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Abstract: Submicron lenses and cylinders exhibiting excellent properties in photodetector and
quantum applications have been fabricated on a diamond surface by an inductively-coupled plasma
(ICP) etching technique. During ICP etching, a layer containing 500 nm diameter balls of SiO2

was employed as mask. By changing the mixing ratio of O2, Ar and CF4 during ICP etching,
several submicron structures were fabricated, such as cylinders and lenses. The simulation results
demonstrated that such submicron structures on a diamond’s surface can greatly enhance the photon
out-coupling efficiency of embedded nitrogen-vacancy center.

Keywords: diamond; NV center; microstructure fabrication; micro-optical devices

1. Introduction

The negatively charged nitrogen-vacancy (NV−) center in diamond emitting single photon
with 637 nm wavelength has appeared as a promising quantum light source [1]. In the meantime,
NV− center in diamond has attracted significant interest because of its outstanding properties, such as
optical spin-polarization and readout of ground state spin, long coherent time of ground state spin,
and flexibility in its device fabrication [1–5]. Since then, NV− center has been employed in a variety of
high resolution and highly sensitive detectors used in several application fields, such as biology [6],
and for the measurement of physical quantities, such as magnetic field [7], temperature [8] and
electrical conductivity [9,10]. On the other hand, diamond has appeared as a promising material
for photonic and high-power electronic devices, even in extreme environments due to its excellent
properties, such as wide bandgap (5.5 eV), high critical breakdown field (>10 MV·cm−1), high thermal
conductivity (22 W·cm−1

·K−1), high carrier mobility (~3800 cm2
·V−1
·s−1 for holes and ~4500 cm2

·V−1
·s−1

for electrons), and high saturation velocity (107 cm·s−1). [11,12] However, the performances of NV−

center in applications and diamond photonic devices are limited by low photon in- and out-coupling
efficiency [13–15].

Materials 2019, 12, 1622; doi:10.3390/ma12101622 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/12/10/1622?type=check_update&version=1
http://dx.doi.org/10.3390/ma12101622
http://www.mdpi.com/journal/materials


Materials 2019, 12, 1622 2 of 10

It is well known that micro-structures can significantly improve the photon in- and out-coupling
efficiency, such as micro lenses [16,17] and micro-cylinders [18,19]. Recently, some experiment
schemes were performed to fabricate micro lenses on a diamond surface to improve photo response
of photodetectors and the efficiency of embedded NV− center [16,17,20]. These works have greatly
improved the developments of diamond photodetectors and applications of NV− center. For instance,
focus ion beam (FIB) technique has been used to fabricate solid immersion lens (SIL) in several micron
sizes [17,21,22]. Photolithography and ICP etching techniques had been used to fabricate micro lenses
whose sizes were limited by resolution of photolithography [16,20,23]. Electron beam lithography or
dual mask technique and ICP etching techniques were used to fabricate micro cylinders [19,24,25].
However, such micro lenses either have large radius of curvature (ROC) on account of hardness and
chemical inertness of diamond or have complex fabrication procedures, for example the FIB technique
or dual-mask method was employed. Moreover, it is not easy to fabricate lenses at submicron level
using these methods.

Here, a novel and convenient approach is demonstrated to fabricate a large number of diamond
submicron lenses and cylinders by employing an inductively-coupled plasma (ICP) etching technique
with a resistant mask of economical 500 nm diameter balls of SiO2. By changing the reactive gas
component and etching time through the ICP etching process, submicron structure with different
dimensions were obtained. The finite-difference time-domain (FDTD) method was used to obtain
photon out-coupling efficiency of embedded NV− center in submicron structures.

2. Methods and Fabrication

Figure 1 shows the fabrication process of submicron structures. Type Ib (100) diamond substrates
were cleaned in acid solution (HCl:HNO3 = 3:1 by volume) at temperature of 80 ◦C for 30 min prior to
experiment. SiO2 balls (S2-00500, CV% = 3–5%, Tianjin DAE Scientific Co. Ltd, Tianjin, China) were
coated on diamond surface by using dip-coating method and employed as ICP etching mask. At first,
SiO2 suspension (2.5 wt.% in water) was ultrasonicated for 5 min. Following this treatment, diamond
substrate was immersed in suspensions for ten seconds and was pulled up followed by drying at
100 ◦C. As a result, a layer of SiO2 balls with 500 nm diameter was coated on diamond substrate as
shown in Figure 2. Then, diamond with coated SiO2 balls were etched simultaneously by ICP etching
technique as shown in Figure 1b. During etching, the ICP power and RF power were fixed at 450 W
and 50 W, respectively. By controlling ICP reactive gas component and etching time, several submicron
structures were obtained on the diamond surface. By using Lumerical FDTD Solutions, simulations
were performed to obtain and optimize photon collection efficiency of NV− centers embedded in
bulk diamond, submicron lenses and submicron cylinders. The simulation results were shown in
Figures 3 and 4.
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Figure 1. Fabrication process flow of submicron lenses and cylinders. (a) Coating a layer of SiO2 balls 
on diamond surface. (b) ICP Etching SiO2 and diamond simultaneously. (c) Lenses were obtained by 
etched SiO2 completely. (d) Cylinders were obtained by removing SiO2. 
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Figure 2. (a) SEM of diamond with a layer of 500 nm diameter balls of SiO2. (b) Magnification of (a). 

In order to transfer the curvature of the balls to the diamond surface as shown in Figure 1c, SiO2 
balls and diamond should be etched simultaneously. Therefore, a mixture gas of CF4 and O2 was used 
during ICP etching, which reacts with both SiO2 and diamond. During this process of etching, etching 
time, ICP power, RF power and O2 flow rate were fixed at 5 min, 450 W, 50 W and 50 sccm, 
respectively. Submicron lenses with several heights were obtained by changing ratio of CF4 while 
fixing other ICP etching parameters, which resulted in changing of etching ratio k of SiO2 to diamond. 
Relationship between submicron lens height h and k can be expressed as, 

Figure 1. Fabrication process flow of submicron lenses and cylinders. (a) Coating a layer of SiO2 balls
on diamond surface. (b) ICP Etching SiO2 and diamond simultaneously. (c) Lenses were obtained by
etched SiO2 completely. (d) Cylinders were obtained by removing SiO2.
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Figure 2. (a) SEM of diamond with a layer of 500 nm diameter balls of SiO2. (b) Magnification of (a).

In order to transfer the curvature of the balls to the diamond surface as shown in Figure 1c, SiO2

balls and diamond should be etched simultaneously. Therefore, a mixture gas of CF4 and O2 was used
during ICP etching, which reacts with both SiO2 and diamond. During this process of etching, etching
time, ICP power, RF power and O2 flow rate were fixed at 5 min, 450 W, 50 W and 50 sccm, respectively.
Submicron lenses with several heights were obtained by changing ratio of CF4 while fixing other ICP
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etching parameters, which resulted in changing of etching ratio k of SiO2 to diamond. Relationship
between submicron lens height h and k can be expressed as,

h =
d
k

(1)

where d = 500 nm is diameter of SiO2 balls. k can be measured by calculating ratio of mask thickness to
structure height. Here, k is ratio of SiO2 diameter to submicron lens height. The relationship between
ROC and lens height can be described as,

ROC =
h2 + (d/2)2

2h
(2)

Figure 5a–d show SEM images of submicron lenses which were fabricated by setting CF4 flow
rates at 10, 15, 20 and 25 sccm, respectively. Submicron lens heights were obtained by averaging
randomly acquired 10 Atomic Force Microscope (AFM) measurements and were presented in Figure 6
(left axes). After ICP etching, the SiO2 balls were completely etched by mixture gas of CF4 and O2,
therefore, the selectivity of diamond and SiO2 is defined as ratio of lens height and balls diameter
of SiO2, which were also presented in Figure 6 (right axes). When diameters of lenses are uniform,
ROC of lenses is a function of lenses height, higher lens height corresponds to smaller ROC.

Different to submicron lenses fabrication, the etching speed of SiO2 should be slower than
diamond when fabricating submicron cylinders. Therefore, CF4 was replaced by Ar throughout ICP
etching process. Figure 1d shows the cylinder’s case, of which the ICP gas was mixture of O2 and
Ar. During ICP etching, etching time, ICP power, RF power and O2 flow rate were fixed at 10 min,
450 W, 50 W and 50 sccm, respectively. Several cylinders were obtained by changing the ratio of Ar.
Finally, the samples were cleaned ultrasonically in acetone and methanol baths to remove residuals
of SiO2. Figure 7 shows cylinders with different heights and apex diameters (top face diameter of
cylinder), whose values were obtained by averaging randomly acquired 10 AFM measurements and
were presented in Figure 8.

3. Results and Discussion

3.1. Simulation and Optimization

NV− center can emit photons of 637 nm wavelength by laser excitation. Figure 3 shows electric
field (second column) and far-field (third column) of NV− centers, while the light gray shadow in
far-field is the region that can be collected by microscopy with numerical aperture (NA) of 0.95.
Figure 3a shows that most of photons emitted from NV− center cannot escape from bulk diamond
because of total internal reflection, indicating limitation of photon collection efficiency up to 20.9%
only. To improve this, submicron lenses and submicron cylinders have been added above NV− center
on diamond surface. Figure 3b shows a submicron lens with diameter of 500 nm above NV− centers
on diamond surface, this suggests most photons emitted from NV− center can escape from diamond
and can be detected by optical detection system.
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(a) NV− center in bulk diamond; (b) NV− center in micron lens with 500 nm diameter; inset, diagram 
of light propagation in lens. (c) NV− center in submicron cylinder. The first column demonstrates the 
positions of NV− center; the second column presents the corresponding electric field simulations; the 
third column presents the corresponding far-fields of NV− center in which the light grey shadows are 
the regions that can be detected by microscopy with NA of 0.95. 
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height and lens ROC, respectively. This demonstration suggests that the efficiency was at maximum 
when the height (ROC) is 160 nm (275 nm). The efficiency became lower if we continued increasing 
the height of submicron lens after 160 nm, however, the efficiency was still more than 60%. On the 
other hand, submicron cylinders with a curving side wall can also improve photon collection 
efficiency effectively as suggested and depicted in Figure 3c. The photon collection efficiency of 
submicron cylinders with 500 nm diameter and 950 nm height as a function of apex diameter has 
been shown in Figure 4b. The reflective index of diamond is about 2.42, which corresponds to 24.4° 
of critical angle of total reflection. Increasing lens height will increase θ as shown in the inset of Figure 
3b, when θ is larger than 24.4°, the emission of NV− center cannot escape from the diamond in this 
direction. Therefore, the photon collection efficiency attains maximum value when lens height was 
increased. Similarly, efficiency of cylinders also attains maximum value when apex diameter was 
changed. 

Figure 3. Simulation of electric field and far field of NV− center embedded in submicron structures. (a)
NV− center in bulk diamond; (b) NV− center in micron lens with 500 nm diameter; inset, diagram of
light propagation in lens. (c) NV− center in submicron cylinder. The first column demonstrates the
positions of NV− center; the second column presents the corresponding electric field simulations; the
third column presents the corresponding far-fields of NV− center in which the light grey shadows are
the regions that can be detected by microscopy with NA of 0.95.

Figure 4a,b shows NV− center photon collection efficiency as a function of 500 nm diameter lens
height and lens ROC, respectively. This demonstration suggests that the efficiency was at maximum
when the height (ROC) is 160 nm (275 nm). The efficiency became lower if we continued increasing
the height of submicron lens after 160 nm, however, the efficiency was still more than 60%. On the
other hand, submicron cylinders with a curving side wall can also improve photon collection efficiency
effectively as suggested and depicted in Figure 3c. The photon collection efficiency of submicron
cylinders with 500 nm diameter and 950 nm height as a function of apex diameter has been shown in
Figure 4b. The reflective index of diamond is about 2.42, which corresponds to 24.4◦ of critical angle
of total reflection. Increasing lens height will increase θ as shown in the inset of Figure 3b, when θ
is larger than 24.4◦, the emission of NV− center cannot escape from the diamond in this direction.
Therefore, the photon collection efficiency attains maximum value when lens height was increased.
Similarly, efficiency of cylinders also attains maximum value when apex diameter was changed.



Materials 2019, 12, 1622 6 of 10
Materials 2019, 12, x FOR PEER REVIEW 6 of 10 

 

300 350 400 450
0.2

0.3

0.4

0.5

0.6

0.7

Ef
fic

ie
nc

y

Apex diameter of cylinders (nm)
250 300 350 400 450 500 550 600 650

0.2

0.3

0.4

0.5

0.6

0.7

Ef
fic

ie
nc

y

ROC (nm)

(a) (b)

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7
Ef

fic
ie

nc
y

Height of lens (nm)

(c)

 
Figure 4. Photon collection efficiency of NV− center versus submicron structure dimensions. (a) 
efficiency versus lenses heights when diameters of lenses are 500 nm; (b) efficiency versus ROC of 
submicron lenses; (c) efficiency versus apex diameter of submicron cylinders. 

3.2. Submicron Lenses 

In this section, submicron lenses with several heights were obtained by controlling etching ratio 
of SiO2 and diamond as shown in Figure 5. As indicated in Figure 6, lenses’ height increased by 
improving CF4 flow rate up to 20 sccm. According to Equation (1), we can infer that etching ratio k 
gradually decreases with CF4 flow rate goes up to 20 sccm. When CF4 flow rate reaches 25 sccm, 
etching ratio k suddenly appears to be improved, which leads to a decrease of lens height. According 
to Figure 4a, more than 60% photon can be collected by the optical system when lens height is above 
120 nm. Therefore, such fabricated lenses can improve collection efficiency by at least 3 times. 

(a) (b)

(c) (d)

2μm

2μm2μm

2μm

 
Figure 5. SEM images of submicron lenses on diamond surface acquired with 45° tilt angle of samples. 
(a–d) Submicron lenses fabricated by using CF4 flow rate of 10, 15, 20 and 25 sccm, respectively. 

Figure 4. Photon collection efficiency of NV− center versus submicron structure dimensions. (a)
efficiency versus lenses heights when diameters of lenses are 500 nm; (b) efficiency versus ROC of
submicron lenses; (c) efficiency versus apex diameter of submicron cylinders.

3.2. Submicron Lenses

In this section, submicron lenses with several heights were obtained by controlling etching ratio
of SiO2 and diamond as shown in Figure 5. As indicated in Figure 6, lenses’ height increased by
improving CF4 flow rate up to 20 sccm. According to Equation (1), we can infer that etching ratio
k gradually decreases with CF4 flow rate goes up to 20 sccm. When CF4 flow rate reaches 25 sccm,
etching ratio k suddenly appears to be improved, which leads to a decrease of lens height. According
to Figure 4a, more than 60% photon can be collected by the optical system when lens height is above
120 nm. Therefore, such fabricated lenses can improve collection efficiency by at least 3 times.
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3.3. Submicron Cylinders

The submicron cylinders also can greatly improve photon collection efficiency of embedded NV−

center. Figure 7a,c,e correspond to 5, 10 and 15 sccm Ar gas flow rates, respectively. Trenches appeared
around the bottom of cylinder; this is because of the deflection of accelerated ions along the already
etched side walls of the cylinders [16]. A SiO2 ball in the top view of sample is the circle which is
displayed in the inset of Figure 1a. The circle’s edge thickness is thinner than the middle position.
Therefore, one can predict that the edge of this circle will be etched faster than middle position, while
the diameter of this circle decreases as etching time goes on. Meanwhile, the diameter of cylinder
apex also decreases as etching time goes on because it is same as the diameter of circle. Therefore, the
diameter of bottom part is larger than that of apex. By using different etching parameters, the final
diameters of these circles were different, which induced different apex diameters of cylinders.

The height of cylinder reflects the etching speed of diamond because the top faces of cylinders have
not been etched. Meanwhile, apex diameter of cylinder reflects etching speed of SiO2. Large height
and small apex diameter suggest high etching speed of diamond and SiO2. It can be predicted from
Figure 8 that etching speed of diamond and SiO2 are hugely decreased when Ar flow rate increased
from 5 sccm to 10 sccm. When Ar flow rate increases from 10 sccm to 15 sccm, the etching speed of
diamond and SiO2 were observed with slight increment. Therefore, by changing Ar flow rate during
ICP etching, submicron cylinders with several apex diameters and heights were obtained, which can
greatly improve photon collection of embedded NV− centers.
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4. Conclusions

Submicron lenses and cylinders were fabricated on a diamond surface by using the ICP etching
technique with a resistant mask of a layer of 500 nm diameter SiO2 balls. By changing the mixing ratio of
CF4 and O2 gases during the ICP etching process, several heights of submicron lenses with diameters of
500 nm were obtained. Be employing a mixture gas of Ar and O2, submicron cylinders with several apex
diameters were obtained with height of about 1µm. The simulation results demonstrated that fabricated
submicron structures can significantly improve photon collection efficiency of embedded NV− center
at least by threefold when compared with that of NV− center in bulk diamond. These submicron
structures also have potential to be used in quantum optic and photoelectric detection applications.
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