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Abstract

The human gut microbiome is a key factor in the development of metabolic diseases

and antimicrobial resistance, which are among the greatest global medical challenges

of the 21st century. A recent symposium aimed to highlight state-of-the-art evidence

for the role of the gut microbiome in physiology, from childhood to adulthood, and

the impact this has on global disease outcomes, ageing and antimicrobial resistance.

Although the gut microbiome is established early in life, over time the microbiome

and its components including metabolites can become perturbed due to changes such

as dietary habits, use of antibiotics and age. As gut microbial metabolites, including

short-chain fatty acids, secondary bile acids and trimethylamine-N-oxide, can inter-

act with host receptors including G protein-coupled receptors and can alter host

metabolic fluxes, they can significantly affect physiological homoeostasis leading to

metabolic diseases. These metabolites can be used to stratify disease phenotypes

such as irritable bowel syndrome and adverse events after heart failure and allow

informed decisions on clinical management and treatment. While strategies such as

use of probiotics, prebiotics and faecalmicrobiota transplantation have been proposed

as interventions to treat and prevent metabolic diseases and antimicrobial resistance,

caution must be exercised, first due to the potential of probiotics to enhance anti-

microbial resistance gene reservoirs, and second, a ‘healthy gut microbiome’ that

can be used as a biobank for transplantation is yet to be defined. We highlight that

sampling other parts of the gastrointestinal tract may produce more representative

data than the faecal microbiome alone.
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1 INTRODUCTION

The microbiome is critical to physiological homoeostasis, influencing

health and disease status in the host. The human body contains

trillions of microbes encompassing bacteria, archaea, viruses and

microeukaryotes (Zhang et al., 2019). In the current report, the gut

microbiome consists of symbiotic or pathobionts that are resident

in the host and opportunistic pathogens that are acquired from

the environment or other parts of the body (Casadevall & Pirofski,

1999; Chow et al., 2011). While opportunistic pathogens can cause

acute effects, pathobionts are only able to cause deleterious effects

to host health in certain circumstances, such as when the immune

system has become compromised. Commensals/symbionts contribute

to the maintenance of physiological homoeostasis as well as providing

colonisation resistance to opportunistic pathogens (Hornef, 2015).

Acute deleterious effects of pathogens in physiology can lead to

infections and in extreme cases cause bacteraemia leading to sepsis

and death. This has led to heavy overuse of antibiotics to combat

infections, which has provided the selective pressure that is driving

increases in antibiotic resistance (Ahmed, 2005; Casadevall & Pirofski,

1999; Lau et al., 2004).

As well as harbouring antimicrobial resistance genes, the gut

microbiome may also influence systemic physiological functions by

competing for essential nutrients or digesting complex molecules to

produce substrates for host energy metabolism and cell signalling

(Martin et al., 2019). The gut microbiota can therefore also cause

subtle but chronic physiological effects, which contribute to the

epidemic of metabolic/inflammatory diseases such as diabetes, cardio-

vascular disease and neurodegenerative diseases (Suez et al., 2018;

Wang et al., 2020). Coupled to antibiotic resistance, metabolic

diseases are among the leading global medical challenges of our

time, posing a socio-economic burden worldwide. Nevertheless,

mechanisms through which the microbiome influences physiology

remain relatively poorly understood. It is envisaged that advances in

sampling techniques, multi-omic approaches (genomic, transcriptomic,

methylomic, proteomic, metabolomic), and bioinformatic tools will

increase the resolution at which these pan-kingdom interactions can

be studied, thus expanding our understanding of the influence of the

microbiome on host physiology in health and disease. Such advances

will likely revolutionise future clinical practices in disease prevention,

treatment andmanagement.

The most compelling evidence for the influence of microbes on

human physiology comes from bacterial/viral infections, where a

coordinated systemic reaction that evokes a signalling cascade is

manifested by a raised body temperature, muscle weakness and pain,

and, if poorly managed, results in multi-organ failure and subsequently

death (Stearns-Kurosawa et al., 2011). Thus, understanding systemic

host responses not only to exogenous microbes but also the micro-

biome in general is critical.Whethermicrobiomes are favourable to the

host depends on the types and strains that make up the microbiome

species and how they interact with the host and other members of

the microbial community, which is further influenced by factors such

as diet, general health and the environment. The focus of the “Micro-

New Findings

∙ What is the topic of this review?

The role of the gut microbiome in physiology and

how it can be targeted as an effective strategy

against two of the most important global medical

challenges of our time, namely, metabolic diseases

and antibacterial resistance.

∙ What advances does it highlight?

The critical roles of the microbiome in regulating

host physiology and how microbiome analysis is

useful for disease stratification to enable informed

clinical decisions and develop interventions such

as faecal microbiota transplantation, prebiotics

and probiotics. Also, the limitations of microbiome

modulation, including the potential for probiotics to

enhance antimicrobial resistance gene reservoirs,

and that currently a ‘healthy microbiome’ that can

be used as a biobank for transplantation is yet to be

defined.

biomes in Physiology” symposium, which took place virtually on the

14th July 2021 at the main Physiological Society meeting and the

current report is on the role of the gutmicrobiome in regulating physio-

logical functions locally in the gut and remotely in various gut–organ

axes, including the heart, the liver and the brain.

2 MICROBES ACROSS THE LIFESPAN

The overall composition of the microbiome is determined by early life

events such as mode of delivery, breastfeeding and frequency of anti-

biotic use. However, the abundance of each microbe may fluctuate

across the lifespan due to factors such as age, diet, lifestyle, cultural

practices and geographical location (Arboleya et al., 2012; Johnson &

Versalovic, 2012). In general, greatermicrobial diversity and functional

redundancy provide resilience to perturbation by the aforementioned

factors, and therefore are associated with beneficial impacts on the

health of the host (Vieira-Silva et al., 2016).

The presence of microbial genes within the host critically impacts

on host metabolic fluxes, with the production of certain metabolites

being detrimental and of others beneficial to the health of the host.

Microbial metabolism of certain essential dietary precursors can also

confer a competitive nutrition partitioning environment between

the host and the microbiome. Both microbiota composition and

the resulting biochemical products have been shown to change

over the life course. For example, the metabolic capacity of

the intestinal microbiota to degrade complex carbohydrates to
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SYMPOSIUMHIGHLIGHTS

1. The core microbial composition and diversity of the gut is established early in life (within 3 years after birth). Microbial diversity,

composition and function can fluctuate over the life course with alterations in microbial metabolite production during critical peri-

ods of development contributing to chronic diseases in both childhood and adulthood.

2. While to date a ‘healthy microbiome’ has not been defined owing to intra- and inter-individual variations in the core microbiome,

various microbial products can be used, due to their common functionality, to stratify host disease phenotypes such as irritable bowel

syndrome and cardiovascular disease and can predict clinical outcomes after hospitalisation from diseases such as heart failure.

3. Plasma trimethylamineN-oxide (TMAO) is an example of amicrobially derivedmetabolite shown tobean important prognosticmarker

of adverse events after heart failure andall-causemortality and is comparable to traditionalmarkers such asB-typenatriuretic peptide

(BNP) and N-terminal (NT)-pro-hormone BNP (NT-proBNP). Currently, there are no specific drugs that effectively and specifically

alter themicrobiome to reduce TMAOburden.

4. While there is a debate as to whether alterations in microbial structure and their metabolites such as TMAO may be causative,

a mere correlation or indeed a symptom of disease, recent studies using faecal microbiota transplantation and conventionalised

animal models indicate that the microbiome has direct/causative effects on host physiology, including effects on inflammaging. The

supplementation of TMAO has direct atherogenic effects. In general, high microbial trimethylamine (TMA) production is indicative of

alteredmicrobiome composition and structure.

5. Themicrobiome can also affect the host’s health by supporting pathogenic bacteria. Thismay bemediated bymetabolic cross-feeding,

whereby commensal species produce metabolites, which support the growth of pathogens and pathobionts. In addition, the micro-

biome can serve as a reservoir for antimicrobial resistance genes, which can transfer horizontally to pathogenic bacteria. While

probiotics have been widely used to prevent or treat diseases (potentially through the modulation of the microbiome), and have been

postulated to reduce resistance genes, it has been shown that probiotics may increase and exacerbate the number of antimicrobial

resistance genes enhanced by antibiotics.

6. Most data on the diversity and function of the microbiome have been inferred from sampling the faecal microbiome but emerging

evidence suggests that the faecalmicrobiomemaymisrepresent effects of probiotics on the intestinalmicrobiome community and the

abundance of resistance genes in the gastrointestinal (GI) tract. Therefore, the use of direct sampling from theGI tract is paramount in

future research.

short-chain fatty acids (SCFAs) declines with age, while the capacity to

transform essential nutrients and proteins into toxic compounds such

as trimethylamine-N-oxide (TMAO) and indole sulphates increases

with age (Agus et al., 2021; Lee et al., 2020; Rios-Covian et al., 2020).

At the symposium, Swann discussed age-dependent variability in

the neurobiochemical profiles of mice across the lifecourse, with

fluctuations in several microbially derived metabolites. This included

metabolites such as 3-indoxyl-sulphate, γ-aminobutyric acid, TMAO,

hippurate and phenylacetylglutamine (Swann et al., 2020). While

certain metabolites were abundant during the neonatal period and

declined into adulthood, others gradually increased with age, and

some peaked in abundance at puberty before returning to neonatal

levels in adulthood (Swann et al., 2020). As many of these compounds

are involved in brain function and development, it is important to

characterise whether these fluctuations and their timings would

affect developmental plasticity, neonatal growth trajectory and the

risk of disease in both childhood and adulthood. Indeed, exposure to

certain environmental and nutritional cues during critical periods of

growth and development have been shown to influence the risk of

developing disease both in early life and in adulthood according to the

‘thrifty phenotype’ or ‘the developmental origins of health and disease’

hypothesis (Farshim et al., 2016; Hales & Barker, 2001; Hanson &

Gluckman, 2014; Osman et al., 2021).

At the symposium, a direct impact of the microbiome on age-

associated inflammation in the brain was described by Parker who

reported that faecal microbiota transplantation (FMT) treatment

was effective in switching from an age-associated chronic low-

grade inflammatory phenotype (inflammaging) and a younger less

inflammatory phenotype (Parker et al., 2021). Young mice receiving

microbiota from aged mice exhibited an elevated inflammatory

phenotype, whereas age-associated serum and brain inflammatory

changes in mice could be reduced or reversed by transplantation with

microbiota from young donor mice (Parker et al., 2021). Regulatory

effects of the FMT treatments were observed in the intestinal

epithelial barrier and in the retina. The authors identified serotonergic

signalling together with altered lipid and vitamin metabolism as

possible mechanisms through which the microbiome may influence

age-associated inflammation and functional decline in the gut and

the central nervous system. The debate over whether microbes

directly impact on physiology has been compounded by limited

knowledge available on the mechanisms through which microbially

derived compounds alter physiological homoeostasis. For example,

while in some cases, TMAO produced by the microbiome has been

suggested to play an important role in neural development, others have

demonstrated an influence of TMAO on brain ageing and cognitive

decline (Li et al., 2018; Vuong et al., 2020). Additionally, there are
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a substantial number of studies showing associations between high

plasma levels of TMAO and metabolic diseases, as well as adverse

secondary events after heart failure with further studies showing

direct atherogenic effects of TMAO in both humans and mice (Brunt

et al., 2020; Geng et al., 2018; Tan et al., 2019).

3 MICROBIAL COMPONENTS, CELL
SIGNALLING AND DISEASE STRATIFICATION

In their talks, Swann and Parker highlighted various signalling

pathways that are affected by microbially derived compounds (such

as metabolites, cell wall components and extracellular vesicles), which

can regulate immune function, metabolic homoeostasis and brain

function (Figure 1). Among the metabolites, SCFAs are perhaps the

most-studied gut microbially derived metabolites. SCFAs interact with

a range of receptors such as G protein-coupled receptors (GPCRs)

on host cells, both locally in the gut and in remote organs such as

the brain, heart and the liver. Through their interaction with GPCRs,

SCFAs have been shown to modulate the secretion of hormones

including glucagon-like peptide-1 and peptide YY, which impact on

the brain functions such as mood, appetite, food intake and energy

expenditure (Frost et al., 2014; Modasia et al., 2020). In the gut,

SCFAs are also utilised by intestinal epithelial and colonic cells as

energy sources, positively promoting gut barrier integrity, as well as

maintaining low intestinal pH that is unfavourable to opportunistic

pathogens and pathobionts (Pérez-Reytor et al., 2021). Nevertheless,

SCFAs may also be used by pathogens such as Salmonella, Clostridium

and Citrobacter species as a cue for expressing virulence genes (Zhang

et al., 2020). This is a particularly good example of how the inter-

action of specific microbial species with the complex multi-organism

gutmicrobiomemay influence disease risk. In irritable bowel syndrome

(IBS) patients with constipation (IBS-C), reduced levels of SCFAs in

faecal samples are coupled with reduced levels of acetate in mucosal

biopsies (Mars et al., 2020). Although SCFAs derive from dietary

fibre, these observations were independent of dietary fibre intake

suggesting that other factors may influence the availability of SCFAs.

Recent data suggest that SCFAs may derive from the metabolism of

L-carnitine to trimethylamine, a pathway highlighted by Suzuki at the

symposium (Suzuki et al., 2021) and discussed below in relation to the

atherogenic phenotype (Rajakovich et al., 2021). In their talk, Swann

further demonstrated that in contrast to IBS-C patients, IBS patients

with diarrhoea (IBS-D) present higher levels of tryptophan and its

indoleamine microbial metabolite, tryptamine, which again acts locally

to regulate intestinal motility by interacting with serotonin receptor-

4 (Swann et al., 2020). This was coupled with increased amounts of

unconjugated bile acids and decreased amounts of primary bile acids

in IBS-D patients (Mars et al., 2020). Another microbial metabolite,
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hypoxanthine, provides an excellent example of competitive nutritional

partitioning between the microbiota and the host (Swann et al., 2020).

Hypoxanthine is an important energy source for intestinal epithelial

cells, promoting epithelial cell development and recovery from injury,

however, Swann demonstrated increased hypoxanthine use by the gut

microbiome with decreased levels being observed in IBS-C patients

(Mars et al., 2020). As such, alterations in microbiota composition

and metabolites during critical developmental periods may prove

detrimental to health.

4 STRATIFYING DISEASE OUTCOMES AND
CLINICAL DECISIONS BASED ON MICROBIAL
METABOLITES: THE CASE OF TRIMETHYLAMINE
OXIDE AND HEART FAILURE

The possibility of stratifying patients and guiding clinical decisions

based on metabolic profiles was highlighted by Suzuki. Plasma TMAO

levels were shown to be a strong predictor of adverse secondary

events after heart failure compared to traditional markers such as N-

terminal pro-B-type natriuretic peptide (NT-proBNP) (Senthong et al.,

2016; Suzuki et al., 2016). TMAO is produced in the liver by flavin-

containing monooxygenase isoform 3 (FMO3) following oxidation of

trimethylamine (TMA), a derivative of essential dietary components L-

carnitine and choline, found in high quantities in red meat and eggs,

respectively (Figure 2) (Koeth et al., 2013). The metabolism of choline

to TMA seems to involve the direct choline-TMA lyase pathway (Day-

Walsh et al., 2021). However, the metabolism of L-carnitine involves

the formation of an obligate intermediate, γ-butyrobetaine, which
is further metabolised in a multistep process involving several gene

clusters to produce TMA and other metabolites including SCFAs, such

as acetate and butyrate, which have been shown to be the end-

products in this process (Day-Walsh et al., 2021; Rajakovich et al.,

2021). The factors that regulate the formation of TMA from carnitine

are yet to be understood although it seems that this pathway may

be more important in the production of the atherogenic TMA than

that involving choline. In their talk, Suzuki further highlighted that

the associations of TMAO with adverse events after heart failure are

influenced by geographical location, being higher in individuals from

Norway, the Netherlands, Germany, Sweden and the United Kingdom

than in those from Italy and Greece (Suzuki et al., 2019). Of note,

this geographical variation was shown to be independent of poly-

morphisms in the FMO3 gene along with diet, indicating that there is

a yet unknown factor influencing the predictive capacity of TMAO on

all-causemortality and death after heart failure.

To date, it has been difficult to clarify the compositions or indeed

microbial species that can be used to predict disease phenotypes in

the host. However, the abundant microbial metabolites provide an

opportunity to profile and characterise individuals who may be at

risk of not only heart failure but other metabolic diseases as well
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as hospitalisation and adverse events after hospitalisation including

death. In their talk, Suzuki demonstrated that heart failure patients

presenting high levels of TMAOwhen they are admitted to the hospital

might still have high levels after treatment; that is to say, current

treatments of heart failure patients and management of their future

risk do not target their TMAO status. This presents an opportunity

to stratify patients who may be at risk and to make clinically relevant

informed decisions based on microbial metabolites. Nevertheless,

there is an urgent need for therapies that can target the microbiome

to reduce the burden of TMAO in those at risk, as current medications

such as β-blockers do not target themicrobiome.

5 MANIPULATING THE MICROBIOME FOR THE
BENEFIT OF THE HOST: PROBIOTICS, PREBIOTICS
AND FAECAL MICROBIOTA TRANSPLANTATION

Supplementation with live probiotic microorganisms has been

proposed as a means for beneficially altering the microbiome,

for example by reducing the production of disease-associated

metabolites (including TMAO) or reducing the burden of pathobionts

and commensals carrying antibiotic resistance genes. As highlighted

by Swann probiotics, including those commonly used as dietary

supplements, could support health by preventing the colonisation of

pathobionts in preterm babies (Alcon-Giner et al., 2020). However,

in their talk, Suez highlighted the complexity and limitations of using

probiotics in adults, as the colonisation success of supplemented

probiotics shows high inter-individual variations, which may underlie

heterogeneity in probiotics’ efficacy (Zmora et al., 2018). For example,

members of the gut microbiome encode for antibiotic resistance

genes, creating a reservoir (resistome) that can transfer horizontally

to pathogens and pathobionts, facilitating the emergence of antibiotic-

resistant strains. In their work, Suez demonstrated that probiotics can

reduce the reservoir of antibiotic resistance genes in the human gut,

but only in individuals permissive (receptive) to probiotic colonisation

(Montassier et al., 2021).

In addition to being a major contributor to the expansion of the gut

resistome, the use of antibiotics perturbs the gut microbiome, leading

to dysbiosis associated with an elevated risk for non-communicable

diseases. Probiotics are often consumed in conjunction with anti-

biotic therapy to prevent detrimental effects of antibiotics on the

microbiome. In their talk, Suez reported that, surprisingly, probiotics

delay, rather than facilitate recovery of microbiome diversity from

a course of antibiotics. Furthermore, probiotics contributed to an

expansion in the number of antibiotic resistance genes in the gut,

and in particular increased the abundance of the clinically relevant

vancomycin resistance gene (VanG) (Suez et al., 2018).

In addition to probiotics, nutraceutical compounds such as

complex carbohydrates and polyphenols have been investigated

for their capacity to alter the microbiome for the benefit of the

host (prebiotics). While the increase in certain microbes in response

to these nutraceuticals may suggest beneficial effects, caution

has to be exercised as metabolic cross-feeding may promote the

growth of a beneficial species, which will consequently produce

metabolites that facilitate the survival of pathobionts (Eloe-Fadrosh &

Rasko, 2013; Mohajeri et al., 2018). FMT has also been proposed

as a mode to increase microbial diversity or rebalance a dysbiotic

microbial composition resulting from infection or ageing for

example. As demonstrated by Parker et al., FMT from young

donors proved effective in preventing age-associated symptoms

and inflammation (Parker et al., 2021). In the context of the resistome,

Suez demonstrated that FMT was more effective than probiotic

supplementation at restoring the resistome back to pre-antibiotic

status. However, the complexity of the microbiome and variations

between individuals make it difficult to pinpoint a ‘healthy’ or optimal

microbial composition that can be used as a biobank to treat all those

with gut dysbiosis.

6 CURRENT LIMITATIONS AND THE FUTURE OF
THE MICROBIOME IN MEDICAL PHYSIOLOGY

The microbiome offers a unique albeit challenging opportunity to

improve host metabolic physiology and revolutionise future clinical

practices in disease prevention, treatment andmanagement. However,

there was a consensus among the speakers at the symposium on the

requirement for the standardisation of sampling and experimental

approaches, which will greatly improve our ability to understand the

role of the microbiome in physiology. In particular, Swann highlighted

the need for averaging longitudinal data from an individual collected

from multiple sampling points while Suez demonstrated the disparity

between the microbiome and resistome within the stool sample and

that from different sites within the gastrointestinal tract. To date, most

research has focused on the bacterial component (bacteriome) of the

microbiome, but there is an increasing appreciation of the importance

of the viral (virome) and fungal (mycobiome) fractions of the micro-

biome, which is likely to become more apparent as our ability to study

these elements evolves, in particular as the bacteriome along with its

metabolome is also substantially influenced by phage predation (Hsu

et al., 2019).

Thus, it is evident that many of the non-communicable diseases

proposed to be influenced by the microbiome coupled to antimicrobial

resistance pose major socio-economic challenges. Understanding the

role of the microbiome in physiology and how it can be harnessed

to underpin the development of effective therapies and preventative

treatments will require a coordinated multidisciplinary research

effort by physiologists, microbiologists, nutritionists, clinicians and

partnerships with commercial organisations.
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