It is highly resistant to harsh environmen-
tal pressures, and it is classified as a potential class B bioter-
rorism weapon due to its high infectivity when aerosolized
(Silva and Dow 2013; Peacock et al. 2012). The intrinsically
high resistance of Bp to several different classes of antibi-
otics increases the potential danger of this organism. Me-
lioidosis is acquired by skin inoculation, inhalation and in-
gestion, with pneumonia being the most common clinical
presentation. This disease is prevalent in South-East Asia
and Northern Australia, and persons with open skin wounds
and those with diabetes or chronic renal disease are at in-
creased risk for this infection, particularly among individu-
als performing agricultural work without health care standard
protections.

Bp possesses a CPS (named O-polysaccharide I, OPSI) which
was originally identified as an LPS (Knirel et al. 1992). OPSI
is composed of linear (1→3)-linked 2-O-acetyl-6-deoxy-β-D-
manno-heptopyranose residues with O-acetylation at position
2 (Table 2), and it is required for serum resistance and virulence
(Perry et al. 1995). Similarly to Bp, B. mallei (Bm), the causative
agent of glanders, expresses only this single serotype of capsule
(DeShazer, Brett and Woods 1998; DeShazer et al. 2001; Nelson
et al. 2004). Therefore, a CPS-based vaccine would potentially of-
fer cross-protection against both pathogens (Scott et al. 2014).
CPS-BSA conjugates were immunogenic in mice and elicited an-
tibodies protective against infection and opsonic (Nelson et al.
2004). A synthetic hexasaccharide of Bp capsule coupled to the
Hc domain of TT elicited anti-CPS antibodies in mice that were
protective against Bp infection (Scott et al. 2016).

Enterococcus faecalis and faecium
Until the late 1970s, Gram-positive enterococci were considered
a relatively inoffensive group of pathogens against which effec-
tive antibiotics were readily available. Emergence of antibiotic
resistance and increased isolation from hospitalized patients,
where they account for 11% of nosocomial bloodstream isolates,
have pointed out the relevance of Enterococci as nosocomial
pathogens (Theilacker et al. 2004), overtaken in terms of epi-
demiology only by S. aureus. It is estimated that in the USA about
66 000 enterococcal infections occur each year, and about 20 000
of these are due to multiple-drug-resistant strains, with about
1300 deaths per year (Reyes, Bardossy and Zervos 2016).

Initially, a CPS with an LTA-like structure composed of α-D-
Glcp-(1→2)-α-D-Glcp-(1→2)-Gro-3P (Table 2) was isolated in En.
faecalis (Huebner et al. 1999;Wang et al. 1999). A different surface-
exposed polysaccharide composed of glucose, galactose,

glycerol and phosphate in a 4:1:1:2 ratio was also reported
(Hancock and Gilmore 2002). Based on the analysis of the
biosynthetic CPS locus, four serotypes A-D were later described
(Hufnagel et al. 2004). A recent analysis of clinical En. faecalis
isolates indicated that most pathogenic strains belong to
serotype C. This suggested that a limited number of En. faecalis
capsular serotypes would be needed for developing a broadly
active immunotherapeutic agent. However, in another study, a
collection of 157 isolates was examined, and only half of them
could be typed to any of these four serotypes indicating that
serotype diversity might be larger (Hufnagel et al. 2006).

Early studies showed that purified CPS depleted the opsonic
killing activity of immune rabbit sera, and elicited in rabbit
high titers of antibodies mediating opsonic killing of bacteria
(Huebner et al. 1999, 2000). Approximately one-third of a sam-
ple of 15 En. faecalis strains and 7 vancomycin-resistant En.
faecium strains were shown to possess shared CPS, target of
opsonophagocytic antibodies. CPS also elicited protective an-
tibodies in a mouse model of systemic enterococcal infection
(Huebner et al. 2000). Anti-CPS antibodies made in rabbits pas-
sively protected mice against serologically related enterococ-
cal strains. Furthermore, capsule producing strains of serotype
C and D resulted more resistant to complement-mediated op-
sonophagocytosis than unencapsulated strains (Thurlow et al.
2009), supporting the role of the CPS as virulence factor and pos-
sible vaccine antigen.

Group B Streptococcus
Group B Streptococcus (Streptococcus agalactiae; GBS) is an en-
capsulated Gram-positive β-hemolytic pathogen, leading cause
of neonatal sepsis and meningitis (Le Doare and Heath 2013).
Risk factors for developing invasive GBS include maternal GBS
vaginal-colonization, prematurity, prolonged rupture of mem-
branes (>18 h), chorioamnionitis, youngmaternal age, black race
and having a previous infant with invasive GBS disease. Cur-
rent strategy for prevention of GBS infection in newborns is cen-
tered onmaternal vaccinationwith CPS conjugates (Heath 2016).
Since, based on the structure of the CPS structure, 10 serotypes
can be differentiated, 5 of which are responsible for themajority
of the epidemiology, multiple polysaccharides are used for the
development of conjugate vaccines. GSK has sponsored phase-1
and -2 trials of an investigational trivalent (Ia, Ib, III) CPS-CRM197

conjugate vaccine, and is currently pursuing pre-clinical studies
of a pentavalent (Ia, Ib, II, III, V) CPS-CRM197 vaccine (Kobayashi
et al. 2016). Pfizer has recently announced to enter clinical trials
with a multivalent formulation (Kobayashi et al. 2016).

Haemophilus influenzae type a
Among the six different capsulated strains (a–f) of the Gram-
negative H. influenzae, b and a are the most infective ones. Hib
was the first pathogen against which a conjugated CPS vaccine
was developed and introduced in vaccination schedules, with
consequent significant decrease of incidence. In recent years,
increasing rates of invasive infection due to Hia have been re-
ported in Canada, Alaska, Aboriginal populations in southwest-
ern USA and Australia, and in Brazil (Ribeiro et al. 2003; Boisvert
andMoore 2015). However, due to lack of comprehensive surveil-
lance programs in many countries, the epidemiological data
of Hia-associated diseases are neither complete nor accurately
recorded, potentially underestimating the impact of Hia infec-
tion worldwide (Ulanova and Tsang 2014). Cases of non-Hib dis-
ease have been reported to exhibit AMR to commonly used ther-
apeutic agentsmaking treatmentmore challenging (Skaare et al.
2014). Hia and Hib share a similar CPS structure (Table 2), but
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no cross-protection is afforded to type a by immunization with
Hib conjugate vaccines (Jin et al. 2007). Considering the similar-
ity of the two CPS, a conjugate vaccine against Hia is likely to be
effective and the development of a vaccine comparable to the
current Hib conjugate appears reasonable (Boisvert and Moore
2015). This hypothesiswas corroborated by recent conjugation of
sized and activated Hia polysaccharide to CRM197 and protein D
as carriers (Cox et al. 2017). The glycoconjugates were immuno-
genic in rabbits and elicited bactericidal antibodies.

Klebsiella pneumoniae
Klebsiella pneumoniae is a Gram-negative pathogen belonging to
the family of Enterobacteriaceae, implicated in severe infections
and outbreaks with high mortality especially for multidrug-
resistant infections (Brady et al. 2016). In 2013, it was reported
among the top five causes of hospital-acquired infection in EU
(Suetens et al. 2013) and the second leading cause of Gram-
negative blood stream infection. Depending on the type of in-
fection and the mode of infectivity, cells of Klebsiella spp. may
adhere and attack upper respiratory tract epithelial cells, cells in
gastrointestinal tract, endothelial cells or uroepithelial cells, fol-
lowed by colonization of mucosal membranes. Common under-
lying conditions include alcoholism, diabetes mellitus, chronic
liver disease (cirrhosis), chronic renal failure, cancer, trans-
plants, burns and/or use of catheters. Klebsiella spp. can be
transmitted through skin contact with environmentally con-
taminated surfaces and/or objects, and less frequently by fecal
transmission (Janda and Abbott 2006). Seventy-eight capsular
antigens (K antigens), leading to different serogroups, have been
identified, although about 24/25 were reported to cover about
70% of epidemiology (Podschun and Ullmann 1998). The role of
the capsule as virulent factor was demonstrated by pioneering
studies by Cryz et al. (Cryz 1983; Cryz, Furer and Germanier 1984).
Strains with capsular serotypes K1 and K2 (Table 2) have been
identified as the predominant virulent strains, and their viru-
lence has been confirmed in mouse models (Struve et al. 2015).

The capsules of K. pneumoniae are complex acidic polysaccha-
rides (CPS) consisting of repeating units composed of four to six
sugars, one of which is often an uronic acid (Corsaro et al. 2005).
The synthetic hexasaccharide repeating unit of the capsule from
carbapenem-resistant strains belonging to the sequence type
258 (ST258), found in some isolates in the USA and Israel (Diago-
Navarro et al. 2014), has recently been demonstrated to bind a
specific mAb and to promote, after conjugation, the production
of phagocytic antibodies (Seeberger et al. 2017).

A 24-valent CPS-based vaccine passed phase 1 in human tri-
als, but the maximum protection coverage never exceeded 70%
of the K. pneumoniae strains (Ahmad et al. 2012a). Consequently,
attention has been addressed to other surface polysaccharides,
particularly the O-Ag, which will be discussed later.

Salmonella species
Salmonella enterica serovar Typhi (S. Typhi), which causes the so-
called typhoid fever, is still amajor problem in low-income coun-
tries, such as South and South-East Asia, affecting millions of
people each year (Mogasale et al. 2014). Vi CPS (Table 2) is cur-
rently licensed as a vaccine against typhoid fever (MacLennan,
Martin and Micoli 2014). However, being an T-independent anti-
gen, Vi is not immunogenic in infants and is only licensed for
children over 2 years of age (Lebacq 2001). While a phase 3 study
was reportedmore than 15 years ago demonstrating high protec-
tive efficacy of Vi CPS conjugated to rEPA (Lin et al. 2001), only re-
cently Vi-TT and Vi-rEPA conjugate vaccines were licensed in In-
dia and China (MacLennan, Martin and Micoli 2014). CPS-based

glycoconjugate vaccines against S. Typhi are currently under de-
velopment by a number of manufacturers (Table 1).

Staphylococcus aureus
Among the Gram-positive bacteria, staphylococci account for a
large proportion of hospital-acquired infections (Theilacker et al.
2004). High rates are observed for methicillin-resistant S. au-
reus infections (MRSA), which cause mostly pneumonia, skin-
, wound-, bloodstream- and surgical site infections (Theilacker
et al. 2004). In the USA, the annual incidence of S. aureus bac-
teremia is of 15–17 cases per 100 000 population, of which nearly
half are due to MRSA (Hidron et al. 2008), justifying the need for
vaccination. Although there are at least 12 capsular types, CPS5
and 8 (Jones 2005) (Table 2) comprise ∼85% of blood infections,
and their use for vaccine development was explored (Robbins
et al. 2004). A single unadjuvanted dose of the bivalent vaccine
composed of S. aureus CPS5 and 8, bound to rEPA, showed a trend
of efficacy over the first 40 weeks postvaccination (Fattom et al.
2004a,b). However, the same vaccine did not show benefit com-
pared to placebo when tested in further trials in end-stage renal
disease patients as target population (Fattom et al. 2015). CPS5
and 8 conjugated to TT, in combination with mutated detoxi-
fied alpha-toxin and clumping factor A (ClfA), with and without
the adjuvant AS03B, were safe and induced a strong humoral re-
sponse in a phase-1 clinical trial with healthy adults conducted
by GSK (Levy et al. 2015). Also CRM197 conjugates of CPS5 and 8 in
mixture with ClfA and manganese transporter C, without adju-
vant, were well tolerated and immunogenic in a phase-1 clinical
trial conducted by Pfizer (Nissen et al. 2015; Frenck et al. 2017).

O-Antigens

O-Ag components of LPSmolecules have been recognized as vir-
ulence factors and suggested as potential vaccine candidates for
different pathogens.

Burkhoderia pseudomallei and mallei
LPS from Bp, generally referred as OPSII, is genetically related
and structurally similar to the one from Bm. The O-Ag structure
consists of a linear heteropolymer of a disaccharide composed
of β-D-glucopyranose (1→3)-linked to 6-deoxy-α-L-talopyranose
(Table 2). While some studies have focused on the OPSI cap-
sule as unique antigen for a vaccine, others indicate OPSII to
be required for serum resistance and virulence (DeShazer, Brett
and Woods 1998; DeShazer et al. 2001). LPS-specific monoclonal
antibodies were proven passively protective in animal mod-
els of infection (Treviño 2006; AuCoin 2012). Interspecies vari-
ations within the O-Ag lie in the different substitutions of the
6-deoxytalose residues, particularly O-acetylation at both C4
and C2 and O-methylation at C2 (Brett, Burtnick and Woods
2003). O-Acetylation at the C4 position has been detected in
significant amounts in Bp, whereas it is absent in Bm strains
(Heiss et al. 2013). In a recent study, among a panel of seven
disaccharides variably substituted, the disaccharide with a 2-
O-acetylated-3-O-methylated 6d-Tal unit showed the best bind-
ing to a LPS-specific mAb, known to be passively protective in
mousemodels ofmelioidosis and glanders, and gave the highest
anti-LPS immune response after conjugation to CRM197 (Kenfack
et al. 2017). A bioconjugate of OPSII with a Campylobacter protein
AcrA was shown to be immunogenic in mice and moderately
increased protection of mice after intranasal challenge (Garcia-
Quintanilla et al. 2014).
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Escherichia coli
Escherichia coli is a Gram-negative bacterium that can be broadly
classified as either diarrheagenic or extra-intestinal pathogenic
E. coli (Croxen and Finlay 2009). ExPEC cause a broad variety of in-
fections including urinary tract infections (UTI) and bacteremia,
an increasing problem in the aging population (Russo and John-
son 2003). The emergence of antibiotic-resistant strains has re-
sulted in increased numbers of hospitalizations for UTI, high
risk of death in patients with bacteremia and intensified treat-
ment costs (Zilberberg and Shorr 2013). O-Ag specific antibod-
ies confer protection against E. coli infections (Sarkar et al. 2014).
The immunogenicity and safety of a tetravalent ExPEC vaccine
produced by the process of bioconjugation, composed of the
O1, O2, O6 and O25b antigens (Table 2) linked to rEPA, showed
good immunogenicity in animal models (van den Dobbelsteen
et al. 2016). This bioconjugate vaccine candidate, co-developed
by Limmatech Biologics AG and Janssen Pharmaceuticals Inc.,
was well tolerated and elicited functional antibody responses
against all vaccine serotypes in women with a history of recur-
rent UTI (Huttner et al. 2017).

Francisella tularensis
Francisella tularensis is a highly-infectious Gram-negative bac-
terium that causes the rapid, and often lethal disease, tularemia
(Rowe and Huntley 2015). It has been classified by the Center
for Disease Control and Prevention as a category A bioweapon
(Dennis et al. 2001). Humans can acquire this infection through
several routes including a bite from an infected tick, deerfly
or mosquito, contact with an infected animal or its dead body,
drinking contaminated water and breathing contaminated dirt
or aerosol. Clinical manifestation of the disease is dependent on
the biotype, inoculum and port of entry (Ulu-Kilic and Doganay
2014).

A key factor in the biology of this bacterium is LPS, which
poorly activates proinflammatory responses due to its lack of in-
teraction with TLR4. LPS molecules can be modified by various
carbohydrates, including Glc, Man and GalNAc, affecting various
aspects of virulence. Mutants devoid of O-Ag (Table 2) show re-
duced intracellular survival and mouse virulence. The inability
of the LPS to alarm the immune systemcoupledwith its frequent
modification/alteration likely aid the success of this pathogen
during human infection (Gunn and Ernst 2007). An OAg-rEPA
bioconjugate was successfully produced (Cuccui et al. 2013) and
resulted able to boost IgG levels and significantly increase the
time to death upon subsequent challenge with F. tularensis. The
inner core region of the LPS of F. tularensis was synthesized and
proved to be recognized by antiserum against LPS and a live vac-
cine strain, supporting to further explore this compound as a
vaccine candidate (Boltje et al. 2012). O-Ag displayed on OMVs
from a hyperblebbing E. coli strain induced high levels of specific
IgG titers, as well as vaginal and bronchoalveolar IgA antibod-
ies, and provided protection against challenge with F. tularensis
strain (Chen et al. 2016).

Klebsiella pneumoniae
In contrast to the large number of capsular serotypes, K. pneumo-
niae has only nine LPS O groups, and in a recent study serotypes
O1, O2 and O3 accounted for 80% of infections (Follador et al.
2016). The O-Ag is accessible to antibodies in encapsulated
strains (Rukavina et al. 1997; Ahmad et al. 2012a). However, it is
unclear whether this is true for most of clinical isolates, since
in some K serogroups O-Ag appears masked by CPS (Tomás et al.
1991).

Conjugate vaccine of the O-Ag from K. pneumoniae M 10 and
iron-regulated cell surface proteins of the same organism was
found immunogenic and protective against challenge in a rat lo-
bar pneumonia model (Chhibber and Bajaj 1995). Immunization
of rats with an O-Ag TT conjugate decreased bacterial coloniza-
tion in lungs, and resulted in activation of alveolarmacrophages
capable of bacterial phagocytosis in vitro (Chhibber, Rani and
Vanashree 2005).

The O1 O-Ag chemically linked to Klebsiella OM proteins
elicited immunoglobulins against different Klebsiella infections,
which were transferred via placenta to the offspring of the vac-
cinated rabbits (Ahmad et al. 2012b). A non-toxic and immuno-
genic form of K. pneumoniae LPS was obtained by incorporation
of the native preparation into liposomes (Chhibber,Wadhwa and
Yadav 2004).

O1 and O2 O-Ag share a similar polygalactose structure,
termed D-galactan-I, except that O1 is shielded by the outer re-
peating units (D-galactan-II, Table 2) (Whitfield et al. 1991,1992;
Vinogradov et al. 2002).

Recently, it was found that the vast majority of ST258 iso-
lates, a globally disseminated drug-resistant nosocomial strain,
express a modified D-galactan-I O-Ag, termed D-galactan-III
(Szijarto et al. 2016). Since 83% of the more than 200 ST258 draft
genome sequences currently available carry the corresponding
operon, these isolates are predicted to express D-galactan-III
antigens. Accordingly, a D-galactan-III specific mAb was pro-
duced, showing to bind to extracted LPS from a panel of ST258
isolates, irrespective of the distinct capsular antigens expressed.
Based on these data, the D-galactan-III antigen may represent
an attractive target for immunization approaches against
K. pneumoniae ST258.

Conjugates of polysaccharides from different serovars
(Table 1) to P. aeruginosa flagellin have been proven to induce
protective antibodies (Simon, Cross and Tennant 2016). At-
tempts to target common motif in bacterial LPS such as the
core tetrasaccharide Hep2Kdo2 have been recently made. The
structure was synthesized and covalently attached to DT.
Rabbit serum elicited against the conjugate was reactive to N.
meningitidis strains as well as E. coli strain St1052 (W3110) and
P. aeruginosa serotype O6 reference strain (St4017). The serum
enabled N. meningitidis bacterial killing, when combined to an
inhibitor of CPS transport (Kong et al. 2016).

Moraxella catarrhalis
Moraxella catarrhalis, also known as Branhamella catarrhalis,
and previously known as Neisseria catarrhalis or Micrococcus
catarrhalis, is a Gram-negative, aerobic diplococcus, frequently
found as a commensal of the upper respiratory tract, particu-
larly in children.

Besides being recognized as the primary cause of acute oti-
tis media after St. pneumoniae and H. influenzae (Enright and
McKenzie 1997), M. catarrhalis is also implicated as a pathogen
in bronchitis, sinusitis and laryngitis in adults and children and
is a major cause of bronchopneumonia and exacerbation of
existing chronic obstructive pulmonary disease (COPD) in el-
derly patients and long-term heavy smokers with chronic pul-
monary disease (Sethi and Murphy 2001). It can also cause
nosocomial infection, particularly in respiratory, pediatric and
intensive-care units (Richards et al. 1993). The clinical manage-
ment of patients infected with M. catarrhalis relies predomi-
nantly on antimicrobial agents, and growing global emergence
of β-lactamase-producing strains (Verduin et al. 2002) has high-
lighted the need for vaccination (Kaieda et al. 2005).
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The LPS fromM. catarrhalis lacks of a full-length O chain, and
therefore the LOS is a possible virulence factor in the patho-
genesis of human infections (Fomsgaard et al. 1991). Serological
studies have identified three M. catarrhalis LOS types (Table 2):
A, B and C, representing 61%, 29% and 5%, respectively, of the
95% of the total 302 isolates tested from different geographic lo-
cations (Vaneechoutte et al. 1990). The inner core is conserved
among the three serotypes, while the difference lies in the di-
versity of their oligosaccharide branches (Edebrink et al. 1994,
1995, 1996). Therefore, this LOS might be a good candidate for
a vaccine antigen (Verduin et al. 2002). Sera from lower respira-
tory tract-infected patients recognized M. catarrhalis LOS (Rah-
man et al. 1995 ), and convalescent sera from COPD patients pos-
sessed IgA antibodies against this molecule (Murphy et al. 2005).

Recent studies identified a mAb recognizing a common LOS
epitope and facilitating complement killing of M. catarrhalis
strains from all three major serotypes (Gergova et al. 2007). Im-
munization with detoxified LOS A, B and C coupled to carrier
proteins produced in mouse and rabbit models sera inducing
complement-mediated bactericidal activity against homologous
and some heterologous strains (Gu et al. 1998; Yu and Gu 2005,
2007). Mouse antisera elicited by detoxified LOS conjugated to
OMP CD or to UspA proteins showed high titers of specific anti-
LOS antibodies, with complement-dependent bactericidal activ-
ity towardM. catarrhalis. In addition, mice immunized with both
conjugates showed a significant enhancement of the clearance
ofM. catarrhalis from lungs comparedwith controlmice (Hu et al.
2000, 2004).

Neisseria gonorrhoeae
Neisseria gonorrhoeae is the causative agent of the sexually trans-
mitted disease gonorrhea. WHO reports an estimated global in-
cidence of over 106 million cases per year, with a 21% increase
in incidence having occurred between 2005 and 2008 (WHO 2012;
Edwards et al. 2016). A 11% increase in the number of cases has
been reported in the USA from 2009 to 2013 (CDC 2013b) and
a 90% increase in Australia from 2009 to 2014 (NNDSS 2015).
Incidence is likely underestimated due to inadequate surveil-
lance and diagnostics methods in many regions, as well as the
high number of asymptomatic cases. Gonococcus has devel-
oped resistance to all classes of antibiotics used to treat it over
the past seven decades, including the sulphonamides, peni-
cillins, tetracyclines, macrolides and quinolones (Unemo 2015).
As other Neisseria species, gonococcus biosynthesizes a core LPS
pentasaccharide (Table 2), of which extensions from the LOS
core heptoses (HepI and HepII) are phase variable. The mAb 2C7
which attenuates gonococcal burden in the mouse vaginal col-
onization model is directed to LOS. Sugar motifs responsible
for total, partial or no complement-dependent killing by mAb
2C7 have been identified (Yamasaki et al. 2010; Chakraborti et al.
2016). Heptose-monophosphate (HMP) found in N. gonorrhoeae
core LOS was found as the link between gonorrhea and HIV,
since it activates CD4 + T cells to invoke an NF-κB–dependent
transcriptional response that drives HIV-1 expression and vi-
ral production (Malott et al. 2013). The 2C7 epitope is a con-
served oligosaccharide (OS) structure expressed by 94% of gono-
cocci that reside in the human genital tract and by 95% of first
passaged isolates (Gulati et al. 1996).

A peptidemimic (called PEP1) as an immunological surrogate
of the 2C7-OS epitope and reconfigured into a multi-antigenic
peptide (MAP1) was investigated. Mice immunized with MAP1
developed aTh1-biased anti-LOS IgG antibody response thatwas
also bactericidal, resulting in reduction of the carriage length
(Gulati et al. 2013).

Non-typeable Haemophilus influenzae
Non-typeable Haemophilus influenzae (NHTi) strains lack the
polysaccharide capsule, and their virulence is associated with
multiple factors, including LOS. So far, the only known natu-
ral habitat of H. influenzae is the human respiratory tract. The
hallmark of NTHi is heterogeneity, and this has been the major
obstacle for developing a successful vaccine. H. influenzae cause
a wide spectrum of diseases ranging from respiratory tract in-
fections to severe invasive disease, such as meningitis, sepsis,
bacteraemic pneumonia and epiglottitis (Cerquetti and Giufre
2016). After introduction of Hib vaccination, a marked change in
the predominant invasive serotype from Hib to NTHi has taken
place. Invasive NTHi disease occurs across all age groups and ac-
count for 77%of all notified invasiveH. influenzae cases in Europe.
NTHi is also the most frequently isolated bacterial pathogen
in otitis media and sinusitis in children (Murphy, Bakaletz and
Smeesters 2009). Acute exacerbations in COPD in adults are al-
most exclusively associated with NTHi isolates (Soriano and
Lamprecht 2012). NTHi colonization/infection is also quite com-
mon in young children with cystic fibrosis (CF). In developing
countries, NTHi is the major cause of hearing loss, affecting
an estimated 65 million to 300 million people globally (Murphy
2015).

Vaccines to prevent otitis media and COPD will have a broad
impact in reducing antimicrobial use and resistance (Murphy
2015).

NTHi LOS is structurally and antigenically heterogeneous.
To date, 10 serotypes have been identified (Campagnari et al.
1987; Patrick et al. 1987). Detoxified LOS (dLOS) conjugated to
proteins resulted immunogenic in mice and rabbits and con-
ferred T-cell-dependent immunological protection against oti-
tis media in chinchillas (Gu et al. 1996, 1997; Sun et al. 2000). In-
tranasal immunization with a dLOS-TT conjugate elicited LOS-
specific mucosal and systemic immunity, which enhanced not
only the homologous but also heterologous bacterial clearance
in mouse nasopharynx (Hirano et al. 2003). NTHi OM protein P6
was evaluated as carrier for dLOS, due to its conservation and
potential to elicit bactericidal antibodies (Wu et al. 2005). Animal
studies revealed that P6 could serve as an effective carrier for
dLOS.

Peptides that mimic NTHi LOS, conjugated to KLH, were
able to induce anti-LOS antibodies in rabbits (Hou and Gu 2003;
Balakrishnan 2017). Passive immunization with the anti-LOS
sera resulted in enhanced pulmonary bacterial clearance in a
mouse model that could be eliminated after pre-absorption of
the sera with LOS.

Pseudomonas aeruginosa
Pseudomonas aeruginosa (PA) is a Gram-negative, ubiquitous bac-
terium, capable of both aerobic and anaerobic growth that can
survive onminimal nutritional requirements and tolerate harsh
physical conditions, persisting in both community and hospital
settings. Serious infections with PA are predominantly hospital
acquired (Sharma, Krause and Worgall 2011) and PA has highest
mortality rate (37%) of nosocomial infections (Klevens, Edwards
and Gaynes 2008; Lister, Wolter and Hanson 2009).

PA may cause fulminant and acute VAP (Klompas et al. 2011;
Sandiumenge and Rello 2012), be a colonizer in COPD or cause
a chronic infection in CF patients (Sharma, Krause and Wor-
gall 2011), with slowly progressive deterioration of pulmonary
function as well as non-CF bronchiectasis and COPD patients
(Kraemer et al. 2005; Veesenmeyer et al. 2009).

Antibiotic resistance of PA is amajor concern. Antibiotics can
alter the bacterial flora in the upper respiratory tract, favoring
colonization of resistant nosocomial pathogens and subsequent
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pneumonia. Treatment of infections can be very challenging,
since most PA are resistant to at least one of the classes of an-
tibiotics, and a few PA are resistant even to all of the antibiotics
available (Talbot et al. 2006; Pier 2007).

At least 20 different O-Ag structures can be distinguished,
although only about 11 of these are expressed in the major-
ity of clinical PA isolates. The lipid A shows variation from CF
to bronchiectasis patients in the acylation pattern. Also O-Ag
shows variability, as transition to chronic infections is correlated
with changes in LPS from smooth (with O-Ag) to rough (with no
O-Ag). The core structure seems to remain identical. The most
commonly isolated serotypes in acute infection are O1, 6 and
11 (Table 2), yet there is a quote of isolates not expressing O-Ag
(Jennings et al. 2015).

A heptavalent vaccine prepared from LPS of seven different
serotypes, called Pseudogen, showed efficacy in preventing fa-
tal PA infections in non-randomized trials among adult cancer
and burn patients, but these vaccines were limited by toxic-
ity and showed no benefit moreover in studies with leukemia
and CF patients (Alexander, Fisher and MacMillan 1971; Hagh-
bin, Armstrong and Murphy 1973; Young, Meyer and Armstrong
1973; Pennington et al. 1975; Hortobagyi et al. 1978). When Pseu-
dogenwas tested in CF patients already infectedwith PA, the pa-
tients did clinically worse compared with non-vaccinated con-
trols, perhaps due to exacerbation of inflammation engendered
by vaccination (MacIntyre, McVeigh and Owen 1986). An im-
proved LPS-based polyvalent vaccine (16 strains) was investi-
gated in naı̈ve CF patients. The vaccine failed to reduce the
rate of PA colonizationwhen comparedwith the non-vaccinated
control group. The same vaccinewas also tested in burn patients
with inconclusive results (Jones, Roe and Gupta 1978; Langford
and Hiller 1984). Possibly, the vaccine did not protect against a
sufficient range of PA LPS serotypes (Doring and Pier 2008; Priebe
and Goldberg 2014). Aerugen, an 8-valent vaccine from O-Ag
conjugated to exotoxin A (EPA), was initially demonstrated safe
and immunogenic in plasma donors, bone marrow transplant
and non-colonized CF patients (Cryz et al. 1987, 1989; Schaad
et al. 1991; Lang et al. 2004). In a small open study involving 30
non-colonized CF, the vaccine was confirmed well tolerated and
induced antibodies to the O-Ag promoting the opsonophago-
cytic killing which were maintained up to 3 years (Cryz et al.
1994). In a cohort of 25 CF patients, yearly vaccinations over
10 years induced IgG levels lower than infection-induced IgG
titers, but affinity and epitope specificity rather than the quan-
tity of the antibodieswas shown tomediate protection (Zuercher
et al. 2006). However, in a larger trial in European CF patients,
Aerugen showed good safety but no significant differences
from the placebo (http://www.biospace.com/News/crucell-n-v-
announces-suspension-of-aerugenr/24447). In bronchiectasis
patients, high titers of IgG2 specific for the O-Ag resulted in im-
paired PA serum-mediated killing (Wells et al. 2014), which could
explain the inconsistent results of LPS-based approaches.

Salmonella species
Due to the lack of CPS, the development of O-Ag based vaccines
is in progress for S. Paratyphi A, and non-typhoid Salmonella
(NTS). In Asia, a significant proportion of enteric fever is caused
by S. Paratyphi A, while NTS, mainly S. Typhimurium and S. En-
teritidis, is major cause of bloodstream infection in sub-Saharan
Africa (MacLennan, Martin and Micoli 2014). O-Ag from three
of the principal invasive serovars (namely, O:2 for S. Paratyphi
A, and O:4,5 for S. Typhimurium and O:9 for S. Enteritidis) have
been conjugated to carrier proteins and tested in animal mod-
els (MacLennan, Martin andMicoli 2014). Conjugation of S. Typhi

O-Ag to rEPA has also been carried out to cover Vi-negative
strains (Salman et al. 2017). However, no vaccine is yet available
against these diseases.

Shigella species
Shigella species have recently been reviewed (Mani, Wierzba and
Walker 2016). Shigellosis is caused by the ingestion of bacte-
ria of the genus Shigella, of which three species are responsible
for the majority of infections. Shigella flexneri is the most fre-
quently isolated species worldwide, accounting for most cases
in the least-developed countries; Sh. sonnei is more common in
low- and middle-income countries; and Sh. dysenteriae has his-
torically caused epidemics of dysentery, particularly in confined
populations such as refugee camps (Mani, Wierzba and Walker
2016). Immunity to Shigella appears to be strain-specific, so an O-
Ag-based vaccine covering the most commonly detected strains
(i.e. Sh. flexneri 2a, 3a, 6 and Sh. sonnei) is desirable.

A conjugate vaccine composed of Sh. sonnei O-Ag bound to
rEPA conferred type-specific protection against Sh. sonnei shigel-
losis when tested in Israeli army recruits (Cohen et al. 1997).
Shigella dysenteriae type 1 and Sh. flexneri 2a bioconjugates (of
which the glycan component is depicted in Table 2) elicited sig-
nificant LPS specific humoral responses in phase-1 studies (Hatz
et al. 2015; Riddle et al. 2016). These promising studies support
the use of O-Ag-based conjugates for human vaccination. Ef-
forts have also been addressed to the synthesis of Sh. flexneri
2a and 3a O-Ag through rational investigation of minimal struc-
tural epitopes and impact of O-acetylation pattern in the struc-
tures (Boutet and Mulard 2008; Vulliez-Le Normand et al. 2008;
Phalipon et al. 2009; Gauthier et al. 2014). The conjugate of a syn-
thetic pentadecasaccharide composed of three consecutive re-
peating units of Sh. flexneri 2a O-Ag, developed at the Pasteur
Institute in France, has been recently tested in a phase-1 study
(van der Put et al. 2016).

Vibrio cholerae Cholera is a severe dehydrating diarrheal disease
caused by toxigenic strains of Gram-negative V. cholerae. It repre-
sents a major international health concern: ∼3–5 million cases
of cholera and 100 000–130 000 deaths due to cholera occur each
year globally (WHO 2010). Children, especially younger than 5
years of age, are at particular risk in endemic areas.

There are more than 200 serogroups of V. cholerae, classified
based on the O-Ag specificity. Among these serogroups, cholera
is mainly caused by V. cholerae serogroup O1 and less commonly
by serogroup O139. O1 can be classified into two serotypes,
Ogawa and Inaba, whose O-Ags are linear homopolymers of
α-(1→2)-linked 3-deoxy-glycero-tetronamido-D-perosamine, dif-
fering for the non-reducing end terminal perosamine unit that is
2-O-methylated only in the Ogawa serotype (Table 2) (Chatterjee
and Chaudhuri 2003).

Killed oral cholera vaccines are increasingly becoming a
standard cholera prevention and control tool. However, their
use has been hampered by the requirement of two or three
priming doses, relatively short-term protection and responses
of lower magnitude and shorter duration in young children
(Balakrishnan 2017).

Conjugates from detoxified Inaba LPS linked to cholera toxin
(CT) variants CT-1 and CT-2 were shown safe in adult volunteers
and induced anti-LPS vibrocidal antibodies (Gupta et al. 1998).
Recently, O1 Ogawa and Inaba O-Ags conjugated to recombi-
nant tetanus toxoid heavy chain fragment (TThc) induced car-
bohydrate specific immune responses and resulted respectively
in 95% and 55% protective efficacy in a mouse survival cholera
challenge model (Alam et al. 2014; Sayeed et al. 2015). Likewise,

http://www.biospace.com/News/crucell-n-v-announces-suspension-of-aerugenr/24447
http://www.biospace.com/News/crucell-n-v-announces-suspension-of-aerugenr/24447
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O139 linked to TT induced specific antibodies that were vibri-
ocidal and protective in the neonatal mouse model of cholera
infection (Boutonnier et al. 2001). To avoid LPS toxicity, syn-
thetic oligosaccharides deriving from O1 and O139 O-Ag have
also been produced for conjugation to carrier proteins (Saksena
et al. 2006; Soliman and Kovac 2016).While a Ogawa type hexsac-
charide bound to BSA induced antibodies that were protective in
a challenge assay (Chernyak et al. 2002; Rollenhagen et al. 2009),
the Inaba counterpart linked to rEPA induced specific antibod-
ies which were neither vibriocidal nor protective in the infant
mouse cholera model (Wade et al. 2006). The elicited antibodies,
regardless of serotype, were cross-reactive to heterologous LPS;
however, anti-Ogawa serum did not kill Inaba bacteria, suggest-
ing that immunodominant LPS epitopes differ between Ogawa
and Inaba LPS.

Other surface carbohydrates

In addition to CPS or O-Ag, other carbohydrates decorating the
surface of microbial pathogens have been targeted for the devel-
opment of glycoconjugate vaccines.

A typical example is given by Gram-positive Group A Strepto-
coccus (GAS), which is a major cause of pharyngitis in children
across the world, with a high frequency of severe sequelae in
low- and middle-income countries including acute rheumatic
fever, rheumatic heart disease and post streptococcal glomerulo
nephritis (Mitchell 2003). Native GAS capsule has the same struc-
ture as mammalian hyaluronic acid; thus, it is not a suitable
target for a polysaccharide-based vaccine (MacLennan 1956). In
contrast, the Lancefield group A carbohydrate (GAC), compris-
ing a polyrhamnose backbone with an immunodominant Glc-
NAc side chain (Table 2), is a virulence factor, and conjugated to
TT carrier protein elicited a protective immune response against
systemic or nasal challenge with GAS (Sabharwal et al. 2006). An
inverse relationship between high Ab titers against GAS PS and
the presence of GAS in the throat of Mexican children was ob-
served (Sabharwal et al. 2006). The epitope recognized by human
antisera was identified in the hexamer composed by two repeat-
ing units (Michon et al. 2005). Based on this observation, syn-
thetic GAS oligosaccharides (2 or 4 repeats) conjugated to CRM197

were demonstrated as efficacious as the conjugated PS in pro-
tecting mice from challenge with the pathogen (Kabanova et al.
2010). Concerns about GlcNAc-containing vaccines have been
raised due to a possible role of anti-GAS-PS antibodies in the de-
velopment of GAS infection sequelae, like acute rheumatic fever
or Sydenham’s chorea (Shikhman, Greenspan and Cunningham
1993; Malkiel et al. 2000; Kirvan et al. 2006). GlcNAc-deficient
GAS PS conjugated to recombinant pneumococcal protein
SP0435 was also able to induce Abs promoting opsonophago-
cytic killing of multiple GAS serotypes and able to protect
against GAS challenge after passive immunization (van Sorge
et al. 2014).

Polyrhamnan, besides being a component of GAS PS back-
bone, is constantly expressed as cell wall polysaccharide in St.
pyogenes and St. agalactiae (van Sorge et al. 2014).

The ubiquitous exo-polysaccharide PNAG (Table 2) appears
to play an important role in biofilm formation, immune eva-
sion and pathogenesis in a variety of bacterial species including
S. aureus (Cerca et al. 2007), S. epidermidis (Mack et al. 2004), Acti-
nobacillus species (Kaplan andMulks 2005) and E. coli (Wang, Pre-
ston and Romeo 2004; Cerca and Jefferson 2008).

When native PNAG from S. aureus (90% O-acetylated) was
chemically treated to reduce acetylation to 15%, the result-
ing de-acetylated PNAG glycoform (dPNAG) elicited opsonic and

protective antibodies against S. aureus (Maira-Litran et al. 2002,
2005). In contrast, antibodies specific to the acetylated formwere
poorly opsonic and not protective (Maira-Litran et al. 2004). No-
tably, most humans (95%) have high titers of natural antibody
directed to the acetylated epitopes of native PNAG, and this an-
tibody is poorly opsonic and not protective in animal models
(Perez et al. 2009). A synthetic dPNAG composed of nine repeating
units conjugated to staphylococcal non-toxic mutant of alpha-
hemolysin (Hla H35L) induced carbohydrate specific antibodies
that reduced the bacterial burdens in animal models of S. aureus
(skin abscesses, pneumonia and nasal colonization) (Pozzi et al.
2012). Carrier-protein specific immunitywas also shown to be ef-
fective in reducing bacterial levels in infected lungs and in nasal
colonization. Rabbit antibodies induced against the synthetic
oligosaccharide conjugated to TT induced complement medi-
ated killing of A. baumannii S1, a high-PNAG-producing strain,
but not its PNAG-negative mutant (Bentancor et al. 2012). Immu-
nization significantly reduced post infection levels ofA. bauman-
nii in the lungs or blood, compared to control groups, demon-
strating that the PNAG conjugate could prevent pneumonia and
pathogen caused bacteremia.

Another ubiquitous glycan is represented by the enterobac-
terial common antigen (ECA) (Table 2) (Männel and Mayer 1978).
Monomer and dimer of this trisaccharide repeating unit have
been synthesized and conjugated to BSA for the development
of a specific mAb (SM250–1 A5), which recognized a variety of
species, such as K. pneumoniae, Sh. sonnei, Sh. flexneri, Citrobac-
ter freundii, E. coli, Y. enterocolitica, Enterobacter aerogenes, S. Ty-
phimurium, while it was not reactive to other Gram-negative
bacteria (V. cholerae) and Gram-positive bacteria (Listeria mono-
cytogenes) (Liu et al. 2015) .

Alginate, a polysaccharide made by variable ratios of man-
nuronic to guluronic acids partially O-acetylated, was found in
mucoid strains of PA (Pier et al. 1994; Pier 2005; Sharma, Krause
and Worgall 2011). Conjugated to a variety of carrier proteins,
including EPA, TT, KLH, OMV (from N. meningitidis serogroup B)
or synthetic peptide containing T- and B-cell epitopes, alginate
was successful in inducing protective immunity in mice, medi-
ated by opsonophagocityc antibodies at preclinical level, but has
never been tested in human (Theilacker et al. 2003; Kashef et al.
2006; Doring and Pier 2008; Farjah et al. 2014, 2015). The struc-
turally similar polymannuronic acid conjugated to type a flag-
ellin also exhibited protective efficacy in a mouse lung infection
model (Campodonico et al. 2011).

Pel and Psl are other exopolysaccharides produced by PA (Ma
et al. 2006, 2007; Colvin et al. 2012; Jennings et al. 2015). Psl is
found in 76% of analyzed clinical isolates, and its expression
not only occurs in the primary infecting strains, but has also
been implicated in establishing a persistent infection. Psl is re-
sponsible for the formation andmaintenance of biofilms and an
anti-Psl mAb exhibited opsonophagocytic killing of a number of
strains and conferred significant protection in multiple animal
models (DiGiandomenico et al. 2012).

TAs have been explored as potential vaccine candidates
for Gram-positive bacteria accounting for a large proportion
of hospital-acquired antibiotic-resistant infections, such as
staphylococci and enterococci (Theilacker et al. 2004). Im-
munization of mice with (poly)glycerolphosphate backbone
induced in mice antibodies which mediated opsonophago-
cytic killing in vitro of S. epidermidis and S. aureus (Table 2)
and, upon passive transfer, reduced mortality in a murine
S. aureus peritonitis model (Theilacker et al. 2006). Although
LTA has been reported to be an TLR2 agonist, this activ-
ity might derive from contaminating lipoproteins/lipopeptides
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(Zahringer et al. 2008). After conjugation to TT, a synthetic ver-
sion of the (poly)glycerolphosphate backbone was also able to
elicit murine-specific IgG enhancing opsonophagocytic killing
of live S. aureus in vitro. Mice actively immunized with the
(poly)glycerolphosphate conjugate vaccine showed a rapid clear-
ance of staphylococcal bacteremia in vivo and, in contrast to pu-
rified LTA, did not exhibit detectable inflammatory activity (Chen
et al. 2013).

LTA substituted or not with alanine have been isolated
and recognized by opsonic antibodies against enterococci
(Theilacker et al. 2006; Sava et al. 2010). The kojibiose–TA struc-
ture of one type of LTA (Table 2) isolated from En. faecalis strains
was very similar to the CPS (Wang et al. 1999). To circumvent the
polymer heterogeneity, various syntheses for the preparation of
defined LTA antigens have been described, including automated
solid-phase synthesis (Hogendorf et al. 2010, 2011, 2012).

A short LTA hexamer with a single disaccharide substituent
conjugated to BSA elicited the production of antibodies in rab-
bit that induced opsonic killing of enterococci and S. aureus
strain MW2 (Laverde et al. 2014). The LTA from E. faecalis strain
12030 was found identical to the CPS, except for the substitution
at position C-2 with D-alanine (Theilacker et al. 2006). Osponic
serum recognized this polysaccharide similarly to LTA lacking
of alanine (Sava et al. 2010), indicating that anti-LTA antibod-
ies are cross reactive irrespective of the different polysaccharide
decorations.

In addition to TA, other classes of heteroglycans have been
isolated from enterocci, including a heteroglycan composed of
rhamnose, glucose, galactose, mannosamine and glucosamine
(Hsu et al. 2006). Two polysaccharides containing altruronic acid
and legionaminic acid, respectively, and the fructose homopoly-
mer levan have been isolated from En. faecium, in addition to
a glucosylated LTA (Kodali et al. 2015). Immunization of rab-
bits with CRM197 conjugates of these polysaccharides showed
that while antibodies raised against levan failed to mediate
opsonophagocytic killing, the other two conjugated polysac-
charides elicited antibodies with opsonic activity, which were
also capable of reducing bacterial load in mouse liver or kid-
ney tissue. Fragments of the capsule-like diheteroglycan (DHG)
(Table 2) were recently synthesized and characterized as a
promising vaccine candidate (Krylov et al. 2015).

Clostridium difficile is a Gram-positive anaerobic spore-
forming bacterium, the incidence and severity of which infec-
tion appears increased in the last decades, particularly in the
USA and Canada (Warny et al. 2005). An hypervirulent strain
(NAP1/027/BI) with particularly severe antibiotic resistance was
identified as the cause of these outbreaks.

Three surface polysaccharide structures, PSI, PSII and PSIII
(Table 2), have been isolated (Ganeshapillai et al. 2008). PSII
was found the more abundant in the hypervirulent strain
NAP1/027/BI and many other clinical isolates (Danieli et al. 2011;
Oberli et al. 2011). Conjugates of the polysaccharide or the syn-
thetic repeating unit with CRM197, recombinant bacterial tox-
ins or ETEC proteins elicited carbohydrate specific antibodies
(Adamo et al. 2012; Bertolo et al. 2012; Romano et al. 2014). By mi-
croarray screening of synthetic structures, higher levels of IgA
antibodies against PSI were found in patients with low or high
severity of disease compared to asymptomatic control (Martin,
Weishaupt and Seeberger 2011; Martin et al. 2013b). Synthetic
glycans selected by epitope mapping studies and displayed on
a synthetic scaffold were shown to be immunogenic as larger
fragment, demonstrating the candidacy of small structures for
vaccine development (Broecker et al. 2016a). PSIII is an LTA-like
polymer, and anti-PSIII antibodies have also been detected in the

blood of infected patients (Martin et al. 2013a). Immunizations
with conjugates of intact or de-O-acylated PSIII fractions raised
IgG antibodies recognizing the polymer on C. difficile cellular
surface (Cox et al. 2013).

Serum, but not fecal, anti-PSIII IgG were found in hospital-
ized individuals, possibly due to pre-exposure to the pathogen
(Broecker et al. 2016b). A synthetic LTA fragment conjugated to
CRM197 elicited in mice antibodies that bound to the surface of a
series of C. difficile strains. The alum-adjuvanted CRM197 conju-
gate reduced the bacterial colonization in mice challenged with
live C. difficile cells.

Mycobacterial and fungal surface carbohydrates

Although an anti-tuberculosis vaccine (BCG) is available, the
overall effective rate of prevention is inferior to 50%. The emer-
gence of antibiotic-resistant strains, particularly in HIV-infected
individuals, is highlighting the need of improvement of the cur-
rent preventive therapy. Lipoarabinomannan (LAM, Table 2) is
a major lipoglycan component of the outer cell wall of all my-
cobacterial species. LAM is an important immunomodulating
compound, contributing to the pathogenesis of mycobacterial
tubercolosis (MBT) infections. The derived AM, obtained by re-
moval of the lipid in order to avoid any immunosuppressive ef-
fect, was covalently linked to themycobacterial protein Ag85B or
TT showing protective efficacy in mice and guinea pigs in terms
of prolonged survival and reduced pathology, when adminis-
teredwith L3 adjuvant using a subcutaneous priming-intranasal
boost regime (Hamasur et al. 2003; Kallenius, Pawlowski and
Hamasur 2008). Attempts to use conjugates of synthetic man-
nans (Leelayuwapan et al. 2017), phosphatidylinositol manno-
sides (Boonyarattanakalin et al. 2008) or rhamnans (Vignal et al.
2003; Meng et al. 2017) are in progress, although cross reactivity
against MBT has not been so far elucidated.

Candida species have become the fourthmost common noso-
comial bloodstream isolate in the USA and in most European
countries, and a vaccine would be beneficial particularly for pa-
tients at high risk like those in intensive care units (Cutler et al.
2007; Cassone 2008). Resistance to therapeutic treatment is in-
creasing among Candida species and particular concern is be-
ing raised by the emergence of Candida auris in health care set-
tings because this fungus is very resistant to drugs and can be
easily spread from person to person. Branched β-(1→3)-(1→6)-
glucans have been considered to develop vaccines against in-
fections caused by Candida species. β-Glucans are component
of most, if not all, fungi and therefore are attractive targets for
fungal vaccines development. Conjugates based on β-glucans
and mannans (Table 2), either extracted from a natural source
or chemically synthesized, have been proposed as possible vac-
cine candidates (Torosantucci et al. 2005; Bromuro et al. 2010;
Adamo et al. 2011, 2014; Hu et al. 2013; Johnson and Bundle 2013;
Lipinski et al. 2013; Paulovicova et al. 2013; Liao et al. 2015, 2016).
β-Glucans are immunostimulator molecules through Dectin-1
activation (Donadei et al. 2015); thus, bicomponent β-glucan and
β-mannan conjugate has also been made (Lipinski et al. 2013),
showing enhanced immunoresponse against the latter antigen.

More recently, other species are emerging as targets for vac-
cination, such as Cr. neoformans and Aspergillus. Cryptococcus ne-
oformans is an opportunistic encapsulated yeast that causes
cryptococcal meningoencephalitis (cryptococcosis) in immuno-
compromised individuals, including AIDS patients and organ
transplant recipients (Cogliati 2013). Invasive aspergillosis (IA),
caused by Aspergillus, is the second most common cause of
nosocomial, invasive fungal infections, with an incidence of



Micoli et al. 411

approximately 5 per 100 000 population in the USA (Wilson et al.
2002).

Similarly to Candida, these species are surrounded by β-
(1→3)-glucans (Maubon et al. 2006), and capacity of anti β-(1→3)-
glucan antibodies to inhibit the cellular growth of acapsular
Cryptococcus strains has been proven (Rachini et al. 2007).

Both Cryptococcus and Aspergilli present at their surface α-
(1→3)-glucans (Table 2). In the first case, they anchor the
polysaccharide capsule to the cell wall. In Aspergillus fumigatus
(Fontaine et al. 2010), α-(1→3)-glucans induce the aggregation of
germinating fungal conidia. Antibodies elicited in mice by con-
jugated synthetic α-glucans recognize the cell wall of Aspergillus
(Komarova et al. 2015).

Cryptococcus neoformans also exhibits a peculiar CPS. Four
serotypes, A, B, C and D (Table 2), are distinguished and they are
composed for a large extent of mannose trimers with glucopy-
ranosyluronate and xylopyranosyl substituents (GXM) creating
the so called ‘triads’ (Cherniak, Jones and Reiss 1988). Strains of
serotype A and D are the most frequent cause of cryptococco-
sis in humans and thus the serotypes of primary interest for a
human vaccine (Cherniak and Sundstrom 1994).

A glycoconjugate vaccine composed of unfractionated GXM
polysaccharide conjugated to bovine gamma globulin was ini-
tially seen highly immunogenic, but protection from infection
was not achieved (Goren and Middlebrook 1967). Fractionated
GXM polysaccharide conjugated to TT was again highly im-
munogenic (Devi et al. 1991), and both active and passive im-
munization of mice conferred protection against experimental
cryptococcosis (Casadevall et al. 1992; Devi 1996). However, using
a library of mAbs it was later observed that the GXM-TT vaccine
elicit protective, non-protective and even deleterious (disease-
enhancing) antibodies (Mukherjee, Scharff and Casadevall 1992;
Mukherjee et al. 1995). The free unconjugated GXM polysac-
charide would also have potent immunosuppressive properties
(Vecchiarelli 2000).

These early findings led to the hypothesis that conjugated
GXM could contain protective and non-protective epitopes, and
a non-protective antibody response would prevent the action
of formed protective antibodies (Nakouzi et al. 2009). Efforts
are currently ongoing to identify the protective and the non-
protective epitopes present in the GXM through a library of syn-
thetic oligosaccharides followed by conjugation to protein car-
rier and testing in mice (Oscarson et al. 2005; Guazzelli, Ulc
and Oscarson 2015; Guazzelli et al. 2015; Guazzelli, McCabe and
Oscarson 2016).

CONCLUSIONS

Glycans coating the bacterial surface are key antigens for the
development of vaccines against bacterial and fungal diseases.
Over the last decades, glycoconjugate vaccines licensed to com-
bat N. meningitidis, H. influenzae and St. pneumoniae have proven
to be safe, efficacious and cost effective (Sharma et al. 2012;
Delgleize et al. 2016; Zarei, Almehdar and Redwan 2016; Delea
et al. 2017; Linares-Perez et al. 2017).

Nevertheless, the continuously evolving epidemiology re-
quires additional efforts to extend the coverage, as in the case
of St. pneumoniae, while other pathogens request to be inces-
santly monitored to be prepared in case inclusion of emerg-
ing serotypes in the vaccine composition would be needed (i.e.
N. meningitidis serogroup X or H. influenzae type a) (Micoli et al.
2013b; Cox et al. 2017; LaForce 2017b)

Many diseases still remain to be controlled. Over the
last years, alarming concern is emerging toward antibiotic-

resistant bacteria, including, among others, the so-called ES-
KAPE pathogens, which are leading causes of nosocomial infec-
tions through the world (Boucher et al. 2009; Garcia-Quintanilla
et al. 2016; Bloom, Black and Rappuoli 2017). Fungal infections
are also becoming increasingly invasive for immunocompro-
mised patients, such those with immune systems impaired
by cancer chemotherapy, or hospitalized individuals (Spellberg
2011). Recent analyses have highlighted the need of novel ther-
apeutic approaches to tackle these pathogens, and WHO and
CDC have ranked and prioritized the relevance of these bacterial
targets (CDC 2013; WHO 2017). Other emergencies could derive
from bacteria which spread during environmental calamities (V.
cholerae), particularly impacting poor countries, or which could
be used as bioterrorism weapons (B. pseudomallei and mallei,
F. tularensis).

Additional factors which will increase the need of preven-
tative therapies are the changes in the age population com-
position, shifting toward a larger presence of elderly as conse-
quence of the increased life expectation in the developed coun-
tries; the increased numbers of travelers, as well as the migra-
tion flows from the south to the north of the world; and even
climatic changes which could play a role in selecting dangerous
pathogens (Rappuoli et al. 2011).

Nowadays different tools are available for themanufacturing
of glycoconjugates, which could accelerate the development of
novel carbohydrate-based vaccines. Semisynthetic conjugation
is awell-established approachwhich delivered to patients effica-
cious vaccines against deadly pathogens. It requires a complex
multistep manufacturing and quality control flow; however, it
will continue to represent a reference approach, particularly for
those structures difficult to express by glycoengineering meth-
ods and not promptly accessible by chemical synthesis.

The synthetic approach has been considered time demand-
ing and expensive for vaccine manufacture compared to the use
of bacterial-derived carbohydrates. Nonetheless, clear proofs of
feasibility have been provided by the marketed synthetic Hib
vaccine (Verez-Bencomo et al. 2004) and the pentadecasaccha-
ride Shigella conjugate recently entered phase-1 clinical trial
(van der Put et al. 2016). Additionally, synthesis of a number of
challenging pneumococcal serotypes conjugates has been re-
cently achieved (Geissner et al. 2016; Parameswarappa et al. 2016;
Emmadi et al. 2017; Lisboa et al. 2017; Schumann et al. 2017).

Synthetic carbohydrate chemistry can aid identification of
the sugar target epitope, optimal carbohydrate density and at-
tachment site to the carrier protein, supporting the rational de-
sign of vaccines with improved immunogenicity and preserved
key protective protein epitopes.

Bioconjugation will play a pivotal role for faster and cheaper
production of multicomponent vaccines. Bioconjugation has al-
ready provided candidates against Sh. dysenteriae O1 and Sh.
flexneri 2a (Hatz et al. 2015), and against ExPEC (Huttner et al. 2017)
tested in phase-1 clinical studies. Escherichia coli N-glycosylation
so far applied is limited to the use of PglB for the transfer of the
nascent polysaccharide chain with an end-terminal NAc hex-
osamine to the carrier protein. Directed enzyme evolution is ap-
plicable to increase the transferase promiscuity toward other
sugar acceptors (Ihssen et al. 2015). PglL, the O-transferase from
N. meningitidis (Musumeci et al. 2013), and NCT from Ac. pleurop-
neumoniae (Cuccui et al. 2017) could also give access to a broader
range of hexose ending polysaccharides.

Examples so far achieved of bioconjugate vaccines are re-
lated to polysaccharides assembled through group 1 and 4 CPS
biochemical pathways. Other groups are more challenging and
represent an opportunity to further progress this technology.
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The use of glycoengineered OMVs appears as a flexible but at
a very early stage approach. Synthetic oligosaccharides and bio-
conjugation will aid the development of vaccines with higher
standards in terms of product manufacturing and characteriza-
tion compared to traditional conjugate vaccines.

The present analysis underscores how carbohydrate anti-
gens will be key for the development of future vaccines against
emerging pathogens, primarily the ESKAPE bacteria A. bauman-
nii, En. faecium, K. pneumoniae, P. aeruginosa, classified and crit-
ical targets by WHO and CDC, as well as C. difficile and GAS,
categorized as serious threats. Vaccination for prevention of
relevant targets, such as S. aureus and GBS infections, is pro-
gressing at clinical level. Fungal infections (Ca. albicans, Cr.
neoformans) could also benefit of carbohydrate-based vaccina-
tion. Among the pathogens discussed in this review there are
examples where a simple vaccine formulation with one or two
antigens has the potential to ensure large coverage (e.g. F. tu-
larensis, B. pseudomallei andmallei,V. cholerae, Haemophilus type a),
and the development of a glycoconjugate vaccine appears fea-
sible. For M. catarrhalis, N. gonorrhoeae and NTHi LOS, alone or in
combination with protein antigens, could be key targets for vac-
cine design. In most of the other cases, a combination of mul-
tiple sugar components would be required. This is the case of
Klebsiella, for which O-Ag could ensure a better coverage with a
smaller number of antigens as compared to the CPS, or E. coli. In
other cases, such as PA, the complexity of the bacterial mech-
anism of infection with transition from acute to chronic phase
might render more challenging the identification of the optimal
antigens. Use of pathogen-derived proteins as carrier for the gly-
can haptens could reduce the number of vaccine components,
by broadening across strain protection and/or by tackling the
pathogen on different virulence factors, provided that the key
protective epitopes of the protein carrier are identified and pre-
served during conjugation (Broker et al. 2017).

Recent advances in the field of glycoconjugate vaccines, syn-
ergy of the different technologies currently available and their
appropriate selection will enable the tailored design of glyco-
conjugates of novel targets, expanding the number of available
vaccines and tackling currently unmet medical needs.
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