
OPEN

REVIEW ARTICLE

The role of the microcirculation in delayed cerebral ischemia and
chronic degenerative changes after subarachnoid hemorrhage
Leif Østergaard1,2, Rasmus Aamand2, Sanja Karabegovic1, Anna Tietze1,2, Jakob Udby Blicher2,3, Irene Klærke Mikkelsen2,
Nina Kerting Iversen2, Niels Secher4, Thorbjørn Søndergaard Engedal1,2, Mariam Anzabi2, Eugenio Gutierrez Jimenez2,
Changsi Cai2, Klaus Ulrik Koch4, Erhard Trillingsgaard Næss-Schmidt3, Annette Obel1, Niels Juul4, Mads Rasmussen4 and
Jens Christian Hedemann Sørensen5

The mortality after aneurysmal subarachnoid hemorrhage (SAH) is 50%, and most survivors suffer severe functional and
cognitive deficits. Half of SAH patients deteriorate 5 to 14 days after the initial bleeding, so-called delayed cerebral ischemia
(DCI). Although often attributed to vasospasms, DCI may develop in the absence of angiographic vasospasms, and therapeutic
reversal of angiographic vasospasms fails to improve patient outcome. The etiology of chronic neurodegenerative changes
after SAH remains poorly understood. Brain oxygenation depends on both cerebral blood flow (CBF) and its microscopic
distribution, the so-called capillary transit time heterogeneity (CTH). In theory, increased CTH can therefore lead to tissue
hypoxia in the absence of severe CBF reductions, whereas reductions in CBF, paradoxically, improve brain oxygenation if
CTH is critically elevated. We review potential sources of elevated CTH after SAH. Pericyte constrictions in relation to the initial
ischemic episode and subsequent oxidative stress, nitric oxide depletion during the pericapillary clearance of oxyhemoglobin,
vasogenic edema, leukocytosis, and astrocytic endfeet swelling are identified as potential sources of elevated CTH, and hence
of metabolic derangement, after SAH. Irreversible changes in capillary morphology and function are predicted to contribute to
long-term relative tissue hypoxia, inflammation, and neurodegeneration. We discuss diagnostic and therapeutic implications of
these predictions.
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INTRODUCTION
Aneurysmal subarachnoid hemorrhage (SAH) is caused by the
rupture of a cerebral aneurysm, and the subsequent accumulation
of blood in the subarachnoid space.1 The age-standardized
incidence of SAH is 6 to 7 per 100,000 citizens per year in most
countries, but 20 per 100,000 citizens per year in Finland and
Japan.1,2 Half of the patients are below the age of 55 at the time of
their SAH,1 and only half of the SAH patients are alive one
month after the bleeding.3 Less than 40% of those who survive a
SAH are able to return to their previous occupation, and 44% to
93% of the survivors experience restrictions in instrumental
activities of daily living.4 The majority of patients experience
impaired memory, executive function, and language function
in the months, and in some cases years, after their SAH.4

More importantly, permanent neurocognitive symptoms such as
fatigue, depression, anxiety, and sleep disorders affect the quality
of life of the majority of SAH survivors.4

Early Brain Injury
The majority of deaths after SAH occur within 2 days of the
bleeding.5 The release of arterial blood into the subarachnoid

space is accompanied by intense headache and an acute
increase in intracranial pressure, often causing intracranial
circulatory arrest and loss of consciousness.6,7 The mechanisms
of the resulting early brain injury are dominated by cell
death, blood–brain barrier (BBB) disruption, and brain edema—
see ref. 8 for a comprehensive review. The brain edema is
predominantly caused by extravasation of plasma across a
leaking BBB (vasogenic edema): Animal models show BBB
disruption as early as 30 minutes after cortical SAH,9 and the
leakage of large molecules remains high within the first 48
hours of the bleeding, after which it normalizes in some species—
see ref. 10 and Table 2 therein. In humans, increased blood–brain
barrier permeability to diagnostic contrast agents9,11 and radio-
graphic signs of global edema12 can be observed within 5 to
6 days of the SAH. Studies using diffusion-weighted MRI confirm
the formation of diffuse edema acutely after SAH in animal
models13 and within the first week in SAH patients.14 Importantly,
radiographic signs of global edema based on computerized
tomography during hospitalization is an independent predictor of
death, severe disability, and poor cognitive outcome at 3-month
follow-up.12,15
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Delayed Cerebral Ischemia
Despite appropriate treatment of the ruptured aneurysm, as many
as half of the SAH patients develop reduced levels of conscious-
ness and/or focal neurologic deficits 5 to 14 days after the initial
bleeding, so-called delayed cerebral ischemia (DCI).1 The
symptoms are poorly localized and develop gradually over
hours, suggesting a progressing, global disease process.16 The
development of ischemic damage often coincides with the
emergence of vasospasm—widespread constrictions throughout
the cerebrovasculature.17

Causes of Vasospasm: Vessel Responses to Subarachnoid Blood
and Blood Breakdown Products
After the release of blood into the subarachnoid space in humans,
immune cells infiltrate the meninges within hours, and erythro-
cytes are gradually removed by phagocytosis and hemolytic
breakdown.18 Powerful vasoconstrictors such as thromboxane,
endothelin-1, serotonin, platelet-activating factor, and 20-
hydoxyeicosatetraenoid acid are hence found in increased levels
in the cerebrospinal fluid (CSF) after the hemorrhage.19,20

Endothelin-1 has received special attention in that the
combination of oxyhemoglobin (HgbO) and endothelin-1 can
elicit ischemia and spreading depolarizations (SDs),21 an important
feature of human DCI.22 Spreading depolarizations are self-
propagating tissue depolarizations associated with cessation of
synaptic activity, surges of extracellular potassium, opening of the
BBB with edema formation,23 tissue hypoxia,24 and inversion of
the normal CBF responses to neuroglial activity.21

Hemolysis peaks after approximately 1 week,18 and the period
of the most intense angiographic vasospasms thus coincides with
peaking levels of HgbO in the subarachnoid space in both
humans18 and primates.25 Studies have shown that hemoglobin
breakdown products can affect vessel tone in several ways—see
refs. 18 and 26 for detailed reviews. First, the spontaneous
autoxidation of HgbO to methemoglobin, and the iron released
from hemoglobin, cause the release of highly reactive superoxide
radicals.18,26 Superoxides are thought to cause vasoconstriction by
depleting vascular nitric oxide (NO) levels22,27 and to cause lipid
peroxidation, which in turn causes vasoconstriction and structural
damage to the cerebral arteries, including the endothelial cell
layer.28 Second, the breakdown of heme into bilirubin under such
oxidative conditions results in the formation of bilirubin oxidation
products that change the contractility, signaling, and metabolism
in large vessels—see ref. 29 for a review. Bilirubin is produced
during the time period associated with DCI, and CSF levels of
bilirubin oxidation products are higher in patients who develop
DCI than in those who do not.30 Third, HgbO has very high affinity
for the NO and acts as a sink for this vasodilator.18 Finally, NO
production is reduced after SAH, first as neuronal nitric oxide
synthetase disappears from nerve fibers in the arterial adventitia,31

and later, when elevated levels of asymmetric dimethyl arginine
inhibit the activity of endothelial NOS.32 These reductions in NOS
availability and activity have been shown in relation to the
development of vasospasm in animal models31 and patients,33

respectively.

The Relation between Vasospasm and Delayed Cerebral Ischemia
Delayed cerebral ischemia and SD may develop in the absence of
angiographic vasospasm, just as angiographic vasospasms may
resolve without causing ischemic lesions.17,34,35 Disappointingly,
treatment with clazosentan, an endothelin receptor antagonist
that effectively resolves angiographic vasospasms, has failed to
reduce mortality, DCI-related morbidity, or functional outcome in
relation to SAH.36–38 It is now believed that vasospasms, rather
than causing ischemic damage in their own right, render brain
tissue vulnerable to the development of SD which, in turn, cause
ischemic lesions—the so-called Double Hit Model of DCI.39

According to this model, the initial bleeding causes generalized
macro- and microvascular vasospasm (first hit), whereas the
ensuing spreading depressions and further vasoconstrictions
cause a critical energy depletion that result in irreversible
ischemic damage (second hit).40 The presence of SD indeed
correlates with the development of DCI in animal models of SAH
and in SAH patients,40,41 and the inversion of normal arteriolar
responses (to elicit vasoconstriction rather than vasodilation)
during SD was recently attributed to increased Caþþ oscillations
in astrocytes, caused by the presence of blood degradation
products.40,42 The combined increase in perivascular Kþ

concentration in relation to hemolysis,39 elevated Kþ efflux from
astrocytic endfeet, and further Kþ efflux during SD, are thought to
elevate Kþ concentrations above a critical threshold at which
vascular responses are inverted.37

Long-Term Brain Atrophy
The origin of the long-term cognitive symptoms after SAH remains
poorly understood.4 Studies that have compared cognitive outcome
scores with lesion location after SAH, suggest that the loss of some
aspects of executive function can be ascribed to ischemic lesions in
specific brain regions.43 Meanwhile, studies performed 1 year after
SAH find ventricular dilation and sulcal enlargement that suggest
general atrophy.44 Importantly, outcome and neuropsychological
scores after SAH appear to correlate with total atrophy,44,45 cortical
atrophy,46 and hippocampal atrophy.47 The long-term structural and
neuropsychological effects of SAH therefore resemble those of
neurodegenerative and neuropsychiatric disorders such as
Alzheimer’s disease, mild cognitive impairment, posttraumatic
stress disorder, and depression.47

THE METABOLIC ROLE OF CHANGE IN CAPILLARY
MORPHOLOGY AND PERICAPILLARY EDEMA AFTER
SUBARACHNOID HEMORRHAGE
The complex pathophysiology of SAH raises several questions,
which we attempt to address from the perspective of changes in
the capillary circulation below: Why did clazosentan, a drug that
not only restores vessel diameters in angiographic vasospasm, but
also restores cerebral blood flow (CBF) to values above the
ischemic thresholds,48 fail to improve patient outcome? What are
the roles of BBB damage and tissue edema in the development of
DCI—if any? Can changes in the morphology and function of
capillaries reviewed below contribute to the development of DCI,
and to the risk of long-term, diffuse atrophy and poor
neuropsychological outcome?

We recently showed that the availability of oxygen in brain
tissue depends not only on the CBF, but also on the microscopic
distribution of the blood, the so-called capillary transit time
heterogeneity (CTH).49 By a model that determines the availability
of oxygen in tissue for a given CBF, CTH, and tissue oxygen
tension, we have analyzed the metabolic effects of gradual
increases in CTH, which we expect to parallel changes in capillary
morphology in ageing and disease.50,51 We found that as CTH
increases, oxygenated blood is increasingly shunted through the
capillary bed. To maintain sufficient oxygen availability to support
neuronal function and survival, we showed that the vasculature
must attenuate CBF responses (and ultimately resting CBF) to
improve blood–tissue oxygen concentration gradients and
blood–tissue oxygen exchange times. The resulting vascular
oxidative stress and tissue hypoxia, however, comes at the
expense of increased thrombogenicity, tissue inflammation, and
neurodegenerative changes, which we have proposed may have a
role in the etiopathogenesis of Alzheimer’s disease51 and
ischemia–reperfusion injury.50

Below, we review the changes in the capillary morphology and
function that are known or likely to occur in relation to SAH, and
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how any accompanying changes in CTH may interfere with
oxygen availability and tissue microenvironment in the various
phases of disease progression after SAH.

Changes in Capillary Morphology and Blood–Brain Barrier
Function after Subarachnoid Hemorrhage
Sehba and Friedrich52 recently reviewed the molecular and
morphologic changes that occur in the capillary wall in relation
to SAH. These changes involve the development of luminal
endothelial protrusions that are thought to restrict capillary flows,
and swelling of astrocytic endfeet that cause compression of the
capillary lumen—see Figures 1A and 1B. In addition, cerebral
ischemia has been shown to result in the constriction of cerebral
pericytes, seemingly due to the increased levels of oxidative and
nitrosative stress53,54—see Figure 1C. Experimental studies have
shown profound damage to both capillary basement membrane
and endothelial cells, followed by disruptions of the blood–brain
barrier (BBB) and development of vasogenic edema in both
experimental ischemia and SAH.55,56 These changes are paralleled
by openings of tight junctions between capillary endothelial cells
in models of SAH,9,52 and likely to be exacerbated by SDs, during
which swelling of astrocytic endfeet24 and BBB breakdown23 occur.

Up to 57% of SAH patients develop hypovolemic hyponatremia
in the week after the initial bleeding.57 The effects of
hyponatremia on cerebral and pericapillary swelling in humans
remain unclear, but animal models of osmotic brain edema
induced by hyposmotic hyponatremia (intraperitoneal or central
venous injection of distilled water) show both brain swelling58 and
capillary compression owing to profound swelling of astrocytic
endfeet59—see Figures 1D–1F.

Exposure of Capillaries to Vasoactive Substances after
Subarachnoid Hemorrhage
In the absence of lymphatic vessels, interstitial fluid and solutes
from brain parenchyma are removed along the basement

membranes of arteries and capillaries to the cervical lymph
nodes.60 Recent studies of the clearance of solutes from the CSF
in mice show that after intracisternal injection, molecules in the size
range 3 to 2,000 kDa distribute rapidly along penetrating arteries
into brain tissue, along the basement membranes of arterioles and
capillaries, after which they drain into the cervical lymph nodes.61

The molecular weight of the hemoglobin tetramer falls within this
size range (64 kDa), and reports on the distribution of horseradish
peroxidase62 (44 kDA) and albumin (66 kDa)63 confirm that
hemoglobin and its breakdown products are likely to be cleared
from the subarachnoid space via perivascular transport to the
cervical lymph nodes. The clearance of CSF and interstitial fluid may
be disturbed after SAH, but animal studies in which the cervical
lymph drainage has been blocked suggest that the perivascular
pathway is active and crucial for fluid drainage after SAH.64,65 It is
therefore likely that not only smooth muscle cells, but also
pericytes, are exposed to high concentrations (similar to or above
those found in CSF) of hemoglobin and other vasoactive substances
as these are transported through the narrow basement membranes
in which these contractile cells are embedded.61

The control of pericyte tone remains much less studied than
that of arterioles.66 The vasoactive substances released after SAH
are likely to interfere with both arteriolar and pericyte tone. In vitro
experiments suggest that NO acts as a pericyte dilator67,68

whereas the oxidative and nitrosative stress that result from
the release of superoxide radicals have been shown to cause
pericyte constrictions in vitro53 and in vivo.53 Furthermore, brain
pericytes express endothelin-1 receptors,69 and in vitro studies
suggest that pericytes and capillaries constrict upon endothelin-1
exposure.70,71 The period of maximum vasospasm in cerebral
resistance vessels is therefore likely to coincide with a period
of poor vascular control, or even constrictions, throughout
the capillary bed. In the section below, we describe how any
resulting changes in capillary flow patterns can affect tissue
oxygenation, independent of any vasoconstrictions at either the
arteriolar or arterial level.

Non-ischemic

Ischemic

Figure 1. Changes in the capillary morphology after subarachnoid hemorrhage (SAH), ischemia, and hypotonic hyponatremia. Panels A and B
show swelling of astrocytic endfeet (*) and endothelial protrusions (arrows) after SAH. Scale bars indicate 5 mm in panel A and 2 mm in panel B,
respectively. Reproduced from ref. 52 with permission from the publisher. Panel C shows segmental narrowing of capillaries due to capillary
constrictions after ischemia and reperfusion (bottom) compared with slender, thread-like, horseradish peroxidase-filled capillaries in the
normal hemisphere (top). Reproduced from ref. 53 with permission from the publisher. Panels D and E show tangential sections through
capillaries in sham-operated brain (D) and in a hypotonic hyponatremic edema model (E) in rabbit. The distended astrocytic endfeet (OL), the
membranes of which are marked by arrows, clearly compress the capillary lumen, as shown in the transverse section (F). Other astrocytic
membranes are labeled ‘A’, and axons ‘AX’. The magnifications were � 6500 (D and E) and � 5000 (F), respectively. Reproduced from ref. 59
with permission from the publisher.
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THE RELATION BETWEEN ERYTHROCYTE VELOCITIES AND
OXYGEN EXTRACTION IN CAPILLARIES
Figure 2 illustrates how the heterogeneity of erythrocyte
velocities, as it occurs either naturally or because of the
disturbances in the capillary wall or in blood cell morphology,
reduces the efficacy of oxygen extraction from blood. As
illustrated by the figure, both white blood cell and erythrocyte
dimensions exceed the average capillary diameter, and these cells
must therefore undergo deformation to enter and pass the
capillaries. Changes in the adhesion of blood cells to endothelium
have been shown in SAH,73 and such changes are known to
disturb capillary flow patterns and lead to ’shunting’ of
erythrocytes through the capillary bed.74 Studies by direct
microscopy in animals,75,76 and by perfusion MRI in human

stroke,77–79 confirm that capillary flow patterns undergo profound
changes in cerebral ischemia.

THE COMBINED EFFECT OF CEREBRAL BLOOD FLOW,
CAPILLARY TRANSIT TIME HETEROGENEITY, AND TISSUE
OXYGEN TENSION ON BRAIN OXYGENATION
Figure 3 shows how blood mean capillary transit time (MTT),
CTH, and tissue oxygen tension (along the three axes) in
combination can secure sufficient oxygen to support normal
brain function—see also ref. 50. Mean capillary transit time (MTT)
is given by the central volume theorem81 as the ratio between
capillary blood volume and CBF, which is shown in the secondary
x-axis for convenience. The green surface show all combinations

Figure 2. The relation between blood flow and net oxygen extraction in single capillaries. The curve in plot C shows the so-called flow–
diffusion equation72 for oxygen, that is, shows the maximum amount of oxygen that can diffuse from a single capillary into tissue, for a given
perfusion rate. The curve shape predicts three important properties of parallel-coupled capillaries: First, the curve slope decreases towards
high-perfusion values, making vasodilation increasingly inefficient as a means of improving tissue oxygenation towards high-perfusion rates.
Second, if erythrocyte flows differ among capillary paths (case B) instead of being equal (case A), then net tissue oxygen availability declines.
This can be observed by using the curve to determine the net tissue oxygen availability resulting from the individual flows in case B. The
resulting net tissue oxygen availability is the weighted average of the oxygen availabilities for the two flows, labeled b in the plot. Note that
the resulting tissue oxygen availability will always be less than that of the homogenous case, labeled a. Conversely, homogenization of
capillary flows during hyperemia has the opposite effect, and serves to compensate for the first property. By a similar argument, insert D
disproves the traditional assumption that increased perfusion always results in improved tissue oxygenation:49 By increasing tissue perfusion
from Fhom to Fhet, and again subdividing capillary flows in the latter case into f1 and f2, tissue oxygen availability in fact decreases in response
to a flow increase, as indicated by the double asterisk. Note that, if erythrocyte flows are hindered (rather than continuously redistributed)
along single capillary paths (as indicated by slow-passing white blood cell (WBC) and/or rugged capillary walls), upstream vasodilation is likely
to amplify the redistribution losses, as erythrocytes are forced through other branches at very high speeds, with negligible net oxygenation
gains. Reproduced from refs. 49 and 50.
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of MTT (or CBF), CTH, and tissue oxygen tension that make 2.5 mL
oxygen available to each 100 mL of tissue per minute. This rate of
oxygen delivery matches the metabolic need of resting brain
tissue,80 and the interior of the green half-cone therefore
represents hemodynamic conditions that can support normal
brain function.

The figure illustrates why, theoretically, reductions in tissue
oxygen tension and resting CBF are the only alternatives to
immediate tissue damage if CTH increases uncontrollably. Label A
in Figure 3 shows the theoretical maximum for the increase in CTH
(indicated by a broken line parallel to the MTT and CBF axes)
that brain tissue can sustain at the tissue oxygen tension of
normal brain tissue (25 mm Hg)82 before neurologic symptoms
ensue. As CTH approaches this limit, oxygen availability gradually
approaches the tissue consumption, causing tissue oxygen
tension to decrease.50 At lower tissue oxygen tensions, the
green cone is wider, and tissue can therefore accommodate
increases in CTH until oxygen tension cannot be reduced further
(label B). Note that as CTH increases, CBF must be attenuated (MTT
prolonged) to meet the metabolic needs of the tissue. As CTH
reaches this maximum and tissue oxygen tension becomes
negligible, CBF is predicted to approach 21 mL/100 mL/minute.
So, if CBF is indeed adjusted to optimize brain oxygenation
as capillary flow patterns become increasingly disturbed,
CBF values would therefore be predicted to be close to the
classic ischemic threshold of 20 mL/100 mL/minute83 when
symptoms arise. Accordingly, this threshold may not only be
characteristic of vascular narrowing/occlusion, but also of CBF

adaptations to secure sufficient oxygenation under conditions of
critically elevated CTH, caused by changes in the capillary flow
patterns.50

THE DYNAMICS OF CEREBRAL BLOOD FLOW, CEREBRAL
BLOOD FLOW RESPONSES, AND OXYGEN EXTRACTION
FRACTION AS CAPILLARY TRANSIT TIME HETEROGENEITY
INCREASES: THE THREE STAGES
Figure 4A illustrates the dynamics of capillary flow patterns during
rest and during increased metabolic needs in the normal brain.
The flux of erythrocytes through the cortical brain capillaries is
highly inhomogeneous during rest,84–86 and the limited increase
in net extraction of oxygen as flow in individual capillaries is
increased (cf. Figure 2D) therefore contribute to the modest (30%)
net oxygen extraction fraction (OEF) in the resting brain.49 A range
of CBF-modifying stimuli cause parallel homogenizations of
capillary flow patterns, including functional hyperemia,49

hypocapnia,87 hypercapnia,88 and hypoxemia.89 We recently
showed that the combined reductions in MTT and CTH during
functional hyperemia seemingly ensure close coupling of oxygen
availability to the metabolic needs of the tissue by this additional,
neurocapillary coupling.49

Mild Capillary Transit Time Heterogeneity Increase: The Hyperemic
Stage
Figure 4B illustrates the metabolic consequence of capillary
dysfunction: disturbances that elevate flow heterogeneity, and
prevent the normal flow homogenization during hyperemia.
Elevated CTH reduces the OEF that can be attained for a given
tissue oxygen tension,49 and the metabolic needs of tissue
can therefore be met by slight increases in CBF, both during
rest and during hyperemia (e.g. functional activation or
hypercapnia). We therefore refer to states of mild CTH increases
as hyperemic.

Increases in the blood flow velocity in the intracranial vessel are
indeed observed in the days after SAH in both animal models90 and
patients91 by transcranial Doppler sonography (TCD). Increased flow
velocities may, in principle, be caused by either or both relative
vasoconstriction and increased CBF.92 Parallel recordings of
arteriovenous oxygen differences and TCD flow velocities in the
first days after SAH, however, show decreased OEF during the
gradual increase in flow velocity, consistent with such relative
hyperemia.93 Similarly, direct measurements of CBF show
occasional hyperemia and early reductions in OEF in patients
after SAH.94 The molecular underpinnings of the early vasodilation
after SAH have been explored in animal models: within the first few
days of SAH, the production of NO indeed appears to be
upregulated in the walls of pial arterioles (in contrast to the
subsequent downregulation reviewed above), as evidenced by
increased expression of endothelial endothelial NOS and increased
levels of NO breakdown products.95

Moderate Capillary Transit Time Heterogeneity Increase: The Flow
Suppression Stage
As changes in capillary or blood morphology accumulate and CTH
increases further, increases in CBF can no longer compensate for
the parallel reduction in OEFmax. The slope of the curve that
depicts oxygen extraction as a function of blood flow (cf.
Figure 2C) becomes more and more horizontal towards high-flow
values, indicating that, as resting CBF increases, (additional)
hyperemia becomes increasingly inefficient as a means of
increasing oxygen availability during episodes of increased
metabolic needs. As indicated by the insert in Figure 2D, CTH
can become so high that increases in CBF no longer increase
oxygen availability. Note that, in the absence of a mechanism that
blocks further vasodilation in cases where this fails to improve
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Figure 3. Metabolic thresholds. The green iso-contour surface
corresponds to the metabolic rate of contralateral tissue in patients
with focal ischemia.80 The red plane marks the boundary, left of
which vasodilation fails to increase tissue oxygen availability
(malignant capillary transit time heterogeneity (CTH)). The
maximum value that CTH can attain at a tissue oxygen tension
(PtO2) of 25mmHg, if oxygen availability is to remain above that of
resting tissue, is indicated by the label A. As CTH increases further, a
critical limit is reached as PtO2 approaches 0—label B. At this stage,
the metabolic needs of tissue cannot be supported unless mean
transit time (MTT) is prolonged to a threshold of approximately
4 seconds, corresponding to cerebral blood flow (CBF)¼ 21mL/
100mL/minute. Modified from ref. 50.
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tissue oxygenation, a state of high CTH is predicted to lead to
uncontrolled hyperperfusion and hypoxic tissue damage, such
as it is observed in the luxury perfusion syndrome.96 This
phenomenon, and reperfusion injury, is discussed further in
refs. 49 and 50. Our analysis shows that, provided CBF is
suppressed, the resulting reduction in tissue oxygen tension
improves blood–tissue concentration gradients and OEFmax so
much that oxygenation for brain function can be secured.49 The
prediction that the cerebral vasculature attempts to suppress any
CBF increases is consistent with the finding that vasodilatory
responses, referred to as the cerebrovascular reserve capacity, are
reduced between days 3 and 13 in patients with SAH.97

The Hypoxic Stage: Short-Term Tissue Damage or Long-Term
Neurodegeneration.
If CTH increases even further, the reduction of tissue oxygen
tension can contribute to tissue damage in several ways. First, the
reduction of tissue oxygen tension is likely to increase the
probability of devastating SDs.40 Second, the reduction of tissue
oxygen tension activates hypoxia-inducible transcription factors
(HIFs). Increased HIFs-1 levels is a powerful stimulus for BBB
opening and edema formation in SAH,98 contributing to the
vicious cycle of further CTH increase and hypoxia as indicated in
Figure 5. Third, HIF-1 also upregulates nicotinamide adenine
dinucleotide phosphate oxidase 2 levels,99 the main source of

Rest Activity / Hyperemic challenge

Hyperemic State

CTH ↑
OEF ↓
Resting CBF ↑

Flow suppression State

CTH ↑↑
Resting CBFdecreases
OEF increases
Vascular Reserve Capacity ↓
Tissue oxygen tension ↓
Arteriolar tone ↑
Oxidative stress ↑
Thrombogenicity ↑

Tissue Hypoxia State

CTH ↑↑↑
Resting CBF ↓↓
OEF ↑↑
Vascular Reserve Capacity ↓↓
Tissue oxygen tension ↓↓
Oxidative stress ↑ ↑
Thrombogenicity ↑↑
Neurological symptoms
Tissue damage

Normal State

Figure 4. The subarachnoid hemorrhage (SAH) stages. The yellow arrows indicate flow with different velocities through the capillary system.
The color within the vessels indicates oxygen saturation, and the background color outside the tissue oxygen tension. (A) The normal state,
(B) the hyperemic state, where slight capillary transit time heterogeneity (CTH) increases lead to increased cerebral blood flow (CBF). (C) The
flow suppression state. (D) Tissue hypoxia. OEF, oxygen extraction fraction.
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reactive oxygen species in SAH.100 Reactive oxygen species reacts
with NO to form peroxynitrite.101 Although NO depletion and
peroxynitrite both cause vasoconstriction by impairing normal
smooth muscle cell relaxation,102 peroxynitrite also inactivates
tissue plasminogen activator, increasing thrombogenicity, and
thereby the risk of further tissue damage.103 The latter is
consistent with the recent demonstration that the extent of
microthrombosis correlates with low levels of NO in models of
SAH.104 Microvascular constrictions and microthrombosis have
been demonstrated within 3 hours of experimental SAH,105

suggesting that flow suppression, and possibly relative tissue
hypoxia may be present early after SAH, possibly in relation to
pericyte constrictions and early BBB opening. Finally, hypoxia
and peroxynitrite are also known to damage mitochondria.102

Mitochondrial dysfunction, in turn, exacerbates the energy crisis by
reducing the amount of ATP that can be obtained from the
available oxygen, and amplifies the production of ROS.102

If CTH continues to increase, our model of oxygen availability
predicts that oxygen reserves are exhausted as tissue oxygen
tension become negligible and CBF approaches 21 mL/100 g/
minute. This is consistent with global CBF values in patients who
develop DCI, reported to range from 17 to 21 mL/100 mL/minute in
some,48,94,106 and up to 30–40 mL/100 mL/minute in others.107–109

If, however, (i) perivascular HgbO clearance is completed
without causing critical capillary flow disturbances owing to the
parallel NO depletions, (ii) capillary edema formation eventually
becomes outbalanced by the normal resorption and removal of
pericapillary fluid, and (iii) endothelial, basement membrane,
pericyte, and astrocyte endfeet morphology and function normal-
ize (cf. Figure 1), then the increase in CTH is predicted to halt and

potentially reverse. The additive effect of these factors, and their
approximate time-scale, are illustrated by Figure 5B. According to
this scenario, the reversal of hypoperfusion and angiographic
vasospasm in SAH is hence in part the result of a gradual
normalization of capillary flow patterns.

The extent to which the profound changes in the capillary wall
morphology in relation to SAH are indeed reversible remains
unclear. If not, residual CTH elevations are predicted to render
tissue relatively hypoxic. Chronic hypoxia is associated with
upregulation of hypoxia-inducible transcription factor-1 and
nuclear factor NF-kB, a strong inflammatory signal110 that might
account for the acute and chronic inflammatory changes after
SAH recently reviewed by Provencio.73 The putative pathway from
chronically elevated CTH to neurodegeneration is discussed in
detail in ref. 51 The notion that the neurovascular changes in SAH
survivors are permanent is supported by findings that their
cerebrovascular reserve capacity in many cases remain low,111,112

suggestive of persisting CTH elevation characteristic of the flow
suppression stage described in Figure 4C.

DISCUSSION
The recent revision of the classic flow–diffusion equation to take
the heterogeneity of the capillary flow patterns into account49

implies that factors such as vasogenic edema, astrocytic endfeet
swelling, and NO depletion during the pericapillary clearance of
blood, may have profound implications for cerebral oxygenation
after SAH. The analysis in this review suggests that the pathway
from aneurysmal hemorrhage to DCI can be explained in part
by adaptations to the increases in CTH that result from these
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Global cerebra lischemia

Endothelial cell damage
Basement membrane disruption
Astrocyte endfeet swelling

Pericyte constriction

Subarachnoid blood

Pericapillary HgbO
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Pericyte dilation ↓
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BBB disruption
NO depletion

ROS production
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NF κB ↑
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Figure 5. The figure summarizes the pathways from the acute subarachnoid hemorrhage to early brain injury (EBI), delayed cerebral ischemia
(DCI), and the long-term degenerative changes that are hypothesized to be the result of irreversible increases in capillary transit time
heterogeneity (CTH). Nitric oxide synthetase (NOS) dysfunction refers to the loss of neuronal nitric oxide synthetase (nNOS) from nerve fibers
in the arterial adventitia, and the inhibition of endothelial NOS (eNOS) by asymmetric dimethyl arginine (ADMA)—see text. The blue arrows
indicate ‘vicious cycles’ through which low oxygen tension exacerbates blood–brain barrier (BBB) disruption and capillary flow disturbances.
The green text boxes indicate possible sites of therapeutic intervention discussed in the text. HgbO, oxyhemoglobin; NO, nitric oxide; ROS,
reactive oxygen species; SD, spreading depolarizations.
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factors—and that the degree of long-term neurodegenerative
changes is determined by the extent to which these factors are
reversible. An overview of the hypothesized chain of events is
shown in Figure 5.

The additive effect of capillary NO depletion and (cytotoxic and
vasogenic) edema in terms of the CTH increase, vasospasm (micro-
and/or macrovascular, angiographic), and clinical deterioration
after SAH is illustrated in Figure 6. The relative importance of
edema formation may be gleaned from the puzzling difference in
the outcome in clot-placement and filament-puncture models of
SAH: in the former, little BBB damage and edema are detected,

and little if any mortality or poor functional outcome is
observed.113 In the latter, however, extensive BBB damage and
edema develops, and the rates of mortality and neurologic and
long-term cognitive deficits seemingly resemble those found in
patients. Brain edema thus appears to contribute to the poor long-
term outcome after SAH, while NO depletion during the
perivascular clearance of blood breakdown no doubt contributes
to the deterioration during days 6 to 12. Further evidence in
support of CTH as an indicator of metabolic derangement after
SAH is offered by the finding that leukocyte counts during the first
5 days after SAH seemingly predicts clinical deterioration, the
development of angiographic vasospasm,114 and death.115

Increased number and endothelial adhesion of leukocytes are
known to disturb capillary flow patterns and lead to ’shunting’ of
erythrocytes through the capillary bed.74 Leukocytosis after SAH is
thought to reflect endogenous catecholamine release, and after
control for the use of steroids and other known predictors of the
development of angiographic vasospasm, the peak number of
lymphocytes 1 to 5 days after admission has been shown to be an
independent predictor of the development of angiographic
vasospasm.116

Diagnostic Implications
The model predicts that the progression of increased flow velocity
on TCD (hyperemic stage) only in the most severe cases develop
into angiographic vasospasm (flow suppression stage), and that
neurologic symptoms or permanent tissue damage only develop if
these adaptation fails to maintain tissue metabolism during the
period of pericapillary edema (hypoxic stage and beyond). See
Figure 6. This is consistent with the reports that increased flow
velocities by TCD is a more frequent finding than angiographic
stenosis, which again is more frequent than clinical and/or
radiologic signs of insufficient tissue oxygenation in SAH
patients.117 The finding that both elevated flow velocities by TCD,
and angiographic vasospasm, correlate poorly with any aspects of
patient outcome is in agreement with the prediction that these
radiologic findings reflect early adaptations to preserve tissue
oxygen availability in a condition of progressive microvascular
failure. In contrast, clinical deterioration and radiologic signs of
tissue infarction are predicted to reflect the exhaustion of such
compensatory mechanisms. This is consistent with the findings that
only radiologic signs of infarction seemingly correlate with reduced
instrumental activities of daily living, cognitive impairment, and
poor quality of life 3 months after the SAH.117

The considerations above suggest that it may be of both
diagnostic and prognostic value to monitor CTH and MTT in SAH
patients. Capillary transit time heterogeneity and MTT can be
measured by monitoring the clearance of intravascular contrast
agents as part of standard perfusion-weighted MRI, perfusion CT, or
contrast-enhanced transcranial ultrasound examinations.77,118–120

THERAPEUTIC IMPLICATIONS
The hypothesis put forward suggests that the angiographic
vasospasm that precede DCI is in part secondary to disturbances
in capillary flow patterns—and predicts that normalization of
vascular tone and CBF may do little to improve tissue oxygenation
because of the level of capillary shunting. This is consistent with
the disappointing clinical results of resolving angiographic
vasospasms,36–38 although they seemingly partly restore CBF.48

Paradoxically, the increased free radical production and NO
depletion in the walls of resistance vessels may in fact improve
tissue oxygenation by attenuating CBF responses. Although the
release of free radicals is a well-established source of tissue
damage after SAH,121 its hypothesized beneficial effects in the
maintenance of tissue oxygenation may explain the conflicting
results of anti-oxidant therapy in SAH.121 Below, we briefly discuss
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Tissue damage
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Figure 6. Panel A summarizes the sources of capillary flow
disturbances as identified in this review, and their estimated
duration. They include the oxidative stress and nitric oxide (NO)
depletion caused by pericapillary oxyhemoglobin, structural
damage to the capillary wall (including endothelial cells, basement
membranes, pericytes, and astrocytic endfeet), leukocytosis, and
compression by pericapillary edema. The extent to which the
structural damage to the capillary wall is permanent remains crucial
in that permanent changes in capillary transit time heterogeneity
(CTH) are potential sources of long-term, neurodegenerative
changes. Panel B indicates the added effect of the changes in
panel A in terms of the resulting change in CTH over time. The time
of the peak CTH change is likely to coincide with the peak
pericapillary oxyhemoglobin HgbO concentration, whereas the
height of the peak is likely to correlate with the size of the
hematoma. The extent to which one observes flow increases by
transcranial Doppler sonography (TCD), angiographic vasospasm, or
tissue lesions by computed tomography (CT) or magnetic resonance
imaging (MRI), is predicted to depend on the individual sizes of the
factors in panel A. Note that large hematomas are likely to generate
large net CTH increases owing to their larger, net capillary NO
depletion, and thus to result in both angiographic vasospasm and
hypoxic lesions.
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therapeutic interventions that might reverse or counteract
capillary constriction and compression in the acute stages of SAH.

Management of Pericapillary Edema
Until recently, the hemodynamic management of patients with
clinical signs of vasospasm aimed to achieve systemic hyper-
tension, hypervolemia, and hemodilution—so-called triple-H
therapy.122,123 This approach is based on the assumption that
augmented cardiac output and blood pressure by vasopressors
and isotonic fluids help maintain CBF, cerebral microcirculation,
and thereby brain oxygenation.122,123 The extent to which each of
the three components of triple-H therapy prevents DCI remains
uncertain.124 In some cases, hypervolemia and hemodilution are
associated with side effects including cerebral edema, cardiac
failure, and electrolyte abnormalities.124 Experimental studies
suggest that alpha-adrenoreceptor stimulation may increase BBB
permeability,125 and in patients with SAH, the use of vasopressors
is independently associated with the development of global
cerebral edema.12 Although some clinicians recommend the use
of triple-H therapy in some instances,126 others have abandoned
the principles of triple-H therapy,123,127 and recent guidelines for
the management of SAH therefore recommend euvolemia and
induction of hypertension for patients with DCI.124

Given the proposed metabolic significance of pericapillary
edema after SAH, means of reducing the extravasation of fluids
across the BBB may prove beneficial. Contrary to triple-H therapy,
the Lund-concept, originally conceived for the management of
patients with severe brain trauma,128 aims to reduce intracapillary
hydrostatic pressure and maintain colloid osmotic pressure. This
approach is thought to increase transcapillary fluid reabsorption
and to reduce cerebral edema. In a study including 30 patients
with severe brain trauma and 30 SAH patients, therapy based on
the Lund-concept showed significantly lower mortality than
conventional triple-H therapy.129 Needless to say, this concept
must be examined in larger SAH patient cohorts.

Intracranial hypertension in patients with cerebral edema is
generally treated with either mannitol or hypertonic saline (HS)
according to institutional guidelines. While both agents have been
proven efficacious in mixed patient populations, clinical controlled
trials non-significantly favor the use of HS in terms of reducing
intracranial pressure.130,131 In addition, the use of mannitol
appears to be associated with more adverse events, including
hypovolemia, than HS.132 One experimental study specifically
compared the use of HS and mannitol in animal models of SAH,
and demonstrated that the use of HS was associated with better
intracranial pressure control and less neuronal damage.133

The compression of capillaries owing to hyponatremia (cf.
Figure 1) might be reversed by means of restoring plasma sodium
levels. Hypertonic saline is thought to create a strong transcapillary
osmotic gradient that causes a shift of fluid away from brain tissue,
interstitium, and endothelial cells, thereby improving the cerebral
microcirculation.134 Indeed, the infusion of HS in patients with SAH
has been shown to increase both CBF and tissue oxygen
tension135—the tell-tale signs of a reductions in CTH, cf. Figure 3.
Preliminary data also show improvements in the degree of
angiographic vasospasm,136,137 in CBF,109,138 and in modified
Rankin Scale upon discharge.139 Despite the complexity of
managing hyponatremia,57 the apparent safety of HS infusions in
neurocritically ill patients140–142 encourages further experimental
and clinical studies.

Restoration of Capillary Nitric Oxide Levels
The ROS production and the NO depletion due to the pericapillary
HgbO is likely to increase CTH for as long as hemolysis occurs in
the subarachnoid space, unless NO levels at the capillary level
can be maintained. When CTH increases and tissue oxygen
tension drops, the risk of capillary NO depletion is likely to become

more severe, as oxygen is the natural substrate for NO production
via NO synthases.66 NO depletion at the capillary level
would therefore be expected to fuel a vicious cycle by causing
further tissue hypoxia, further attenuation of upstream vessel
tone, and so forth.

Endogenous nitrite is converted to NO in the tissue without the
need for oxygen as a substrate,143 and the infusion of nitrite might
therefore be neuroprotective by preventing NO depletion and ROS
production,144–146 and thereby pericyte constrictions during their
exposure to HgbO. By attenuating CTH increases, nitrite infusions
might therefore improve oxygen delivery to tissue during this
critical phase. Furthermore, nitrite reduces mitochondrial proton
leakage, increasing ATP yields from oxygen and thereby tissue
tolerance to hypoxia.147 Nitrite may also attenuate thrombogenicity
by inhibiting platelet aggregation.148 Early administration of nitrite
has been shown to prevent vasospasm after SAH149,150 and to
increase tissue survival in ischemia–reperfusion151 in primate
animal models. The prolonged administration of nitrite to healthy
volunteers is deemed safe,152 and a recent phase II trial confirmed
that sodium nitrite salt is safe to administer to SAH patients
throughout the critical phase after SAH.153

Stimulation of the sphenopalatine ganglion has been shown to
reduce angiographic vasospasm and increase CBF in dogs154 and
monkeys155 after experimental SAH. Fibers from the spheno-
palatine ganglion release NO,156,157 acetylcholine, and a range of
vasoactive peptidergic neurotransmitters in the adventitia of cere-
bral vessels, causing vasodilation.158 The effects of sphenopalatine
ganglion stimulation remains to be examined in SAH patients,
but it is interesting to note that NO releasing nerve fibers
are present at both the arterial and capillary level.159 Although
neuronal NOS is lost in sphenopalatine nerve fibers at the
arterial level after SAH,31 our hypothesis suggests that activation
of capillary NO production by this route may be of benefit
after SAH.

Management of Blood Viscosity and Tissue Microcirculation
Increased numbers and endothelial adhesion of leukocytes are
known to disturb capillary flow patterns,74 and means of reducing
the number of circulating leukocytes and their adhesion to
capillary endothelium would therefore be predicted to reduce
CTH, and thereby to reduce angiographic vasospasm and DCI after
SAH. Ishikawa et al160 indeed found increased adhesion and
rolling of leukocytes, paralleled by a 60% reduction in CBF, after
experimental SAH in mice, and demonstrated that these changes
could be reversed by inhibiting the endothelial cell adhesion
molecules. For a comprehensive review of the role of leuko-
cyte–endothelial interactions after SAH, see ref. 161. Corticosteroid
treatment is a well-known cause of leukocytosis in humans.
Although corticosteroid treatment prevents hyponatremia162

and may attenuate edema in SAH patients, we speculate that
the detrimental effects of leukocytosis on tissue oxygenation may
obscure the translation of such beneficial effects into better
patient outcomes.162,163

Statin treatment of SAH patients has attracted considerable
interest after reports that treatment with statins before SAH
reduces the loss of vascular endothelial NOS in animal models164

and ameliorates DCI and angiographic vasospasm in patients,165

and that statin treatment upon admission reduces mortality after
SAH.166 Subsequent studies have yielded conflicting results, with
high-dose statin treatment in animal models showing a definite
neuroprotective effect, whereas studies in SAH patients remain
inconclusive.167,168 In addition to its effects of endothelial
function, statins also reduce blood viscosity by lowering blood
lipid levels, and would therefore be expected to facilitate the
capillary passage of blood and thus reduce CTH. The lipid-
lowering effect of statins becomes significant 2 to 4 days after
initiation of treatment in normocholesterolemic subjects,169 and
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improved blood viscosity could therefore contribute to a
protective effect in the days after SAH. The relative contribution
of plasma lipids to total blood viscosity may, however, vary
relative to that of leukocytes (see previous section). We speculate
that studies of the effect of statins in human SAH must be
controlled for the degree of leukocytosis in individual patients.
The putative effects of blood viscosity may be most easily
disentangled in animal models of SAH, in which concomitant
leukocytosis is not a consistent finding.160

Although capillary dilation may be facilitated by restoring
pericapillary NO levels, the extent to which capillary constriction
can be inhibited remain unclear. Antihypertensives are likely to
interfere with both arteriolar and pericyte tone in that pericytes
constrict in response to stimulation by b2-adrenergic,170

Angiotensin-II type 1,171,172 and endothelin-169 receptor agonists
via a calcium channel-dependent mechanism. Although ET
antagonist treatment is still being explored further, it is
interesting to note that nimodipine, a calcium channel blocker
that might be expected to prevent pericyte constrictions, has
shown some efficacy in preventing DCI after SAH.1,173

CONCLUSION
Our review identifies a number of sources of altered capillary
morphology and function, both acutely and during the first critical
weeks after SAH. Our earlier re-analysis of the classic flow–
diffusion equation predicts that any increase in CTH that
accompany such changes tends to increase the shunting of
oxygenated blood through the capillary bed. Vasospasm and
inverted CBF responses may therefore, paradoxically, improve net
oxygen extraction when capillary flows are disturbed by pericyte
damage, nitric oxide depletion, vasogenic edema, astrocytic
endfeet swelling, or leukocytosis. The role of capillary flows after
SAH is supported by the results of studies that have aimed to
control pericapillary edema or prevent NO depletion.

Our review further suggests that any irreversible changes in the
capillary morphology or function can cause long-term degenera-
tive changes and permanent neurocognitive symptoms after SAH.

Needless to say, the predictions and hypotheses presented in
this review must be tested in experimental and clinical settings to
verify the importance of the microcirculation and of BBB function
after SAH. The hypothesized disturbances in CTH must be
demonstrated and quantified by invasive or noninvasive
approaches, and the theoretical predictions of their metabolic
and functional significance assessed by independent techniques.
Hopefully, better understandings of the role of capillary function
in SAH can contribute to the reduce the mortality and morbidity
after this devastating disease.
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