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Introduction

Quantitative structure–property relationship (QSPR) models for

predicting the melting point of an arbitrary compound are

useful tools in drug discovery, as the melting point of a com-
pound strongly correlates with its solubility, and could there-

fore be used to guide the optimization of compound absorp-
tion, distribution, metabolism, and excretion (ADME) proper-

ties. One of the first equations relating aqueous solubility to
the MP was developed by Yalkowsky et al. in 1980,[1] and since

then, further improvements have been made to the relation-

ship.[2, 3] The revised General Solubility Equation (GSE) is as fol-
lows [Eq. (1)]:

logSaq: ¼ @0:01 MP@ 25ð Þ @ logPoct=wat þ 0:5 ð1Þ

in which logSaq is the aqueous solubility of the molecule (Saq in

mol L@1), MP is the compound melting point (in 8C), and
logPoct=wat is the octanol/water partition coefficient. The term

MP@ 25, which represents the crystallinity of the solute, is set
at zero if the compound’s melting point is less than 25 8C.

Various other methods have been developed for predicting

aqueous solubility;[4–8] however, most of these methods require
the use of many parameters and a large training set to build

the model. In contrast, the GSE requires only two physico-

chemical properties, and is based on deductive modelling.
There are numerous methods to predict compound melting

points, roughly falling into two groups: physics-based methods
and statistical methods. Physics-based methods can be further

divided into two categories: direct methods, and free-energy
methods.[9] Direct methods dynamically simulate the melting
process and, whilst relatively straightforward, have generally

poor accuracy. Free-energy methods attempt to satisfy phase
equilibrium conditions, are more accurate, and are computa-
tionally expensive to apply.[10]

However, in-silico prediction of the melting point by these

methods is nontrivial, as all of these methods require a crystal
structure to be applied, negating their usefulness in the predic-

tion of MPs of compounds that lack a crystal structure, such as
virtual compounds. Zhang and Maginn attempted to circum-
vent this by using predicted crystal structures to predict the

MP of two compounds and achieved predictions with an error
of 15–25 8C, despite the predicted crystal structures differing

from the experimental ones.[11]

Statistical methods have existed since as early as 1881, when

Mills derived an accurate MP model for hydrocarbons using

fitted constants and the number of methyl groups, but the
model is only applicable to that particular chemical class.[12]

Many similar studies have been performed since,[13] each de-
voted to a particular chemical series, often trained on tens to

hundreds of compounds. However, larger datasets have been
used as well, such as the study performed by Karthikeyan
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et al.[14] who used neural networks on a set of 4173 diverse
compounds to train various models, producing a final model

with mean absolute errors in the range of 33–40 8C. The largest
MP prediction model to date was published by Tetko et al. ,[15]

who used ~275 000 compounds and nonlinear methods to
build models whose prediction error is close to the estimated

experimental error of the source data, that is, 33 8C for com-
pounds in the drug-like range (50–250 8C).

In 2012 Schultes et al. published an analysis on the melting

point of ~5000 drug-like compounds[16] from both public and
in-house datasets based on simple phys-
ical chemical descriptors. They found
correlation between several molecular

descriptors, such as simple atom counts
and property predictions, and the com-

pound MPs by performing a matched

molecular pair (MMP) analysis on the da-
taset. An MMP is a pair of molecules

that differ by only a single minor struc-
tural change (Figure 1).[17]

Our current study is aimed at validat-
ing Schultes’ analysis on a much larger

dataset covering a more diverse chemi-

cal space with a wider range of melting points, corresponding
to a greater statistical power. Based on this study, a large

number of MP-related structural changes are derived. Further-
more, solubility changes, predicted by applying DMP data and

the GSE equation, were also derived with a good correlation to
both the experimental solubility data and the prediction of an-

other solubility model.

Results and Discussion

Descriptor analysis

We found that the descriptor with the greatest impact on MP
change is the number of hydrogen bond donors (Table 1). Our

validation study with the much larger dataset (PATENTS data-
set) shows that the findings of Schultes et al. have the same

general characteristics as our results, notably with their public

dataset part. An exception is the halogens, where we found
the same general trend but with overall average changes to

be positive, and spread over a narrower range. It should be
noted, however, that in halogen descriptor analysis, we speci-

fied that the scale of logPcalc change should be small (<0.5),
whereas in the Schultes study this was unconstrained. The

Figure 1. An example
of a matched molecu-
lar pair : the structures
differ by a hydroxy
group (highlighted).

Table 1. Descriptor results for all compounds.

Descriptor changed
Dataset[a]

# of samples Mean descriptor change DTm/Ddescriptor [8C] :SEM [8C] p value[b]

Fluorine atoms
PATENTS dataset
Schultes In-House
Karthikeyan

17 297
24
41

1.29
1.3
1.8

1.2
@0.77
@3.9

:0.3
:7.3
:7.7

<0.0001
n.s.
n.s.

Chlorine atoms
PATENTS dataset
Schultes In-House
Karthikeyan

9893
9

188

1.04
1.0
1.0

6.2
@10

7.0

:0.4
:14
:3.4

<0.0001
n.s.

<0.05
Bromine atoms
PATENTS dataset
Schultes In-House
Karthikeyan

2804
16

128

1.02
1.0
1.2

14
47
20

:0.8
:9.0
:4.1

<0.0001
<0.001
<0.0001

Iodine atoms
PATENTS dataset
Schultes In-House
Karthikeyan

400
1
8

1.02
1.0
1.0

20
10
39

:2.2
NA
:3.2

<0.0001
n.s.

<0.05
H-bond donors
PATENTS dataset
Schultes In-House
Karthikeyan

12 889
36
46

1.02
1.1
1.1

23
44
25

:0.5
:7.7
:9.0

<0.0001
<0.0001
<0.05

H-bond acceptors
PATENTS dataset
Schultes In-House
Karthikeyan

24 358
13

263

1.16
1.0
1.7

11
36
12

:0.3
:13
:3.1

<0.0001
<0.05
<0.0001

Rotatable bonds
PATENTS dataset
Schultes In-House
Karthikeyan

68 531
61

155

1.27
1.3
2.0

@7.3
@16
@6.0

:0.2
:4.9
:4.3

<0.0001
<0.0001
<0.001

logPcalc

PATENTS dataset
Schultes In-House
Karthikeyan

24 818
103
390

0.92
0.5
0.7

4.6
@2.0

2.9

:0.4
:3.7
:2.2

<0.0001
n.s.
n.s.

[a] The PATENTS dataset comprises the ~275 000 compound dataset we used in the study; the Schultes In-House and Karthikeyan datasets are those used
in the Schultes study.[16] [b] n.s. = non-significant (p>0.05).
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Schultes data has been adapted from their published table,
with standard deviations converted into standard errors, and

their reported mean DTm values normalized according to the
mean descriptor changes.

The increase in melting point with the respective increase of
hydrogen bond donors and acceptors can be clearly justified

by the increase in intermolecular interactions, which lead,
mainly, to crystal lattice stabilization. Notably, the change in

MP from hydrogen bond donors is almost twice that of hydro-

gen bond acceptors. This could be due to the following rea-
sons:

1) Donors can interact with a wider variety of systems, for ex-

ample donor to pi-system interactions. Further, donors gen-
erally have more degrees of freedom from rigid scaffolds
than acceptors, as they can be bound to rotationally unre-

stricted acceptors, meaning they can potentially cover a
larger volume of space and are hence new donors are
more likely to be able to be involved in interactions than
new acceptors.

2) A substantial proportion of donors are amines, and amines
can sometimes be protonated to form a positively charged

group. This may create ionic interactions in the lattice,

forming strong intermolecular interactions and hence in-
creasing the lattice stabilization and thus MP.

The decrease in melting point from increasing numbers of
rotatable bonds is likely due to the resultant higher flexibility

of the molecule resulting in a higher melting entropy, and
hence a more favorable molten state, as described by Dannen-

felser and Yalkowsky,[18] and in some molecules an increase in
the number of rotatable bonds can lead to less efficient crystal

packing, also lowering the MP. Further, the halogen trend we
observed correlates well with the known intermolecular halo-

gen bonding series, with MP increasing down the series. Inter-

estingly, the MP change per chlorine atom in the Schultes da-
taset is not just contradictory to our results but also to the in-

fluence of bromine and iodine in their own datasets, likely due
to the low sample number (derived from only nine samples).

This example justifies the necessity of carrying out this kind of
analysis with a larger dataset, providing greater statistical
power for the observed MP changes.

CSP3 fraction analysis

We also analyzed the fraction of sp3 carbon (CSP3 fraction) as
a descriptor. We initially performed an analysis with all other
descriptors from Table 1 constrained, considering the CSP3
fraction to have changed if there was a difference of 2 % or

more between the members of the pairs. This analysis (#1 in
Table 2) showed a DTm of @7.3 8C per 10 % change of CSP3

Table 2. CSP3 results for all compounds in the PATENTS database.[a]

Experiment Unconstrained descriptors Descriptors unchanged # of samples Mean CSP3 change [%] DTm [8C] for 10 % increase of CSP3 :SEM [8C]

1 CSP3 nRot
Halogen
Donors
Acceptors
logPcalc

29 874 8 @7.3 5.6

2 CSP3
nRot

Halogen
Donors
Acceptors
logPcalc

80 284 8 @14 3.5

3 CSP3
Halogen

nRot
Donors
Acceptors
logPcalc

46 893 8 @8.6 4.3

4 CSP3
Donors

nRot
Halogen
Acceptors
logPcalc

38 154 8 @13 5.2

5 CSP3
Acceptors

nRot
Halogen
Donors
logPcalc

45 495 8 @12 4.7

6 CSP3
logPcalc

nRot
Halogen
Donors
Acceptors

49 267 9 @8.5 4.1

7 CSP3
nRot
Halogen
Donors
Acceptors
logPcalc

n.a. 641192 10 @19 1

[a] p values: <0.0001. The CSP3 fraction was considered to have changed when the difference was +2 % (0.02). logPcalc was considered to be constrained
if the change was ,0.5. n.a. : not available.
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fraction, which could be considered to be the most correct
evaluation of the atom composition change of the molecules

(“pure” CSP3 contribution). If we removed some constraints, al-
lowing other descriptors from Table 1 to change simultaneous-

ly with CSP3 fraction (see #2–#6 in Table 2) larger changes in
DTm were observed. The largest DTm of @14 8C was calculated

for MMPs in which the CSP3 fraction increased while the
number of rotatable bonds were also allowed to change in
any direction. Because the increase of CSP3 fraction is fre-

quently accompanied by an increase of the number of rotata-
ble bonds, both these changes synergistically contributed to

large DTm change. Similar synergistic effects were observed for
the number of hydrogen bond donors and acceptors, which

appear to contribute to the unconstrained CSP3 DMP indirect-
ly. The logPcalc and Halogen descriptors contributed smaller

changes in DTm, which were not statistically significant relative

to the “pure” CSP3 contribution. The largest decrease DTm of
@19 8C (for a 10 % increase in CSP3 fraction) was observed

when we did not have any constraints on the change of other
descriptors. This change was 2.6-fold larger than the one calcu-

lated for the constrained value of DTm =@7.3 8C, which corre-
sponded to the change caused by this descriptor alone. Con-

sidering that CSP3 is gaining popularity in drug discovery stud-

ies, our result suggests that caution should be taken in inter-
preting the effect of this descriptor by analyzing its possible

correlations with other descriptors, that is, the effects due to
CSP3 can be driven by correlated changes in other related de-

scriptors rather than by this descriptor alone.

Aqueous solubility predictions

Further, we analyzed the change in solubility in matched pairs
according to the general solubility equation, to test the accura-

cy of the proposed GSE technique. We modified the GSE
[Eq. (1)] to calculate the difference of the values [Eq. (2)] , and

then compared the resulting GSE DlogS, and the predicted
DlogS calculated using ALOGPS,[19] to known solubility data. To

do this, we used matched molecular pairs generated from the
dataset used to create the ALOGPS solubility model, in order

to investigate the efficacy of this GSE technique against both
experimental data and an existing solubility model (Figure 2).

DlogSGSE ¼ @0:01DMP@ DlogPcalc ð2Þ

The results revealed that both the GSE and ALOGPS meth-
ods provide accurate predictions of changes in the solubility of

molecules in MMPs (RMSE of 0.71 and 0.61 log units, respec-

tively). The structural features that frequently appeared in the
highest-deviated pairs for the GSE method (see Supporting In-

formation) were long alkyl chains, and the loss/gain of nitro-
gen-containing functional groups. The method had a tendency

to overstate the hydrophobicity of increasing chain length,
and tended to overestimate the hydrophilicity of amine func-

tions, with an exaggerated logPcalc contribution. This is not un-
expected, as the GSE was designed to be an approximation for
rigid molecules,[20] and is not accounting for the large rotation-

al degrees of freedom of these molecules. The GSE method
performed generally well for small molecules, and rigid fused-

ring system. There is no correlation in the errors (R2 = 0.27) be-
tween the two predictive methods, implying a consensus of

the two models should give improved results. Indeed, a simple

averaging of the two predictions gives a model with greater
accuracy (RMSE of 0.57).

Functional group analysis

The functional group analysis was carried out among all MMPs

to identify important functional group transformations which
affect MPs. A complete list of the functional group endpoints
and conversions from this study are available in the Support-
ing Information and they are generally consistent with known
trends. A few transformation examples are shown in Table 3 to
highlight the resultant notable MP changes. For example, the
conversion between an acid and its ester results in a decrease

Figure 2. Correlation between predicted and observed DlogS, and the results of a consensus model of the two approaches.
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in melting point. This is due to a decrease in intermolecular
bonding from the loss of hydrogen bond donors, and resultant

destabilization of the crystal lattice—likewise with amides to
esters, and with for example, tertiary to secondary amides. The

conversion into heavier halides is consistent with the trend ob-

served in intermolecular halogen bonding, with heavier halides
being more easily polarized, resulting in a stronger crystal lat-
tice.[21]

We exported the functional group conversions into a direct-
ed graph (Figure 3). Analysis of subgraphs showed that a large

majority of the transformations are consistent within the net-
work to within a reasonable degree of accuracy. Whilst only

one of the subgraphs is additive to within predicted error, the

pairs sets involved were acyclic, and so a small amount of bias
can be expected; a couple of sources of error are considered
later. We found that many of these functional group conver-

Table 3. The most common and most influential results of the functional group analyses.

# of samples Mean DTm [8C] :SEM [8C] p value

Most influential functional group substitutions
From To
sulfonamides sulfonic acids 39 90 :17 <0.0001
phosphonic acid esters phosphonic acids 37 85 :9 <0.0001
thiocarboxylic acid esters thiocarboxylic acid amides 22 73 :7 <0.0001
dialkyl ethers carboxylic acid secondary amides 20 72 :10 <0.0001
carboxylic acid esters carboxylic acid primary amides 176 68 :4 <0.0001

Most common functional group substitutions
From To
carboxylic acid esters carboxylic acids 7056 65 :0.6 <0.0001
aryl fluorides aryl chlorides 6039 7.0 :0.5 <0.0001
aryl chlorides aryl bromides 3322 5.1 :0.6 <0.0001
aryl fluorides aryl bromides 1883 13 :0.8 <0.0001
carboxylic acid tertiary amides carboxylic acid secondary amides 1570 31 :1.4 <0.0001

Most influential functional group endpoints
Group
pyrazoles (HS)[a] 21 @70 :17 <0.0001
sulfenic acid derivatives 49 @55 :6 <0.0001
thiocarboxylic acids 25 52 :8 <0.0001
1,3-diphenols 22 51 :8.5 <0.0001
alkyl iodides 21 48 :13 <0.0005

Most common functional group endpoints
Group
nitriles 4618 18 :0.8 <0.0001
arenes 4278 7.3 :0.7 <0.0001
nitro compounds 3842 22 :0.8 <0.0001
aryl chlorides 3499 6.2 :0.8 <0.0001
carboxylic acid esters 3486 @18 :0.9 <0.0001

[a] HS: shows high specificity, indicating that fusion with other rings is disallowed.

Figure 3. Examples of functional group transformations.
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sions can be justified in terms of simple descriptor changes
previously reported, for example:

* The transformation between a primary amide and a secon-

dary amide results in a DMP on average of @30 8C, equiva-
lent to the loss of a hydrogen bond donor and addition of

bond rotation (Table 1).
* The conversion from a primary amide to a tertiary amide

(@52 8C) is approximately equivalent to the loss of two hy-

drogen bond donors and a gain in rotational freedom
* The conversion from a primary amide to a carboxylic acid

ester (@68 8C) is approximately equivalent to the loss of
two hydrogen bond donors, and the gain of some rotation-

al freedom with the replacement of the rotationally restrict-
ed C@N amide bond and addition of the ester group.

Although these MMPs are derived from MP data, given the
strong correlation between compound solubility and MP, they

could be very useful for optimizing compound solubility either
by modifying specific functional groups in the parent structure

or indirectly predicting new compound’s solubility via MP pre-
diction through some additive or group based method.

However, when functional groups are to be considered in a

networked manner, the analysis should be performed with
caution and the results examined carefully. We consider two

potential sources of error for such analyses:

1) If cyclic subgraphs are to be analyzed, then the limit on the
maximum number of transformed atoms may come into

effect. For example, consider two transformations, each

adding groups comprising six atoms. The final pair would
exceed the maximum number of transformed atoms and

be excluded, introducing bias.
2) If the functional groups to be considered are chemically ir-

relevant or insignificant (e.g. , start/endpoint considered to
be loss of C@H hydrogen, instead of addition of replace-

ment group), then the observed relationship would be in-

herent noise, especially if smaller datasets are used.

This suggests the need to be careful in the selection of func-
tional groups to be analyzed in the case of a similar functional

group-type analysis.

Conclusions

We have investigated the influence of simple descriptors on

the melting point of a large number of compounds. It was
found that changes in selected simple 2D descriptors have a

quantifiable and significant effect on the melting point of
these compounds, and that solubility predictions using this

method are comparable to existing techniques, indicating that

this is a viable method for predicting the properties of deriva-
tive compounds. This is of useful consequence in the lead opti-

mization phase of drug design, aiding in silico prediction or ex-
clusion of alternative compounds, with respect to solubility op-

timization. In general our results are in line with previous find-
ings, and further show that long lists of significant functional

group optimizations can be mined from existing data, with po-
tential practical application. Further to this, using this tech-

nique to discover relationships between descriptors and prop-
erties is a method that could be used to mine and disseminate

information from proprietary chemical databases; as no under-
lying structures need be released, the only source of structural

information in the results comes from the functional group
analyses, which can be easily curated before publication were

the dataset to contain IP-sensitive information. Such analyses

are known to work, with companies such as MedChemica per-
forming MMP analysis[22] on large pharmaceutical datasets to
identify and distribute rule-based structural changes for
ADMET optimization.

Experimental Section

Datasets : For this study, we used a dataset published by Tetko
et al.[15] The dataset is publicly available on OCHEM[23] (Online
Chemical Database with Modelling Environment), and contains
275 133 compounds covering a wide range of melting points, pri-
marily in the drug-like range (50–250 8C). These data were taken
from sources including patents,[15] research papers published by
Bradley[24] and Bergstrçm,[25] Enamine[26] and the existing OCHEM
database.[26] The Bradley, Bergstrçm and Enamine datasets are all
highly curated and of good quality, and the errors associated with
the various sources involved in the patent dataset are discussed in
the original publication referenced. After filtering incomplete re-
cords, and compounds with a molecular weight >1000 Da, the re-
maining molecules were standardized, neutralized, and salts were
removed with ChemAxon, and the structures were cleaned. After
filtering we ended up with a set of 275 008 molecules with melting
points ranging from @199 8C to 517 8C (Figure 4).

Matched molecular pairs and descriptors : We used ALOGPS[27] to
calculate the octanol/water partition coefficient (logPcalc), CDK[28] to
calculate the number of hydrogen bond donors and acceptors,
and OEstate[29] to generate other molecular descriptors, which in-
clude 1) the number of each type of halogen atom in the mole-
cule, and 2) the number of rotatable bonds, resulting in a total of
eight analyzed descriptors. As one can see, a normalized variance-
covariance principal component analysis (PCA) plot using these de-
scriptors (Figure 5) provides reasonable discrimination between
compounds with low (blue) and high (red) melting points. The first
two components cover >40 % of the variance of the whole data-
set. The number of hydrogen bond donors and acceptors as well
as the number of rotatable bonds contribute the highest loading
for the first principal component (PCA 1), whilst the logPcalc domi-
nates the second principal component (PCA 2). The outlying struc-
tures with the greatest PCA 1 are large molecules with many car-
bonyl and hydroxy groups.

The assembled dataset was used to calculate matched molecular
pairs (MMPs). The matched molecular pair technique has been
used in the analysis of many properties.[30–33] In the case of this
study, the transformed part of the molecule has no more than 10
atoms, and fewer atoms than the main scaffold of the molecule.[34]

Initially over 2.5 million MMPs were generated. After removing
some transformation schemas, which resulted in identical pairs,
917 831 unique pairs were ultimately collected. From this list of
MMPs, we were interested in the pairs where only a single descrip-
tor changed, and the other descriptors remain constant. By relating
structural changes to DMP, we hope to identify matched pair rules
suitable for ADME optimization, in which experimental lead com-
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pounds can be used as a starting point to predict the changes as-
sociated with virtual derivative compounds, with higher accuracy
than is involved in predicting these properties from ordinary mod-
elling methods.

Additionally, we performed a functional group analysis using ToxA-
lerts.[36] ToxAlerts is an analytical feature of OCHEM intended for

the identification of potentially toxic functional groups, however it
also contains an extended functional group (EFG) category.[37] This
category allows the easy identification of the (binary) presence of
over 500 different functional groups, of which 472 were present in
the dataset. We examined both transformations that resulted in
the substitution of functional groups across the pair, and transfor-

Figure 4. A histogram of the melting points of all compounds used in the study. The majority of compounds involved were in the drug-like range of 50–
250 8C.

Figure 5. A PCA plot of the two first principal components of the eight descriptors used in the analysis. The change of color from blue to red indicates in-
creasing compound melting point. The PCA plot was generated using the PAST[35] software package.
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mations that had an endpoint of only a single additional functional
group, with no fixed start point. Examples of functional group
transformations can be found in the Supporting Information.

Data processing : Data resulting from the OCHEM-based analysis
were further processed using in-house code written in VB.NET and
Python: The analysis performed with OCHEM resulted in three
files: molecule ID with descriptor information, Matched Molecular
Pairs including molecule IDs with respective temperatures, and func-
tional group presences with respective molecule IDs. Once the data
were exported from OCHEM, the data processing was performed
in-house. First, we checked for redundant pairs (different transfor-
mation schemas that resulted in the same matched pairs), and
then created a hash dictionary matching each molecule in each
pair to its respective descriptors and ToxAlerts, to allow rapid itera-
tion through the MMP list, and to allow easy identification of pairs
for which incomplete information was available. The list of pairs
was then iterated through, and differences were calculated—all
valid pairs (where only a single descriptor, or 1–2 ToxAlerts
changed) were grouped according to their respective descriptors
and indexed for statistical analysis ; p values were calculated using
bootstrap hypothesis testing, due to the volume and unknown dis-
tribution of the resulting data as described elsewhere.[38] Plots
were created using a Python script, executed on conclusion of the
statistical analyses.
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