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Abstract

Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages,
and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete
penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/
CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which
account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected
individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex
Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/
CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones.
The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The
study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and
phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/
CCM3 lead to a characteristic phenotype.
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Introduction

Cerebral cavernous malformation (CCM; OMIM 116860) is

one of the most common types of vascular malformations

characterized by ‘‘blackberry-like’’ aggregation of grossly enlarged

capillary cavities consisting of a single layer of endothelium

without intervening neuronal tissue [1].

Cavernous malformations can occur anywhere in the body -

brainstem, cerebellum, spinal cord, cranial nerves, cerebral

ventricles, retina, skin and liver - but are most commonly found

in the forebrain [2]. They occur as single or multiple lesions and,

depending on size and location, can be clinically silent or show

clinical symptoms ranging from headache to focal neurological

deficits, seizures and fatal intra-cerebral haemorrhage [3–5].

CCM can arise in a sporadic form, with a single lesion, or in a

familial form, with multiple cavernous malformations [6]. The

familial form shows an autosomal dominant pattern of inheritance

with incomplete penetrance and variable clinical expression [7].

However, multiple lesions have been found in patients with no

positive family history [8] and combined clinical and genetic tests

have recently revealed that the vast majority of these ‘sporadic

cases’ with multiple lesions have indeed a genetic origin: a de novo
mutation or a mutation inherited from an asymptomatic parent

[2,9–11].

Genetic studies identified three CCM genes in different loci:

KRIT1/CCM1 at 7q21–22 [12,13], MGC4607/CCM2 at 7p13–

15 [14,15] and PDCD10/CCM3 at 3q25.2–27 [16,17].

Several mutations have been identified so far in the Italian

population, all of them appearing to cause a loss of function

[15,18–26].Starting from 2004 we have investigated 87 consecu-

tive index cases, with the presence of multiple angiomas and/or

with a positive family history (FCCM); we identified mutations in

over 97.7% of FCCM cases Among the positive cases, KRIT1/
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CCM1 accounts for 68.9%; MGC4607/CCM2 for 18.0% and

PDCD10/CCM3 for 13.1%.

Our group identified mutations in over 97.7% of FCCM cases,

this high score of mutation detection being due to the selection of

index case according to the presence of multiple angiomas and/or

to a positive family history (FCCM). Not surprisingly, high

prevalence of causative mutation has been identified in KRIT1/

CCM1 followed by MGC4607/CCM2 and PDCD10/CCM3,

these last two with quite similar mutation rate.

According to recent data PDCD10/CCM3 mutations cause 10–

15% of FCCM [5] and less than 40 CCM3 families have been

reported so far [15,17,19,27–31]. This limited number of patients

harbouring a mutation in PDCD10/CCM3 gene hampered

establishing the genotype-phenotype correlations. It has been

recently reported that PDCD10/CCM3 mutation carriers display

earlier symptoms’ onset, usually before 15 years of age, and higher

risk of cerebral haemorrhage during childhood; multiple meningi-

omas are frequently reported too. However the mechanisms leading

from CCM3 mutations to meningiomas are still unknown [5,28,29].

We report here the results related to PDCD10/CCM3 gene

molecular screening carried out on eleven unrelated Italian CCM

affected patients, all of them were found to harbour mutations,

four already known and four novel ones.

Results

We analyzed 87 Italian cases with multiple lesions and/or

positive family history; 11 index patients (13.1%) resulted to be

mutated in PDCD10/CCM3 in (Fig. 1). When relatives’ DNA

samples were available, we observed a complete cosegregation of

the mutational event with the clinically affected status (i.e., positive

MRI).

The eight identified mutations are summarized in Table 1:

R35X, R95X, R108X, and a whole gene deletion were already

reported in literature [5,15,17,27,30], while four more mutations

are described here for the first time (c.367_387dup; [c.376_380del;

392_393insGACAGAGTGTCTGCAGACTTGATTGTCTGCA-

GACAAT]; c.159dup and c.160G.T). Among the new mutations,

the first one duplicates six aminoacids, the last two introduce a stop

codon, while the effect of the remaining one is unknown. The

molecular analysis revealed the typical pathogenic loss-of-function

mutations with the exception of one duplication, the complex

rearrangement and the loss of the entire allele. As for the last one, we

were able to observe the cosegregation of the deletion within the

affected family members (proband’s father, see Tables 1 and 2).

Pathogenicity of the new mutations was established through

predictive software such as MutationTaster and Mutalyzer

[32,33].

Four cases (338CCM, 359CCM, 410CCM and 454CCM)

resulted to be de novo mutations since both parents did not harbour

the mutation itself. DNA profiling using STR multiplex assay was

applied to the probands and their parents to determine and confirm

their relationship: paternity was established in all the four cases.

As regards 415CCM subject, we were not able to demonstrate the

de novo nature of the mutation since DNA samples from parents

were not available. Proband’s siblings, ranging from 3 to 14 years

and parents, both aged 41 years, were negative at MRI study.

As for 344CCM subject, surprisingly we did not find the

mutation in two family members both presenting epilepsy (II;2 and

III;2). Apparently the proband’s father (III;3) harbouring the

mutation doesn’t present any symptom, but cerebral MRI resulted

positive for the presence of cavernomas. The proband’s grand-

parents were referred to be in healthy status.

Among the seven familial cases, inheritance appears to be

paternally derived four times (321CCM, 352CCM, 344CCM and

118CCM) while we observed maternal origin only in one case

(446CCM); in two cases (482CCM and 415CCM), we were not

able to assess the inheritance pattern.

Prenatal diagnosis was requested from 118CCM’s family: after

an accurate genetic counselling it has been performed through

MLPA with flanking exon probes, giving a negative result. This

has been confirmed later on the newborn DNA (II;2).

In all the tested subjects no associations were found with other

cerebral vascular malformations, such as meningiomas or venous

cavernomas or arterovenous malformations,. The mean age of the

first onset is 7.3 years (range 0.33–35 years) and in 5 out of 11

patients we found extra-axial cavernous angiomas. Clinical

characteristics of patients are summarized in Table 2, while

MRI/TC imaging of patients 321CCM, 344CCM and 454CCM

are reported in Figure 2.

Discussion

The CCM3 gene [Programmed cell death 10 (PDCD10)] is

highly conserved in both vertebrates and invertebrates and is the

most recently discovered compared with CCM1 and CCM2

[16,17]. It has been shown that PDCD10 interacts in vitro with the

other two proteins involved in genesis of cavernomas: K-Rev

interaction trapped 1 (KRIT1) and Malcavernin, which partici-

pates in CCM1-dependent modulation of b1-integrin-mediated

signalling and CCM2-mediated p38 MAPK signalling in response

to cellular stress [34].

The roles of these three proteins in the formation and

maintenance of cerebral vessels, the genetic mechanism leading

to CCMs and factors that may influence their number and growth

are still to be clarified. Actually, PDCD10 is involved in many

cellular pathways including apoptosis, cellular proliferation and

cell survival/resistance to apoptosis [34–39].

PDCD10 protein contains an N-Terminal dimerization Do-

main and a C-Terminal Focal Adhesion Targeting (FAT) Domain

resembling the one of the Focal Adhesion Kinase (FAK) [40,41]

(Fig. 3).

Li et al. demonstrated that the presence of a fully folded CCM3

FAT-Homology Domain is important for the stabilization of the

expressed protein in the in vivo setting since an example of a

truncation mutation (CCM3-1-117) was found to be poorly

expressed [41].

The protein can homodimerize and heterodimerize with a

variety of proteins including cell adhesion molecule Paxillin [41]

and Malcavernin (CCM2) [12,42] through its FAT Domain. The

N-Terminal domain is important for the interaction with GCKIII
kinases (Germinal Centre Kinase III), a family of protein kinases,

and this heterodimerization may be the preferred conformation

[42]. In particular, PDCD10-GCKIII signalling facilitates lumen

formation by endothelial cells, which is important during the

progression of cerebral lesions [43,44] and these kinases are

important for the regulation of apoptosis, cell proliferation,

polarity, migration, and cytoskeleton remodelling [42,43,45].

Different animal models have been used to draw these

conclusions. In mice model, Pdcd10 is required for the control

of venous size and integrity, yet it is not required in the embryonic

establishment of circulation as Ccm2 is. [44]. Other animal models

seem to confirm these findings: tracheal tubes of the respiratory

system in Drosophila melanogaster, lacking Pdcd10, grow and

branch normally, but fail to lumenize [44] and inhibition of

Ccm3a/b in Zebrafish leads to dilations of the embryonic cranial

vasculature [46]. Similarly, in vitro studies showed that PDCD10-

PDCD10/CCM3 Mutations in FCCM

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e110438



depleted HUVECs cells failed to organize themselves into a

lumenized network [44].

Finally, loss of PDCD10 has been reported to increase cell

survival and proliferation, possibly through reduced Notch

signalling, enhanced VEGF signalling, or increased ERK activity

[39,47,48].

These literature data show that PDCD10 interacts with a wide

variety of proteins through its different domains, in addition to

Figure 1. Pedigrees of the 11 patient harbouring a PDCD10/CCM3 mutation. The arrow indicates the index case. Squares represent males;
circles, females. A diagonal line through the symbol represents a deceased person.
doi:10.1371/journal.pone.0110438.g001
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those involved in CCM pathology (KRIT1, Malcavernin), and

participates in several different molecular pathways. So mutations

affecting the integrity and stability of CCM3 may disrupt not only

the ternary complex with the CCMs proteins but also the

interactions with the proteins described above, which act in such

different pathways. This pleiotropy of PDCD10 may explain the

Figure 2. 1–3 MRI/TC scans from subjects: 1) 454CCM patient harbouring the de novo and novel mutation p.E54Rfs*22. A) T1 sagittal image at 16
months showing a cavernous malformation with recent bleeding in the pons; B) T1 axial image at 25 months showing increased size of the pontine
cavernous malformation with compression on the mesencephalon, the cisterna interpeduncularis and the cisterna pontis. 2) 321CCM patient
harbouring the mutation p.R35X. A) Imaging characteristics of the CCM lesion (in the white circle) located at the left anterior temporal lobe: at CT
scan the lesion is inhomogeneous due to haemorrhagic components, B and D) the haemorrhagic component is hyperintense both in T1 and in T2
sequences, C) contrast enhancement is absent, E) and at GET2* the lesion is hypointense due to the paramagnetic characteristics of the haemosiderin
ring and of the clotted lesion content. F) Finally, other two lesions can be detected at other sites (arrows) in the same patient. 3) 344CCM patient
harbouring the novel mutation p.R54X. A) MRI showed a right cortical and subcortical parietal hemorrhagic CCM lesion (arrow) and other non-
hemorrhagic CCM lesions at different sites: bilateral temporal polar (not shown), B) left superior temporal sulcus (arrow) and right parietal
(arrowhead), left insular and fronto-insular (not shown), C) left frontal parasagittal (arrow), subcortical frontal with small areas of vacuolization and
microcalcification, left posteromedial thalamic (not shown).
doi:10.1371/journal.pone.0110438.g002
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earlier age at onset we observed in patients mutated in this gene

compared to those mutated in KRIT1/CCM1 or MGC4607/

CCM2.

Our data appear to indicate that PDCD10 may play a major

role in the ternary complex formed by KRIT1/MALCAVER-

NIN/PDCD10 proteins and in driving the FCCM associated

disorder.

A PDCD10/CCM3 gene mutation [40,41] has to be considered

a very rare cause of CCMs, since this mutation have been

diagnosed to fewer than 100 people worldwide. Herein we

describe 11 additional new cases with a mutation in PDCD10/

CCM3 gene which are negative for KRIT1/CCM1 and

MGC4607/CCM2 genes. Among the eight mutations identified,

four changes have been already reported while other four are

described here for the first time; furthermore, we also identified de
novo mutations in four different patients. In our cohort de novo
mutations seem to be more frequent in PDCD10/CCM3 gene,

since no de novo mutations have been found in KRIT1/CCM1

and only a single de novo mutation has been identified in

MGC4607/CCM2 mutated cases [11].

We tried to establish a common geographic origin between the

patients, but the mutations distribution turned out to be rather

heterogeneous.

The majority of the detected mutations generates a stop codon

(R35X, R108X, E54Rfs*22, E54X), that leads to the predicted

formation of a truncated protein lacking the original function,

however further studies are needed to define the effect on the

protein of the two duplications, the complex rearrangement and

the loss of the entire allele on the final protein.

We observe that the majority of mutations especially occur in

exons five and seven (8/11 CCM cases), with a prevalence of the

R35X mutation (5/11 CCM cases). Thus, we suggest that in an

analytical procedure it would be appropriate to first investigate

these exons.

All the described mutations in PDCD10/CCM3 lead to a stop

codon, [15,17,19,27–31] that cause the loss of a variable portion of

the protein, that generally is the C-Terminal FAT-Homology

Domain. Only in a single case (352 CCM) a mutation did not lead

to a premature stop codon, but to a in frame duplication of six

aminoacids in the FAT-Homology Domain instead. Furthermore

this patient showed a late onset disease (35 years) with a milder

phenotype compared to other cases. We can hypothesize that this

mutation leads to the malfunctioning of the protein but preserves

its overall structural integrity and its ability to take interactions

with its other partners.

Wide phenotypic variability is present among the reported

patients, even within those sharing the same mutation and within

the same family. Symptoms range from headache, psychomotor

retardation, to attention disorder, haemorrhage and seizures.

Together with Denier’s group findings [28] we observed an earlier

onset in symptomatic PDCD10/CCM3 mutation carriers com-

pared to symptomatic patients with a mutation in KRIT1/CCM1

and MGC4607/CCM2 genes. Conversely, we are unable to

confirm the association with multiple meningiomas and early onset

haemorrhage reported by Riant F. et al., 2013 [5].

The causes of this variability are unknown but are likely

associated with other genetic factors, environment or lifestyle

(physical exercise and nutrition), as reported by Choquet et al. for

a wide cohort of KRIT1/CCM1 patients sharing the Common

Hispanic Mutation [49].

Functional characterization of the identified mutations, further

in vitro studies and cellular models may help understand the

complex mechanisms through which PDCD10 is involved in the

CCMs pathology.

Indeed, the functional heterogeneity of PDCD10 makes it

difficult to define its role in the pathogenesis of the disease and

further studies on wider cohorts of patients, as well as prospective

clinical follow up studies, will help to define whether PDCD10/

CCM3 mutations are associated to specific clinical features.

Material and Methods

Subjects
Clinically affected CCM probands (index patients) were

consecutively enrolled on the basis of one of the two following

criteria: each proband had at least one affected relative and/or

had multiple cerebral cavernous angiomas. Diagnosis was based

on brain magnetic resonance imaging (MRI) features and, when

possible, post-surgery histopathological analysis findings: 5/11

patients underwent neurosurgical intervention. Detailed clinical

and brain MR imaging data were collected for all patients with

symptomatic CCM through direct interview and review of medical

records. Clinical assessment focused on the occurrence of seizures,

cerebral haemorrhage, focal neurological symptoms, and head-

ache. All the analyzed subjects gave written informed consent and

they underwent to a review of their medical records, brain MR

imaging, and blood sampling for genetic analysis: their medical

records were reviewed as well. Niguarda Ca’ Granda Ethic

Committee approved this study. Subjects with cavernomas seen on

MR images were considered affected and those with no

abnormalities seen on MR images were considered unaffected;

those who did not undergo MR imaging were classified as

‘‘unknown’’.

DNA Extraction, Polymerase Chain Reaction and
Sequencing

Genomic DNA from each proband and all consenting relatives

was extracted from peripheral blood leukocytes using the salting

Figure 3. Schematic representation of PDCD10 protein with its domains and the main interactors. Mutations are reported.
doi:10.1371/journal.pone.0110438.g003
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out method [50]. All coding exons and the corresponding intron/

exon boundaries of KRIT1/CCM1, MGC4607/CCM2 and

PDCD10/CCM3 genes were amplified by PCR with a specific

subset of primers described elsewhere [51].

Direct sequence analysis was performed using BigDye Termi-

nator Cycle Sequencing kit Version 1.1 (Applied Biosystem) on

3730 DNA automated analyzer (Applied Biosystem). The nucle-

otide position of variants present in the coding regions refers to the

mRNA sequence (NM_007217) with +1 corresponding to the A of

the ATG initiation codon.

The novel mutations were not found upon screening by direct

sequencing 300 normal control chromosomes; moreover they were

not reported in different online genetic databases of control

subjects, such as HGMD [52], NHLBI ESP [53] and the 1000

Genome project [54].

Multiplex Ligation-Dependent Probe Amplification Assay
Multiplex ligation-dependent probe amplification (MLPA) was

performed on patients who were negative for direct sequencing

analysis for mutation in KRIT1/CCM1, MGC4607/CCM2 and

PDCD10/CCM3 by using two MLPA kits (SALSA MLPA Kits

P130 & P131 CCM, MRCHolland). The P130 probe mix contains

probes for part of KRIT1/CCM1 exons and for all MGC4607/

CCM2 exons. The P131 probe mix contains probes for the

remaining KRIT1/CCM1 exons and for all exons of PDCD10/

CCM3 gene. MLPA was performed according to the protocol

supplied, by use of 100 ng of DNA sample per reaction, using

FAM labelled primers. Samples were run on a 3730 DNA

automated analyzer (Applied Biosystems), and data were analyzed

with the GeneMapper software version 4.0 (Applied Biosystems) to

size the PCR products and to obtain peak areas.

For the visual inspection, peak heights were compared between

the samples and the controls, to find any alteration in relative peak

heights within the test sample. For the normalized peak area

calculations, each peak area was normalized by dividing the

individual peak area by the total peak area of all peaks for that

sample. See Penco et al., 2009 for details [24].

Short Tandem Repeat Multiplex Assay
STR (Short Tandem Repeat) multiplex assay was performed by

using the AmpFlSTR Identifiler Kit (Applied Biosystems) accord-

ing to the manufacturer’s instructions. The kit has been designed

to amplify 15 tetranucleotide repeat loci and the amelogenin

gender-determining marker in a single PCR amplification; a five-

dye fluorescent system was used for automated DNA fragment

analysis.

Samples were run on a 3730 DNA automated analyzer (Applied

Biosystems), and data were analyzed with the Gene Mapper

software version 4.0 (Applied Biosystems); allele peaks were

interpreted when the peak heights were greater than or equal to

50 relative fluorescence units.
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