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Bats are reservoir hosts of many important viruses that cause substantial disease in 
humans, including coronaviruses, filoviruses, lyssaviruses, and henipaviruses. Other 
than the lyssaviruses, they do not appear to cause disease in the reservoir bats, thus 
an explanation for the dichotomous outcomes of infections of humans and bat reser-
voirs remains to be determined. Bats appear to have a few unusual features that may 
account for these differences, including evidence of constitutive interferon (IFN) activa-
tion and greater combinatorial diversity in immunoglobulin genes that do not undergo 
substantial affinity maturation. We propose these features may, in part, account for 
why bats can host these viruses without disease and how they may contribute to the 
highly pathogenic nature of bat-borne viruses after spillover into humans. Because of 
the constitutive IFN activity, bat-borne viruses may be shed at low levels from bat cells. 
With large naive antibody repertoires, bats may control the limited virus replication with-
out the need for rapid affinity maturation, and this may explain why bats typically have 
low antibody titers to viruses. However, because bat viruses have evolved in high IFN 
environments, they have enhanced countermeasures against the IFN response. Thus, 
upon infection of human cells, where the IFN response is not constitutive, the viruses 
overwhelm the IFN response, leading to abundant virus replication and pathology.

Keywords: bats, Chiroptera, zoonosis, antibody repertoire, emerging infectious disease, virus ecology

Bats have gained attention in recent years as reservoir or suspected reservoir hosts of many high-
impact human pathogenic viruses that cause outbreaks and epidemics with high mortality (1, 2).  
In terms of viral species richness and zoonotic potential, bats may be the most important mam-
malian sources (3, 4). Each of these viruses, including the ebolaviruses, Marburg virus, severe 
acute respiratory syndrome and Middle East respiratory syndrome coronaviruses, rabies and 
other lyssaviruses, and Hendra and Nipah viruses, is thought to circulate in certain species of bats 
without significant disease. Chiroptera, to which bats belong, is the second largest mammalian 
order, with about 1,200 species. Bats originated about 80 million years ago (mya) and substantial 
radial divergence ensued soon after the K–T extinction event about 66  mya (5). Consequently, 
bats have been on independent evolutionary trajectories for most of the history of mammals.  
They belong to the mammalian superorder Laurasiatheria that includes ungulates and canines, 
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whereas rodents and primates belong to the superorder 
Euarchontoglires; these superorders diverged about 90  mya. 
Genome and transcriptome analyses suggest the immune sys-
tems of bats are substantially similar to those of other mammals; 
however, there are some significant differences, including the 
loss of the PYHIN locus that has the AIM2 cytosolic DNA sensor 
and inflammasome genes, loss of killer cell immunoglobulin-
like (KIR), and killer cell lectin-like (KLR) receptor loci used 
by NK cells, expanded immunoglobulin heavy-chain VDJ seg-
ments and contraction of the interferon-α (IFNα) locus (6–11). 
Although bats share many immunological features with other 
mammals, little research into their immune systems or responses 
has been conducted and there are no well-developed bat research 
models to study infectious agents (12, 13).

Often, in zoonotic virus/reservoir host relationships, which 
have been best studied in rodents and primates (14–16), each 
virus is hosted by individuals of one or only a few species. There 
are exceptions, including slowly replicating viruses, such as 
rabies virus. However, viruses, like all other biological entities, 
are subject to the pressures of evolution and are likely genetically 
and biochemically adapted (“optimized”) to circulate within 
their reservoir host populations to either cause persistent infec-
tion (often for the life of the host), or to replicate and be shed 
for a sufficient period to allow transmission to other susceptible 
hosts, without causing substantial disease within the population 
(17). They typically do not elicit robust immune responses in 
their reservoirs, which could lead to viral clearance or immuno-
pathology. When spillover of pathogenic viruses to humans or 
other non-reservoir species occurs, they are not biochemically 
optimized for the new host cells, which can lead to disease and 
death, or immune clearance.

Because of the occurrence of severe human diseases caused 
by some of the bat-borne viruses, an important question is; 
how do bats host these viruses without becoming diseased? 
The answer to this question is likely complicated and will vary 
between species of bats and species of viruses. In rodent reser-
voirs of pathogenic hantaviruses, in which the viruses establish 
persistent infection without meaningful pathology (18–22), the 
immune response is slow to develop (21) and is mediated by Fox-
p3+, TGFβ-expressing regulatory T (Treg) cells, which counter 
inflammatory disease (23, 24) but at the expense of sterilizing 
immunity. Do bats have Treg cells? If so, do bat viruses also elicit 
Treg responses in their reservoir hosts? T cell genes are found 
in bats, but there are no publications demonstrating antigen-
specific T cell activities in bats. The lack of such studies underlies 
a significant deficit in the study of bat immune responses, con-
sidering the functional subsets of T cells that have been identified 
in other species (e.g., Th1, Th2, Th17, NKT, Tfh, CTL, etc.) and 
the effector functions mediated by T cells, including T cell help, 
inflammation, chemotaxis, and augmentation of macrophage 
activities such as phagocytosis and killing of microbes.

Even less is known about NK cells in bats. Does the loss of 
KIR/KLR genes in bats (8) mean that NK  cells use alternative 
receptors to recognize MHC class I for activation and inhibition? 
Do bat NK cells have the same effector functions found in other 
species, such as granzyme-mediated cytolysis and antibody-
dependent cell cytotoxicity? Genes for granzymes A and B and 

CD16 (FcRγIII) are found in bats (6, 7); thus, it is likely that 
bat NK  cells are functionally similar to other species in this 
regard. Until methods are developed to assess T cell and NK cell 
functions in bats, our understanding of bat virus infections of 
reservoir hosts will be severely limited.

Pathogenic bat-borne viruses encode immune modulating 
accessory proteins that often target the innate antiviral responses 
of infected cells. It is thought that these proteins are contributory 
factors of human disease (“virulence factors”) (25–32); however, 
because they evolved in their bat reservoirs (i.e., biochemically 
optimized), their impacts on the orthologous proteins of humans 
must somehow be different; otherwise, there would not be dif-
ferential outcomes in bats (no disease) and humans (disease).

tHe “FLiGHt as FeVer” HypotHesis

One proposed explanation for the lack of disease in virus-infected 
bats is the “flight as fever” hypothesis that suggests elevated body 
temperature during flight somehow mimics the effects of the 
fever response (33). However, the fever response after infection 
is much more sophisticated than simply elevated body tempera-
ture. In other mammals that have been studied, the production 
of interferons (IFN), interleukin-1, and prostaglandins have 
already occurred by the time fever is detectable (34, 35). There is 
no evidence that these effector molecules are expressed by bats 
during flight. Moreover, viral infections are complex processes; 
thus, it is unlikely that elevated body temperature alone is suf-
ficient to explain how bats can host these viruses without signs of 
disease. The only experimental work assessing this effect showed 
that increasing incubation temperature of bat cells does not affect 
their ability to support ebolavirus replication (36). Although 
there is no experimental evidence supporting the flight as fever 
hypothesis, some have speculated this provides a metabolic 
mechanism for bats to host these viruses without disease (37).

tHe “aLWays on” iFn systeM oF Bats

An interesting feature of pteropid bats is that parts of the type 
I IFN system appear to be constitutively active and it has been 
hypothesized that this “always on” activity may hamper early 
viral replication (10). We have also observed signatures of IFN 
receptor pathway activation in uninfected primary kidney cells 
cultured from Jamaican fruit bats (Artibeus jamaicensis), includ-
ing constitutive STAT1 phosphorylation (unpublished data). In 
other mammals that have been examined, the type I IFN loci 
have undergone expansion by tandem duplication events, lead-
ing to multiple copies of Ifna genes. However, in bats there is 
compelling evidence that the type I IFN locus has undergone 
contraction leading to fewer Ifna genes (10). Despite this con-
traction, Ifna basal gene expression in bats is elevated relative to 
humans and rodents, as are the levels of many IFN-stimulated 
genes (ISG). The constitutive Ifna expression appears to induce 
a profile of ISGs that is not inflammatory, and this may be one of 
the reasons why Ifna expression can be elevated without leading 
to chronic inflammatory pathology. Furthermore, as the levels of 
IFNα protein expressed by bat cells remains to be determined, 
it is possible that much of the Ifna mRNA remains untranslated, 
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taBLe 1 | Immunoglobulin gene segments of select mammalian species (42).

species VH (Fa) dH JH Vλ (F) Jλ Cλ
b Vκ (F) Jκ Cκ k:lc

Little brown bat >250 (5) ? 13 ? ? ? ? (?) ? ? ?:?
Human 87 (7) 30 9 70 (7) 7 7 66 (7) 5 1 60:40
Mouse >100 (14) 11 4 3 (3) 4 4 140 (4) 4 1 95:5
Rabbit >100 (1) 11 6 ? (?) 2 2 >36 (?) 8 2d 95:5
Horse >10 (2) >7 >5 25 (3) 4 4 >20 (?) 5 5 5:95
Cattle >15 (2) 3 5 83 (8) >2 4 ? (?) ? 1 5:95
Swine >20 (1) 2e 1e 22 (>2) >4 4 14–60 (5) 5 1 50:50

aNumber of families (F) of variable region genes.
bJλ–Cλ duplicons are the common motif in most mammals.
cRatio of expressed light chain in adults expressed as percent.
dRabbits have a duplicate of the entire kappa locus.
eFunctional DH and JH genes.
?, number is unknown.

3

Schountz et al. Immunology of Bats

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1098

providing a source of transcripts for rapid translation when 
required. In addition, the type III IFN response appears to be 
restricted to immune cells and epithelial cells, and can be acti-
vated independently of type I IFN signaling (38, 39). Collectively, 
these aspects of the innate immune system suggest that bat cells 
are poised to respond to viral infections immediately, which 
may restrict, but not prevent, viral replication. It is unknown 
why bat IFN pathways are constitutively active but some species 
of bats can have extraordinarily high population densities with 
extensive mutual grooming behavior. Because transmission 
of infectious agents is related to population density, it may be 
evolutionarily favorable for bats to hamper virus replication and 
shedding to limit transmission within a population. However, 
viruses must also be able to sufficiently evade the response to 
transmit within the bat population; otherwise, they would be 
driven to extinction. Thus, it is likely that bat virus accessory 
proteins are finely tuned to modulate bat antiviral responses.

iMMUnoGLoBULin repertoires  
oF Bats

The germline immunoglobulin loci of mammals contain tan-
dem variable (V), diversity (D), and joining (J) gene segments 
that recombine during B cell development in the bone marrow 
to generate VDJ rearrangements at the immunoglobulin heavy-
chain locus, and VJ rearrangements at the light chain locus 
(40). The number of segments varies between species (Table 1), 
and not all segments are functional. For example, humans have 
87 immunoglobulin heavy-chain V segments, but only about 
40 are functional. V(D)J recombination generates the naive 
B  cell immunoglobulin repertoire of an individual with, in 
humans, about 2 million unique immunoglobulin specificities 
that typically have an IgM heavy chain (41). The result, termed 
combinatorial diversity, occurs prior to, and is independent 
of, the antigen stimulation of an immune response. Swine, on 
the other hand, have far fewer heavy-chain gene segments, 
with seven functional V segments, two D segments and one 
J segment for just 14 possible combinations (42). Increased 
junctional diversity of the developing naive immunoglobulin 
repertoire occurs during recombination of the V(D)J segments 

in which exonuclease activity removes nucleotides from the seg-
ment ends and the enzyme terminal deoxynucleotidyl transferase 
(TdT) adds nucleotides to the segment ends (41). The substan-
tially limited swine VDJ is overcome by exonuclease and TdT 
activities (42).

Antigen exposure to naive B cells leads to secretion of IgM 
antibodies with typically low average affinities (~10−7 Kd). This 
low affinity is the result of the poor proximity of the amino acid 
residues of the antibody variable region to the residues of the 
antigenic epitope, thus, fewer non-covalent bonds can form 
at the antibody:antigen interface. However, as these B  cells 
undergo clonal selection and expansion during an infection, 
somatic hypermutation (SHM) occurs in daughter cell V(D)J 
regions that leads to antibodies with higher average affinities by 
virtue of refined complimentary topology between the antibody 
and its epitope, and the inclusion of amino acids in the variable 
region that strengthen the non-covalent interactions with the 
epitope (43). This process, termed affinity maturation, requires 
T  cell help and expression of the enzyme activation-induced 
cytidine deaminase (AID) in the dividing B cells. The result of 
this process is the generation of antibodies with affinities for 
antigen that are orders of magnitude greater (~10−10 to ~10−12 
Kd) than those of the original naive parental B cell clones that 
recognized the antigen.

Affinity maturation can take weeks, but if the host survives the 
infection it typically produces antibodies that can bind antigen 
with nearly irreversible affinities under physiological conditions. 
Importantly, this process leads to memory B cells that have high 
affinity surface immunoglobulin receptors that have already 
class-switched to IgG or IgA, and can rapidly divide and secrete 
antibodies independent of T cell help should the same pathogen 
be encountered again. Indeed, affinity maturation principally 
accounts for the high antibody titers detected by the various 
serological end-point dilution assays.

In bats, combinatorial diversity may lead to the generation 
of a much larger naive immunoglobulin repertoire than it does 
in humans because bats may possess more heavy-chain VDJ 
germline gene segments. The heavy-chain locus of humans has 
40 functional V segments, 24 D segments, and 6 J segments 
for a potential of 5,760 H chain specificities in its naive B cell 
repertoire through combinatorial diversity (44). The little brown 
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FiGUre 1 | Immunoglobulin VDJ combinatorial diversity potential of humans, swine and little brown bats. The human heavy (H) chain locus has about 40 variable 
(V), 24 diversity (D) and 6 joining (J) segments that are functional. Rearrangement of the locus occurs during B cell development in the bone marrow and provides 
the repertoire of immunoglobulin specificities that are clonotypic in naive B cells, usually with IgM constant (Cμ) heavy chains, which populate peripheral lymphoid 
tissues, such as lymph nodes and the spleen. The theoretical number of human H chain specificities is 40 × 24 × 6 = 5,760. In contrast, swine have 7 V, 2 D, and 1 
J segments that are functional, totaling 14. In the little brown bat (Myotis lucifugus), the functional H chain locus is estimated to have 236 V segments, at least 24 D 
segments, and at least 13 J segments, for a theoretical number of at least 73,632 specificities in the naive B cell repertoire. Blue, V gene segments; green, D gene 
segments; orange, J chain segments; purple, C gene (IgM); other C genes not shown.
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bat (Myotis lucifugus) has an estimated 236 V segments, at least 
24 D segments, and at least 13 J segments, with a potential of 
more than 70,000 specificities in the naive B cell repertoire (9) 
(Figure 1). Pteropid bats also have a highly diverse genomic and 
expressed VH repertoire, and evidence for multiple expressed 
DH and JH segments, consistent with their ability to recognize a 
range of antigenic epitopes (45). Bats appear to only express λ 
light chains but no research has been published about their light 
chain VJ segments nor their T cell receptor genes, thus it is not 
possible to compare them to other mammals.

In little brown bats, there appears to be less dependence on 
affinity maturation (9), suggesting the expanded repertoire from 
combinatorial diversity may have reduced, but not eliminated, 
the evolutionary need for SHM. Bats have and express the gene 
for AID (6–8), thus it is likely that some SHM occurs but AID 
appears to play a less prominent role in bats than it does in mice, 
humans, and swine. AID also facilitates class switching to other 
antibody classes (isotypes) in mice and humans, such as the IgG 
subclasses and IgA (46). If it is used less in bats, does this mean 
there is less class switching in bats? Or is it only the SHM func-
tion that is reduced? Do bats also generate junctional diversity 
through exonuclease and TdT activity? If bats do not use SHM 
does that lead to less robust memory B cell responses that can 
contribute to viral recrudescence?

Many of these questions are difficult to address because 
there are few immunoglobulin class-specific antibodies for bats 
of any species. Polyclonal rabbit antibodies to Australian black 
flying fox (Pteropus alecto) IgG, IgM, and IgA have been gener-
ated (47), but all others are polyclonal antibodies to whole bat 
IgG that likely recognize light chains as well as heavy chains. 
Because light chains are shared by all immunoglobulin classes, 
these polyclonal antibodies cannot discriminate IgD, IgM, IgG, 
IgA, or IgE. The number of immunoglobulin heavy-chain genes 
that encode IgG subclasses vary between species, with Seba’s 
fruit bat (Carollia perspicillata) having only one, big brown 
bat (Eptesicus fuscus) having two, greater short-nosed bat 
(Cynopterus sphinx) having three and little brown bat having 
five (48). One monoclonal antibody to the immunoglobulin λ 
chain of the big brown bat has been generated and it has cross 

reactivity to little brown bat λ chains; thus, it likely will be useful 
for characterizing antibodies from these bats (49).

A recent report suggested that IgG, rather than IgA, is 
more abundant in mucosal secretions of the Australian black 
flying fox (47). Their approach used Jacalin, peptide M, and 
staphylococcal superantigen-like protein 7 to purify IgA; these 
reagents are routinely used to purify human IgA but it is unclear 
if they bind bat IgA efficiently, or at all. The suggestion that 
IgG is the most abundant secretory immunoglobulin in bats is 
inconsistent with established data on secretory immunoglobu-
lins in other mammals and should be regarded with caution. 
The generation of isotype-specific monoclonal antibodies to bat 
immunoglobulins will be required to determine which isotype 
is most abundant in mucosal secretions of bats.

a HypotHesis oF Bat iMMUne 
responses to ViraL inFeCtions

We propose that innate and adaptive immune responses in bats 
are different than in mice and humans, and these differences 
may account for why the viruses they host can be significant 
human pathogens. First, we suggest that because of higher 
constitutive expression of IFNα and persistent ISG activity, bat 
cells hamper virus replication relative to what occurs in cells 
from humans and rodent disease models. Second, because of the 
apparently larger bat naive immunoglobulin repertoires (from 
combinatorial diversity), bats may have more immunoglobulin 
specificities that favor clonal selection of B cells with immuno-
globulin receptors that interact with substantially higher mean 
affinities for antigen. Because of this, and because of the reduced 
viral burden due to persistent IFN activity, there has been less 
evolutionary pressure for SHM to control viral infections in 
bats—the selected B cells can undergo clonal expansion without 
an urgent need for affinity maturation to generate high-titered 
antibodies.

This combination of events may lead to several expected out-
comes that can be experimentally tested. First, because of their 
constitutively high expression of IFNα, less virus replication 
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should occur in infected bat cells compared to human or 
rodent cells used in pathology models. Second, because of the 
hampered viral replication, antibody responses in bats likely are 
slower to develop and may not be as durable as those in mice 
or humans because fewer viruses will be available for T and 
B cell stimulation. Third, antibody titers, which are a function 
of affinity maturation, should be lower in bats (e.g., average 
affinities of 10−9 to 10−11 Kd) than those generated in mice. A 
poorer antibody response (i.e., lower titer) could prevent or 
delay clearance of virus from the reservoir bat, contribute to 
persistent infection, prolong shedding, and lead to periods of 
recrudescence as antibody wanes.

Although there are a few bat cell lines that are susceptible 
to these viruses, caution must be exercised when using them 
because of the potential for unusual genomic events that 
routinely occur during immortalization, such as deletions and 
duplications of genes, which can complicate interpretation 
of data. Therefore, assessment of viral infection kinetics will 
require isolation of identical susceptible primary cells from res-
ervoir bats, and humans or rodents used in pathology studies. 
As one example, Nipah virus infects endothelial cells (50–52) 
and the Syrian hamster is a pathology model for its disease  
(53, 54). Isolation of primary endothelial cells (e.g., PCAM1+ 
cells) from pteropid reservoir hosts and hamsters could be used 
to assess virus replication kinetics. If our hypothesis is correct, 
then we would expect less virus replication and shedding from 
primary pteropid endothelial cells than from hamster endothe-
lial cells.

Consistent with our hypothesis, bat antibody responses 
appear to be slower to develop and less robust during infec-
tion (55, 56) and immunization (57, 58) compared to those 
of mice. Immunization of Brazilian free-tailed bats (Tadarida 
brasiliensis) and Egyptian fruit bats (Rousettus aegyptiacus) with 
rabies vaccines resulted in neutralizing antibody responses that 
are considered protective (59, 60). However, the vaccines used 
in these studies were inactivated, thus (1) were incapable of 
infecting cells and influencing the IFN response with the viral 
accessory proteins and (2) were formulated with adjuvant that 
simulates inflammation that contributes to more robust antibody 
responses. Experimental Marburg virus infection of Egyptian 
fruit bats, a natural reservoir host, leads to brief viremia, wide 
tissue distribution and low to modest viral loads and serocon-
version (61–63) and transmission (64). Similarly, poor neutral-
izing antibody responses occur after experimental infection of 
artibeus bats with Tacaribe virus, even in surviving bats (65). 
To date, no direct comparisons of infections with bat-borne 
viruses in reservoir host bats and pathology models have been 
performed; thus, there are no direct comparisons of the antibody 
responses to determine differences or similarities between bats 
and other mammals. In addition to immune response studies of 
apathogenic infection of bat reservoir hosts and their viruses, 
it will be necessary to examine the immune response in patho-
genic infections of bats for essential comparison, such as the 
aforementioned Tacaribe virus infection of artibeus bats (65) or 
rabies virus infection of bats of many species (60, 66). After all, 
if bat IFN responses are “always on,” why does Tacaribe virus 
kill bats?

Has persistent iFn aCtiVity in Bats 
driVen tHe eVoLUtion oF VirUses 
patHoGeniC to HUMans?

With persistent activation of the IFN response in bat cells, it is rea-
sonable to assume that viruses hosted by bats have evolved finely 
tuned countermeasures to dampen the response in the reservoir 
bat species. For example, STAT1, an essential component of the 
type I, II, and III IFN receptor signaling pathways, is a target of 
ebolavirus VP24, Marburg virus VP40, Nipah virus V and W, and 
SARS-CoV ORF6 (67–71). Because the viruses have evolved in 
bats, these proteins are likely optimized to disrupt STAT1 activ-
ity in the reservoir host bats in a qualitative and/or quantitative 
manner that permits virus replication and shedding without 
compromising the health of the host. Hendra virus antagonizes 
IFN production and signaling in an immortalized cell line from 
the Australian black flying fox, but only disrupts IFN production 
in an immortalized human cell line (72, 73). The impact of these 
proteins on STAT1 in the reservoir bats must be enough to allow 
some, perhaps periodic, viral replication to sustain the virus in 
bat populations, but not so much that it leads to high levels of viral 
replication and shedding from infected cells; otherwise, pathol-
ogy and/or a robust adaptive immune response would ensue. But 
because the IFN receptor pathway is persistently activated in bat 
cells, it is likely that expression of these viral proteins occurs to 
counteract STAT1’s cascading activation of the ISG pathways. 
Another important caveat of the experimental systems used to 
examine the effects of these viral proteins is that their genes are 
often cloned into high-expression plasmids or into other viruses 
that do not naturally infect bats. It is probable that expression 
levels of these genes by their viruses have been evolutionarily 
optimized for the reservoir bat species. But this presents logistical 
difficulties because most of these viruses require BSL-3 or BSL-4 
containment, a significant hurdle for many investigators.

STAT1 is a highly conserved protein and the viral accessory 
proteins that target it have been shown to often interfere with 
human STAT1 activity (67–71). We hypothesize that because of 
persistent IFN activity in bat cells, these viruses may express these 
accessory proteins at substantially higher levels to counter the bat 
cell’s elevated basal levels of the IFN response genes (Figure 2). 
STAT1 of the Australian black flying fox (Hendra virus reservoir) 
and the Egyptian fruit bat (R. aegyptiacus, Marburg virus reser-
voir) are 96% and 97% identical, respectively, to human STAT1. 
Because the human IFN system is “off ” (i.e., low basal levels) until 
an infection, it may be that these viral proteins are expressed in 
such high abundance immediately upon infection of a human 
cell (because they have been evolutionarily programmed in bat 
cells) that they abrogate the cell’s ability to mount an effective 
IFN response. This could lead to abundant viral replication and 
shedding from human cells, which would then disseminate and 
infect other cells, leading to direct viral pathology or immuno-
pathology from the subsequent activation of immune cells that 
respond to viral infection, including macrophages, neutrophils, 
NK cells and cytotoxic T cells. Alternatively, or in conjunction 
with, the viral proteins may bind to STAT1 of humans and bats 
with different affinities that could contribute to the dichotomous 
outcomes (72).
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FiGUre 2 | Potential explanation for high virulence of certain bat-borne viruses in humans. (a) Infection of bat cells leads to high expression of viral accessory 
proteins that repress the constitutively active type I interferon (IFN) system, leading to low levels of virus replication and shedding. Low level or intermittent replication 
of virus delays and reduces stimulation of the immune system, thus resulting in weak adaptive immunity and poor antibody responses. (B) In human cells, the high 
expression of viral accessory proteins significantly disrupts the cell’s ability to control the infection, leading to high levels of virus replication and immune stimulation 
that contributes to pathogenesis.
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CaVeats and CHaLLenGes oF tHe 
HypotHesis

We recognize that this hypothesis on its own may be insuffi-
cient to explain the biological relationships and interactions of 
hundreds of viruses, and probably many more (74), and bats of 
the ~1,200 different species. Is the IFN system “always on” for 
all 1,200 species of bats? Do they all have more V(D)J germline 
gene segments? Do they all rely more on combinatorial diversity 
and less on SHM for the generation of their immunoglobulin 
repertoires? Just as there are significant differences between 
bats and other mammals, there are likely significant differ-
ences between bat species. However, considering the current 
evidence, we believe that several aspects of these hypotheses can 
be experimentally addressed with appropriate animal studies. 
We also have not considered other aspects of immune systems 
that may be important in chiropteran immunology, including 
activities of cellular immunity, the roles of complement and 
antibody-dependent cell cytotoxicity, immune effector mol-
ecules such as cytokines, antigen processing and presentation, 
immunological memory, and the myriad other immunological 
factors. Virtually nothing is known about these aspects of bat 
immunology, thus it is difficult to imagine how they might be 
different or contribute to bats of a particular species being suit-
able reservoir hosts for viruses of a particular species. It also is 

likely that many other differences between bats and other mam-
mals exist that are not directly related to the immune response 
(e.g., metabolism, physiology, hormonal changes, behavior, 
“flight as fever”) that are contributory factors to reservoir host 
status of bats.

Of what is known, experimental approaches that examine 
the responses of infected bat cells (e.g., IFN response) and 
antibody responses seem to be the most tractable. A sig-
nificant hurdle to accomplish these experiments is the lack of 
well-defined bat models for infectious disease research. Few 
closed colonies of bats are available for such purposes and of 
those, few reagents and methodologies have been developed to 
exploit them. These deficiencies can be rapidly overcome using 
the technological tools available today. For example, collection 
of low abundance antibodies (i.e., IgM, IgA) or immune cells 
from bats is challenging; most microbats are so small that 
collection of a few hundred microliters of blood can be lethal. 
But with deep sequencing, full genomes and transcriptomes 
can be rapidly generated and exploited to produce nearly any 
recombinant bat protein for use in experimental work. This 
approach could be deployed to generate monoclonal antibod-
ies specific to not only IgM and IgA, but IgG subclasses, to 
help understand immune responses in bats. Moreover, with 
long-read RNA-Seq and bioinformatics, characterization of 
immunoglobulin and T cell receptor repertoires can identify 
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increased frequencies of V(D)J usage during B and T  cell 
clonal expansion and SHM during infection (75, 76). This 
should clarify to what degree SHM is used by bats during 
immune responses, which has only been examined in naive 
little brown bats (9).

Regardless of the virus, it is essential that experimental infec-
tion studies of bat viruses should be done in bats. The use of other 
species, such as rodents and non-human primates, may provide 
information about pathogenesis, but they cannot address the 
biology, evolution and ecology of bat-borne viruses, and how they 
may emerge as human pathogens.
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