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Abstract

Background: Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate
gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important
economic and model species, we used sequence variants to map a type of expression quantitative trait loci
(expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the
understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1)
variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in
exon expression, i.e., eeQTLs, in different tissues.

Results: Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified
using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs
contained the highest percentage of variants that are within the intronic region of genes and contained the
lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many
geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all
four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues,
variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices
(LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level
was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-
to-implement meta-analysis combining information from three tissues is introduced to increase power to
detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle
complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at
Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits.

Conclusions: Using novel analytical approaches, we report the first identification of numerous bovine sQTLs
which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs
and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations.
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Background
Cattle are an important source of meat and dairy prod-
ucts for humans worldwide. Also, cattle can be used as
clinical models to study genetic causes of human dis-
eases [1]. To improve productivity, health performance
and efficiency of cattle, traditional selective breeding has
been widely used. In the last decade, genomic selection,
originally developed in cattle breeding, has further in-
creased the rate of genetic improvement of complex
traits in all livestock species [2, 3]. However, genomic se-
lection commonly uses genotyping arrays that are based
on single nucleotide polymorphisms (SNPs) of which
very few have known biological functions or directly im-
pact genetic variation in production traits. Knowledge of
the genes involved and polymorphic sites would increase
our understanding of the biology and may further in-
crease the rate of genetic improvement [4].
Many of the sequence variants that are associated with

complex traits (quantitative trait loci or QTL) are not
coding variants and are presumed to influence the regu-
lation of gene expression, that is to be expression QTLs
[5]. An expression QTL might be associated with the
variation in overall transcript abundance from the gene,
which we will refer to as a gene expression QTL or
geQTL. In cattle and humans, geQTLs show significant
enrichments for mutations associated with diseases and
complex traits [5–7].
After transcription, RNA is spliced by intron removal

and exon ligation to create various mature transcripts. An
expression QTL associated with the changes in the ex-
pression ratio of an exon to the gene implies that it alters
RNA splicing. This type of expression QTL is then defined
as a splicing QTL or sQTL, which have been studied in
humans by inferring the individual splicing ratio from
RNA sequence data [8]. More recently, sQTLs, identified
using intron information extracted from RNA sequence
data, were demonstrated to have fundamental links with
human diseases [9, 10]. RNA splicing also results in differ-
ent expression levels of exons within a gene. Thus, in the-
ory, the type of expression QTL that change the level of
expression of one or several exons, i.e., exon expression
QTL or eeQTLs, may represent some sQTLs. However,
the extent to which eeQTLs overlap with sQTLs and/or
geQTLs remains unclear, at least in cattle.
Knowledge of large mammal regulatory mutations is

limited mainly to humans, where there have been mul-
tiple studies reporting on expression QTLs [9, 11, 12]. In
this study, we aim to identify bovine cis splicing QTLs
using the abundances of genes, exons and introns
estimated from RNA sequence data from hundreds of
animals and multiple tissues along with imputed whole
genome sequences. We examined the extent to which
sQTLs can be detected in white blood cells, milk cells,
liver and muscle transcriptomes and the extent to which

sQTLs overlap with conventional QTL associated with
complex traits. To further characterise the features of
sQTLs, we used the counts of genes and exons to map
another two types of cis expression QTLs: eeQTLs and
geQTLs, and then analysed their relationships with
sQTLs in different tissues.

Results
Data quality
In total, we analysed 378 transcriptomes of 19 tissue types
from 214 cattle generated from four experiments covering
major dairy and beef cattle breeds (Table 1, Fig. 1a and
Additional file 1: Supplementary Methods). Following rec-
ommendations from Mazzoni and Kadarmideen 2016 [13]
RNA sequence quality was assessed and was detailed in
Additional file 1: Supplementary Methods. Based on the
results produced by Qualimap 2 [14], no significant events
of RNA degradation were observed in all studied tissues
(Additional file 2: Figure S1). Some potential read cover-
age bias towards the 5′ end of genes in the mammary
gland tissue, milk and blood cells was observed
(Additional file 2: Figure S1). Also, according to Qualimap 2
[14], on average, 60.3% of reads were mapped to exonic re-
gions of the bovine reference genome (UMD3.1), 15.4% of
reads were mapped to intronic regions and 24.4% were
mapped to integenic regions (Additional file 3: Table S1).
Splicing junction annotation and saturation were esti-
mated using RSeQC [15]. As a small demonstration,
no significant difference was observed in the anno-
tated splicing junction events in the bovine reference
genome (UMD3.1), using different RNA-seq alignment
software including HISAT2 [16], STAR [17] and
TopHat2 [18] (Additional file 4: Table S2). Although
HISAT2 and STAR outperformed TopHat2 for novel
splicing junction events (do not exist in the current
bovine UMD3.1 genome). Also, using a splicing junction
saturation analysis for all tissues we observed saturated
coverage for the known splicing junctions (Additional file 2:
Figure S2), though there appeared to be more potential for
splicing junction discovery for the novel category.
Animals with white blood cell RNA-seq data were

evaluated for the consistency between imputed geno-
types from the 1000 bull genomes project [19] and RNA
sequence genotypes as predicted from the RNA se-
quence data using samtools [20]. On average, the con-
cordance between imputed sequence genotypes and
RNA sequence genotypes was 0.943 (Additional file 2:
Figure S3), which was consistent with the average imput-
ation accuracy (0.926) of the 1000 bull genomes project
[21]. The comparison of the genotypes was detailed in
Additional file 1: Supplementary Methods.
Overall, samples from the same or similar tissues clus-

tered together rather than clustering by experiments,
based on exon expression levels (Fig. 1a). This was
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supported by further analyses of the clusters where
ellipses, drawn based on tissue types, were clearly
separated (Additional file 2: Figure S4a, c, e), whereas
ellipses drawn based on different experiments over-
lapped (Additional file 2: Figure S4b, d, f ), at the con-
fidence interval = 0.95 [22]. Consistent with previous

reports [23], milk cells and mammary gland transcrip-
tomes were closely related.

Differential splicing between tissues and breeds
The detection of splicing events in this study was based
on the observed overlap of results from analyses of both

Table 1 Summary of experiments, data and analyses

Tissue splicing Breed splicing sQTLs Experiment Tissue type Sample No. Breed Individual No.

✓ I 18 variousa 54 Holstein 1

✓ II Milk cells & mammary 12 Holstein 6

✓ ✓ III White blood cells 105 Holstein 105b

✓ ✓ ✓ III Milk cells 131 Holstein & Jersey 105b & 26

✓ ✓ IV Liver 35 Angus 35

✓ ✓ IV Muscle 41 Angus 41

Tissue splicing: variation in differential splicing associated with tissue types estimated using RNA sequence data from all experiments. Breed splicing: variation in
differential splicing associated with Holstein and Jersey breeds estimated using RNA sequence data of milk cells from experiment III. sQTLs: cis splicing
quantitative trait loci, sQTLs estimated using RNA sequence data and imputed whole genome and from experiment III and IV. Data from experiment III and IV
were also used to estimate exon expression eeQTLs and gene expression geQTLs
a18 tissues from [41]. b The same 105 Holstein cattle, each of which had both white blood and milk cell transcriptomic data

ba

Fig. 1 a Sample principal components clustering based on exon expression. Circles on the plot were ellipses drawn based on tissue types at the
confidence interval = 0.95. Tissue types with which the non-overlapping ellipses were drawn were emphasised with underscored text labelling.
Ellipses that were drawn based on experiments can be found in Additional file 2: Figure S4. b The significant splicing events between breeds and
between genotypes (cis splicing quantitative trait loci, sQTLs) for CSN3 in the milk cell transcriptome. In the upper panel, from left to right: the 1st
pair of bars are the least square means of normalised expression level of the gene (ENSBTAG00000039787) in Holstein and Jersey breeds; the 2nd
pair of bars are the normalised expression level of the 5th exon (Chr6:87392578–87392750) in Holstein and Jersey breeds; the 3rd pair of bars are
the normalised inclusion ratio of the 5th exon in Holstein and Jersey breeds; and 4th pair of bars is the frequency of the B allele of the sQTL
(Chr6:87392580) for CSN3 in Holstein and Jersey breeds. The standard errors bars are indicated. In the lower panel, from left to right: the 1st bar is
the effects (signed t values, b/se) of the sQTL (Chr6:87392580) B allele on the normalised expression of the gene; the 2nd bar is the sQTL B allele
effect on the normalised expression of the 5th exon; and the 3rd bar was the sQTL B allele effects on the normalised inclusion ratio of the
5th exon
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the exons and introns. We primarily defined a differen-
tially spliced gene as a gene which contained exons
whose inclusion ratios (exon expression divided by gene
expression) were significantly associated with tissue or
breed (FDR < 0.1). To verify the significantly spliced
exons, we imposed a requirement that at least one adja-
cent intron had an excision ratio [9, 24] that was also
significantly (FDR < 0.1) associated with tissue or breed
(See methods). The FDR threshold of the observed over-
lapping splicing events was considered as approximately
0.01 by combining the FDR thresholds from exon and
intron analyses (0.1 × 0.1). The overlaps of genes display-
ing differential splicing from exon and intron analyses
were shown and examined in 2 × 2 tables by Chi-square
tests (Additional file 5: Table S3). The number and pro-
portion of overlaps for exon and intron analyses were
also shown in the Additional file 5: Table S3. Overall,
the overlap of the results from exon and intron analyses
was small but significantly more than expected by ran-
dom chance.
Using data from all experiments (Table 1), there were

8657 genes in which at least one exon had the variation
in splicing associated with differences between tissue
types. A list of these genes with the significances of dif-
ferential splicing for the exons and introns was shown in
Additional file 6: Table S4. The top 10% of these signifi-
cantly differentially spliced genes had a GO term enrich-
ment (FDR < 0.01) of ‘regulation of cellular process’,
suggesting very general roles of these genes in cell func-
tion. There were 148 genes with significant differential
splicing events in the milk cell transcriptome between
breeds (Table 1, Additional file 7: Table S5). While these
genes did not show any significant GO term enrich-
ments, they included the milk protein gene CSN3 [25,
26], where the 5th exon (Chr6:87392578–87392750) was
more commonly included in the transcript in Holstein
cattle than in Jersey cattle (Fig. 1b).

cis splicing quantitative trait loci (sQTLs)
The mapping of sQTLs was based on data from 312
transcriptomes generated from experiments III and IV,
including white blood cells, milk cells, liver and muscle
tissues (Table 1). In total 207 individuals had imputed
whole genome sequence data and in experiment III, 105
genotyped cattle had both white blood and milk cell
transcriptome data (Table 1). Similar to differential spli-
cing analyses described above, a cis-acting sQTL was de-
fined as a SNP significantly (FDR < 0.1) associated with
the variation in the inclusion ratio of the exon (up to
1 Mb away) and significantly (FDR < 0.1) associated with
the variation in at least one adjacent introns’ excision ra-
tio [9, 24]. When analysed separately, the overlap be-
tween sQTLs found by exon analyses and sQTLs found
by intron analyses were small but significantly more than

expected by random chance (Additional file 5: Table S3).
After requiring that the variation in the inclusion and
excision ratios for adjacent exons and introns both be
associated with the same SNP, 138,796 sQTLs were
called in the white blood cells, 28,907 sQTLs were called
in the milk cells, 11,544 sQTLs were called in the liver
tissue and 5783 sQTLs were called the muscle tissue
(Fig. 2, Additional file 5: Table S3 and Additional file 8:
Table S6).
The significant sQTLs in white blood and milk cells

were mapped to 929 and 283 genes, respectively
(Table 2). Many SNPs were significant for sQTLs due to
linkage disequilibrium between SNPs close to the same
gene. The results do not imply many sQTLs per gene.
In the milk cell transcriptome, the fifth exon of CSN3

(Chr6:87392578–87392750), which as described above
was differentially spliced in Holstein and Jersey cattle (Fig.
1b), and was strongly associated with an sQTL
(Chr6:87392580, p = 5.0e-07, Additional file 8: Table S6).
This sQTL is physically located within the 5th exon of
CSN3. Also, the B allele of this sQTL increased the expres-
sion and inclusion ratio of the 5th exon and had a higher
allele frequency among Holstein cattle than Jersey cattle
(0.79 vs 0.02). This predicted that the expression and inclu-
sion ratio of the 5th exon would be significantly higher in
the Holstein cattle than Jersey cattle, which was in line with
the observations in Fig. 1b. In addition, this sQTL was also
predicted to be a splice site (‘splice_region_variant’) by En-
semble [27] and NGS-SNP software [28]. Much smaller
numbers of significant sQTLs were detected in liver
(11,544 SNPs) and muscle (5783 SNPs) (Fig. 2c, d). This
was probably due to the smaller sample size (Table 1) and
lower sequence depth of liver and muscle from experi-
ment IV (Additional file 1: Supplementary Methods) than
that of white blood and milk cells from the experiment III
(Fig. 2a, b, Table 2).

Comparing sQTLs with exon expression eeQTLs and gene
expression geQTLs
Many more significant eeQTLs than sQTLs were de-
tected in all tissues studied (Table 2). In white blood and
milk cells, the number of geQTL was smaller than the
number of significant sQTLs in white blood and milk
cells (Table 2).
Figure 3a showed that sQTLs were a median distance

of about 200 kb from the transcription start site (TSS)
and were slightly closer to the TSS than eeQTLs and
geQTLs. All three classes of expression QTLs had a
lower percentage of intergenic SNPs and a higher per-
centage of intronic and coding SNPs, including splice
sites than the same categories across all SNPs analysed
(Fig. 3b). Specifically, sQTLs had the highest percentage
of intronic SNPs, compared to eeQTLs and geQTLs.
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However, no consistent ranking of concentrations of
‘Splice’ SNP category for sQTLs, eeQTLs and geQTLs
were observed in different tissues (Fig. 3b).

Shared genetic influences between cis QTL types
Within each tissue, the sharing of SNPs between all three
expression QTL types was significantly more than ex-
pected by chance (Fig. 4). However, in the white blood
and milk cells, which had relatively large sample size (n >
=105, Table 1), the largest absolute amount of SNP sharing
appeared to be between sQTLs and eeQTLs (Fig. 4). This
was followed by the amount of SNP sharing between
eeQTLs and geQTLs (Fig. 4a, b). In liver and muscle tis-
sue which had relatively small sample size (n < = 41) and
low sequencing depth, the largest absolute amount of SNP
sharing was between eeQTLs and geQTLs, followed by
the amount of SNP sharing between sQTLs and eeQTLs
(Fig. 4c, d).
To further examine the relationship between sQTLs

and eeQTLs, a two by two table of sQTL and eeQTL
counts in white blood and milk cells, which had compar-
able sample sizes, was created (Additional file 9: Table S7).
This suggested that when an sQTL was found, it was
highly likely to be also identified as an eeQTL. For ex-
ample, of 138,796 sQTLs found in the white blood cells,

a b

c d

Fig. 2 Manhattan plots of significant cis splicing quantitative trait loci (sQTLs, approximate FDR < 0.01 and within 1 Mb of the exon) in white
blood cells (a), milk cells (b), liver tissue (c) and muscle tissue (d). A significant sQTLs was defined as a SNP associated with the variation in the
exon inclusion ratio and also variation in at least one excision of an adjacent intron at the same significance level. The input SNPs had
significance p < 0.0001. sQTLs in all tissues with their associated genes and significance are given in Additional file 8: Table S6

Table 2 Summary of expression QTLs detected

cis QTL type Tissue Expression QTL number Gene number

sQTLs White blood cells 138,796 929

Milk cells 28,907 283

Liver 11,544 49

Muscle 5783 76

eeQTLs White blood cells 802,685 6446

Milk cells 100,844 2102

Liver 37,322 346

Muscle 64,675 1267

geQTLs White blood cells 96,530 842

Milk cells 4099 99

Liver 39,306 419

Muscle 57,054 1150

cis sQTLs: significant SNPs within ±1 Mb of the exon, associated with the
variation in its inclusion ratio and also associated with the variations in the
excision of an adjacent intron at the same significance level. Where the FDR
threshold was approximated to 0.01 by combining FDR thresholds used in
exon (FDR < 0.1) and intron (FDR < 0.1) analyses. cis eeQTLs: significant
(FDR < 0.01) SNPs within ±1 Mb of the exon, associated with the variation in
its abundance. cis geQTLs: significant (FDR < 0.01) SNPs within ±1 Mb of the
gene associated with the variation in its abundance
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109,155 of them were also blood eeQTLs, but only 21,766
of them were identified as blood geQTLs. Again, for these
138,796 blood sQTLs, although only 18,005 and 25,932 of
them were milk sQTLs and eeQTLs, respectively, an even
smaller number, 720, of them were identified as milk cell
geQTLs.

Shared genetic influences between tissues
Within each type of expression QTL between different
tissues, the majority of the significant expression QTL
sharing was observed between white blood and milk
cells and between liver and muscle (Fig. 5a). This is not
unexpected since most of the white blood and milk cells
came from the same lactating cows and the muscle and
liver from different growing Angus bulls. Nevertheless,
there was significant sharing of eeQTLs between milk cells
and liver and between milk cells and muscle (Fig. 5a). The
largest amount of across-tissue expression QTL sharing

was observed in eeQTLs, followed by sQTLs and geQTLs
(Fig. 5). Where a SNP was significantly associated with vari-
ation in expression in two tissues, the direction of effect
was usually the same in both tissues (Additional file 2:
Figure S5). The correlation between effects of expression
QTLs for white blood cells and milk cells (Additional file 2:
Figure S5a, c, e) was stronger than that between liver and
muscle (Additional file 2: Figure S5b, d, f). The sharing at
the SNP level between white blood cells and milk cells and
between liver and muscle were also evident at the exon and
gene level (Fig. 5b).
The expression QTL sharing between tissues was further

examined for all types of expression QTL by using a less
stringent p-value (p < 0.05) to test their effect (Additional
file 2: Figure S6). This showed that the expression QTL
sharing between tissues was stronger for sQTLs and
eeQTLs (Additional file 2: Figure S6a–d), than the sharing
for geQTLs (Additional file 2: Figure S6e–f). Again, more

b

a

Fig. 3 Features of cis splicing quantitative trait loci (sQTLs) compared to exon expression QTL (eeQTLs) and gene expression QTL (geQTLs). a The
distance between the transcription start site (TSS) and the expression QTLs. TSS information was downloaded from Ensembl (bovine reference
UMD3.1). b The proportion of expression QTLs annotated as splice, UTR, gene_end, synonymous, missense, intron, intergenic or other. SNP
annotations were based on Variant Effect Predictor. ‘Splice’ included all SNP annotations containing the word ‘splice’. ‘UTR’ included 3′ and 5′
untranslated region. ‘Gene_end’ included upstream and downstream
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expression QTL sharing was found between white blood
cells and milk cells than between liver and muscle. For in-
stance, 75% of eeQTLs significant in the white blood cells at
p < 0.002 were significant in milk cells at p < 0.05 (Additional
file 2: Figure S6c).
The correlation between estimated SNP effects on

gene splicing and expression in different tissues are
lower in magnitude than the true correlation between
SNP effects, because the effects are estimated with error
and these errors are independent between tissues. To es-
timate the true correlation, we computed the genetic
correlation between SNP effects in two different tissues
by GREML16 using a local genomic relationship matrix
or LGRM built from SNPs from 1 Mb surrounding the
exon or gene (Fig. 5c). LGRM differs from a conven-
tional GRM by focusing on the local SNPs (in this case
within 1 Mb distance) with potential cis genetic associa-
tions with the variation in the splicing or expression
level of the exon or gene. This was in agreement with

the definition of the cis expression QTLs which were
also within 1 Mb distance to the exon or gene in the
current study. Out of 1145 analysed sQTLs (inclusion
ratio of the exon), eeQTLs (expression level of the exon)
and geQTLs (expression level of the gene) between tis-
sues, 598 had genetic correlations significantly (p < 0.05)
different from 0, out of which 561 had genetic correla-
tions insignificantly (p > = 0.05) different from 1. That is,
in many cases, the variation in exon expression in white
blood cells and milk cells was associated with the same
cis polymorphism (s).
Often both splicing events and exon expression within a

gene were highly correlated between white blood and milk
cells, for instance DDX19B, CTSD and EFF1A1 (Fig. 5c).
In liver and muscle, exons from HLA-DQA1 encoding
major histocompatibility complexes [29] also showed sig-
nificant genetic correlations between tissues based on
both exon expression and splicing. There were more cases
of eeQTLs than sQTLs and geQTLs and so there were

a

b

dc

Fig. 4 Overlaps of different expression QTL types for white blood cells (a), milk cells (b), liver (c) and muscle (d). Within each panel, y-axis was the
number of significant expression QTLs; from left to right as guided by the green dots, the 1st bar indicated the number of significant cis splicing
QTL (sQTLs); the 2nd bar indicated the number of significant exon expression QTL (eeQTLs); the 3rd bar indicated the number of significant gene
expression QTL (geQTLs); the 4th bar indicated the number of SNPs identified as both geQTL and eeQTL; the 5th bar indicated the number of
SNPs identified as both geQTL and sQTL; the 6th bar indicated the number of SNPs identified as both eeQTL and sQTL; and the 7th bar indicated
the number of SNPs identified as geQTL and eeQTL and sQTL. The red colour indicates that the overlap between categories of expression QTLs
was significantly more than expected by random chance based on Fisher’s exact test
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more estimates of genetic correlations between white
blood and milk cells in Fig. 5c. The genetic correlations be-
tween eeQTLs in white blood and milk cells show a range
from + 1 to − 1 although most are close to + 1. Exons with
negative genetic correlations of expression between white
blood cells and milk cells were mapped to SART1 [29], a
post-transcriptional regulator in epithelial tissues and
TTC4 with potential to mediate protein-protein interac-
tions [29]. These negative genetic correlations imply that
there are mutations that increase the expression of the exon

in milk cells but decrease it in white blood cells. An exon
within S100A10, a cell cycle progress regulator, showed
negative genetic correlation of expression between liver and
muscle.
Genetic correlations between exon expression levels in

two tissues can be different between exons within the same
gene. For example, only the 2nd exon (Chr5:93942,055–
93942,195) of MGST1 (which is associated with the vari-
ation in dairy cattle milk fat yield [26, 30]) had a significant
genetic correlation of expression between white blood cells

a

b

c

Fig. 5 Shared genetic influence on the splicing, exon and gene expression between tissues. Blood refers to white blood cells and milk refers to
milk cells. a Each matrix shows the pair wise comparison of the numbers of significant SNP and the total number of significant SNPs detected for
each analysis shown in parentheses. The significance of each overlap was tested by Fisher’ exact test, given the total number of SNP analysed
and the total number of significant SNP, the result of which is represented by the colour of that position in the matrix. b Each matrix shows the
pair wise comparison of the numbers of exon/gene with significant associations and the total number of exon/gene detected with significant
associations for each analysis shown in parentheses. In panel (b), the numbers were either exon numbers for sQTLs (splicing quantitative trait loci)
and eeQTLs (exon expression quantitative trait loci) or gene numbers for geQTLs (gene expression quantitative trait loci. c Between tissue genetic
correlations of either the inclusion ratio of the exons, the expression of the exons or the expression of the genes that had significant sharing of
expression QTLs in panel (a). Dot size and transparency were negatively correlated with p value of the significance of the genetic correlation
being different from 0. The error bars of the genetic correlation were shown in vertical lines of each dot. Some genes of interests
were highlighted
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and milk cells (Fig. 5c). This was largely due to a few
eeQTLs with relatively highly significant effects (p < 1e-10)
on the expression levels of the 2nd exon in the milk cells
and a similar but less significant effect (p < 1e-4) on the 2nd
exon expression in white blood cells (Additional file 2: Fig-
ure S7). For exons 1 and 3, the significances of the eeQTLs
in both milk and white blood cells were > 1e-3. For exon 4,
the significance of the majority of eeQTLs in both milk and
white blood cells were > 1e-5 (Additional file 2: Figure S7).

Multi-transcriptome meta-analysis to increase power of
expression QTLs detection
Based on shared genetic effects of all types of expression
QTLs across tissues, a multi-transcriptome meta-analysis
was introduced to increase the power to detect sQTLs,
eeQTLs and geQTLs (Fig. 6, Table 3). For sQTLs, eeQTLs
and geQTLs that had significant effects (p < 0.05) in all of
white blood cells, milk cells and muscle transcriptomes, their
standardised effects (signed t values) in each transcriptome
were simply combined and tested for significance against a
χ2 distribution with 1 degree of freedom. Overall, the
multi-transcriptome meta-analysis based on summary statis-
tics substantially increased the power of expression QTLs
detection (Fig. 6). The significance of multi-transcriptome
expression QTLs was compared with their significance in
the liver transcriptome (Fig. 6, Table 3). For a criteria
where the expression QTLs had both multi-transcriptome
meta-analysis p < 1 × 10− 5 and liver transcriptome analysis
p < 0.05, all types of expression QTLs had significant over-
lap of the SNPs between the meta-analysis and the single
transcriptome analysis in liver. In fact most of the signifi-
cant sQTLs, eeQTLs and geQTLs detected by the
meta-analysis were also detected by the liver analysis but
at a much higher p-value (Table 3).

Overlap between expression QTLs and QTL for dairy and
beef traits
We examined whether cis sQTLs, eeQTLs and geQTLs
were significantly enriched amongst SNPs associated with
economically important cattle traits. Pleiotropic SNPs sig-
nificantly (FDR < 0.01) associated with more than one of
24 dairy traits [31] and with more than one of 16 beef
traits [32] were tested for overlap with detected sQTLs,
eeQTLs and geQTLs (Fig. 7, Additional file 10: Table S8,
Additional file 11: Table S9). Overall, sQTLs, geQTLs and
eeQTLs identified in white blood and milk cells had
greater overlap with SNPs associated with dairy and beef
traits than sQTLs, geQTLs and eeQTLs identified in liver
and muscle (Fig. 7). sQTLs in white blood and milk cells
were significantly enriched for dairy cattle pleiotropic
SNPs, including SNPs from the CSN3 loci on chromo-
some 6 (Fig. 7a, b). eeQTLs in the white blood cells had
the largest absolute amount of SNPs overlapping with
dairy cattle pleiotropic SNPs (Fig. 7b) and was the only

expression QTL type with significant enrichment with
beef cattle pleiotropic SNPs (Fig. 7b). eeQTLs in milk cells
and liver also had significant enrichment for dairy cattle
pleiotropic SNPs (Fig. 7a). Of the geQTLs, only those
from white blood cells had a significant enrichment with
dairy cattle pleiotropic SNPs (Fig. 7a).
An example of an eeQTL that overlaps a milk production

QTL is for MGST1, where effects of milk cell eeQTLs were
highly significantly associated with their effects on milk fat
yield [31] (Fig. 7c). Specifically, some expression QTLs with
strong associations with the variation in milk cell expression
levels of exon 2 (Chr5:93942195–93942055) and exon 3
(Chr5: 93939244–93939150) of MGST1 (Additional file 2:
Figure S7) also had strong associations with the variation in
milk fat yield (Fig. 7c). Littlejohn et al. [30] identified SNPs
associated with milk yield percentage andMGST1 expression
in the mammary gland, including 17 putative causal variants.
Most SNPs identified by Littlejohn et al. originated from
whole genome sequence and so were not present on the
high density SNP chip data we analysed for dairy cattle
pleiotropy [31] (Additional file 12: Table S10). However,
53 significant milk cell eeQTLs identified by the current
study overlapped with the top 200 SNPs from Littlejohn
et al. [30] (Additional file 12: Table S10), which was sig-
nificantly more than expected by random chance. The 53
eeQTLs included the SNP suggested as a putative causal
candidate (Chr5:93945738) [30], which was significantly
associated with the variation in expression level of the
third exon (Chr5:93939150–93939244) of MGST1 in milk
cells (Additional file 12: Table S10). No milk cell geQTLs
was called for MGST1, as all of them had weak effects on
the whole MGST1 gene expression in milk cells, resulting
in a large FDR (Additional file 12: Table S10).

Discussion
We performed a systematic analysis of cis expression
QTLs (<=1 Mb) in multiple tissues centred around RNA
splicing events, using a large number of RNA and whole
genome sequence data from an important domestic ani-
mal species. Overall, differential splicing between tissues
is ubiquitous and between breeds is common. Differen-
tial splicing between individuals due to SNPs (sQTLs)
occurs for many genes and is enriched with cattle com-
plex trait QTL. Within each tissue, all cis expression
QTLs types showed significant overlap. Most geQTLs
and sQTLs were detected as eeQTLs indicating that the
exon expression can be altered by changing the expres-
sion of the whole gene or by changing the splicing.
However, an sQTL was likely to be an eeQTLs and, to a
lesser extent, geQTLs. Between tissues, while all QTLs
types showed significant overlap between white blood
cells and milk cells and between liver and muscle, the
strongest cross-tissue sharing appeared to be at the exon
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level (sQTLs and eeQTLs). This is supported by many
significant tissue pair genetic correlations. Such
cross-tissue expression QTL sharing allowed the
multi-transcriptome meta-analysis of expression QTL ef-
fects which substantially increases power to detect sig-
nificant expression QTLs.
The majority of significant sQTLs were detected from

white blood and milk cells (Fig. 2a, b) which also over-
lapped with SNP chip based complex trait QTL (Fig. 7),
compared to sQTLs detected from liver and muscle.
This is probably due to the larger sample size for white
blood and milk cells than for liver and muscle (Table 1)
and the higher sequencing depth (Additional file 1:

Supplementary Methods). One of the significant white
blood cell sQTLs (Chr29:44585782) for CAPN1 is also a
SNP chip based significant pleiotropic SNP for 16 beef
cattle traits (Additional file 11: Table S9). This SNP is as-
sociated with shear force in multiple taurine breeds [33].
In the milk cell transcriptome, a significant sQTL

(Chr6:87392580, Fig. 2a) with predicted splicing function
[27] within the fifth exon (Chr6:87392578–87392750) of
CSN3 is strongly associated with differential splicing
between Holstein and Jerseys (Fig. 1b). Variants within
CSN3 have long been found to be associated with milk
traits [34, 35] but only recently have putative causal
variants been prioritised [25]. The milk cell sQTL

a

b

c

Fig. 6 Multi-transcriptome meta-analysis (blood, milk and muscle) for cis splicing sQTLs (a), exon expression eeQTLs (b) and gene expression
geQTLs (c). In each panel, the significance of multi-transcriptome effects were tested against a χ2 with 1 degree of freedom for combined
expression QTLs effects (dots in blue and orange). These multi-transcriptome effects were shown together with the single-transcriptome effects in
liver of the same expression QTLs (dots in green)
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Chr6:87392580 had perfect linkage disequilibrium (r = 1)
with the variant Chr6:87390576 which has been sug-
gested as a putative causal variant for effects on milk
protein yield and percentage [25, 26]. Given it is at a
splicing site, Chr6:87392580 could be a putative causal
variant contributing to milk production in dairy cattle by
altering exon splicing.
Compared to identified bovine cis geQTLs, cis sQTLs

tended to be closer to the transcription starting site
(TSS) and had highest concentrations of intronic SNPs
(Fig. 3). In humans, cis sQTLs [9, 36] were more
enriched for intron SNPs than other types of QTLs.
However, reports of the distance between human QTLs
and TSS appear to be inconsistent. While no difference
in enrichment of SNPs near TSS between sQTLs and
geQTLs were found by the human GTEx project [8], a
more recent study [9] found that human geQTLs were
more enriched near TSS than sQTLs. Our results appear
to stand in between the results of GTEx project and the
later findings from Li et al. [9], where cattle sQTLs were
slightly closer to TSS than geQTLs. However, this differ-
ence is not significant in all tissues (Fig. 3a). On the
other hand, significant overlap between sQTLs and
geQTLs was found in this study (Fig. 4) and by the hu-
man GTEx project [8]. However, Li et al. [9] found that
human cis sQTLs were independent of geQTLs. These
inconsistent observations are likely to be due to a num-
ber of differences between these studies, including defin-
ition of sQTLs, choice of tissues and populations and
computational procedures. Also, these inconsistent ob-
servations also suggest that we are still at the very early
stage of understanding of sQTLs features.

Within each studied bovine tissue, the largest amount
of overlap between expression QTL types was found ei-
ther between exon expression eeQTLs and sQTLs or be-
tween eeQTLs and geQTLs (Fig. 4). Further, the largest
amount of enrichments of cattle pleiotropic SNPs was
found for eeQTLs, followed by sQTLs and geQTLs. The
white blood cell eeQTLs showed particularly strong en-
richments of pleiotropic SNPs for dairy and beef cattle.
In a large scale human blood cell expression QTLs study
[12], eeQTLs also showed the strongest enrichments of
GWAS variants, followed by sQTLs and geQTLs.
Thus, focusing on exon-level QTLs, including eeQTLs
and sQTLs, could increase the chance of finding
regulatory variants for complex traits, as proposed by
Guan et al. [37].
A hypothesis to explain these results is that mutations

in regulatory DNA may increase the expression of one
or more transcripts from a gene. If they increase expres-
sion of one transcript then they may be detected as an
eeQTL for the exons in that transcript, as a sQTL for
exons spliced out of that transcript or as a geQTL if this
transcript forms a large part of the total transcription
from the gene. Thus, there is expected to be overlap be-
tween eeQTLs, geQTLs and sQTLs, but at least sQTLs
and eeQTLs should overlap and this is what we found
(Fig. 4, Additional file 9: Table S7). It appears that
eeQTLs detect the largest proportion of these regulatory
polymorphisms provided sequencing depth is high.
In humans, significant cross-tissue sharing of sQTLs

and geQTLs was reported [8, 38]. In our study of cattle,
the strongest evidence of expression QTL sharing ap-
peared to be at the exon level. This included sQTLs and
eeQTLs sharing between white blood and milk cells and
between liver and muscle (Fig. 5). When extending the
examination of expression QTLs to include those with
p < 0.05 (Additional file 2: Figure S6), the exon-level
expression QTLs cross-tissue sharing is also the greatest.
We highlighted a few examples of cross-tissue shared

eeQTLs along with the related exons, of which the gen-
etic correlations of the expression and splicing in differ-
ent tissues were significant (Fig. 5c). One of these
eeQTLs is located within the milk fat yield [26, 30] QTL
MGST1 (Fig. 5c, Additional file 2: Figure S7). For
eeQTLs associated with MGST1, a strong positive rela-
tionship of SNP effects was observed between milk cell
eeQTLs and dairy milk fat yield SNPs (Fig. 7c). Further-
more, the identified milk cell eeQTL overlaps with previ-
ously identified putative causal variants [30] within
MGST1 for milk fat percentage, thus supporting their
candidacy. This overlap further supports the top
candidate SNP Chr5:93945738 with significant effects on
the abundance of the third exon of MGST1
(Additional file 12: Table S10) for milk fat traits. Overall,
our analysis demonstrates the significant potential of

Table 3 The overlap between the multi-transcriptome meta-
analysis of three tissues and the single transcriptome results of
liver

sQTLs Meta-analysis Overlap p

+ –

p < 2e-16Liver + 768,650 2,842,552

– 139,551 4,301,536

eeQTLs Meta-analysis Overlap p

+ –

p < 2e-16Liver + 1,052,041 3,186,839

– 140,033 3,575,617

geQTLs Meta-analysis Overlap p

+ –

p < 2e-16Liver + 178,093 473,232

– 43,578 6,663,855

sQTLs splicing quantitative trait loci, eeQTLs exon expression QTLs, geQTLs
gene expression QTLs. Liver: QTLs with single-transcriptome effects p < 0.05 in
the liver. Meta-analysis: QTLs with χ2 p < 1e-05 for the meta-analysis of white
blood cells, milk cells and muscle. ‘+’ indicates the number of SNPs met the
significance criteria while ‘–’ indicates number of SNPs failed to meet the
significance criteria
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using detailed exon analysis to aid in identification of
putative causative mutations.
Based on the sharing of expression QTLs between

tissues, a multi-transcriptome meta-analysis which
simply combined expression QTL effects to substan-
tially increase the power (Fig. 6) was introduced.
Using this approach, combined expression QTL ef-
fects of white blood cells, milk cells and muscle were
validated in the liver (Table 3). This also demon-
strated the significant extent of QTL sharing across
tissues. Previously, Flutre et al. [38] combined data
from human fibroblasts, lymphoblastoid cell lines and
T-cells and found that up to 88% of geQTLs were
shared across tissues at FDR < 0.05 level. We checked the
existing results of the meta-analysis combining SNP ef-
fects from tissues of white blood cells, milk cells and
muscle at the FDR threshold < 0.05. We found that the
meta-analysis identified 585,406 geQTLs with FDR < 0.05

in more than one tissue. This accounted for 69.2% of total
geQTLs (845,431) that were called and common in the in-
dividual geQTL analysis of white blood cells, milk cells
and muscle. While there were differences in the selection
of tissue/cell type between our experiment and Flutre et
al., it is possible that the analysis proposed by Flutre et al.
with more complex procedures would be more powerful
than the meta-analysis introduced by us. Flutre et al.
applied principal components analysis to normalise their
gene expression data while we used quantile normalisation
which appeared to show good performances in combining
different transcriptome datasets [39]. However, our
meta-analysis is powerful for detecting and validating
many expression QTLs that have an effect in the same dir-
ection in multiple tissues, and is simpler to implement
than that of Flutre et al. A future systematic comparison
of different approaches of analysing expression QTL in
multiple tissues would be very useful.

a
c

b

Fig. 7 Significance of the overlap, based on the Fisher’s exact test, between pleiotropic QTL for a range of traits in cattle for dairy (a) and beef (b)
and cis splicing quantitative trait loci (sQTLs), exon expression QTL (eeQTLs) and gene expression QTL (geQTLs) in all tissues, where the colour
represents the significance of the overlap. Where blood refers to white blood cells and milk refers to milk cells. Significance of the overlap was
based on the Fisher’s exact test. Only chromosomes containing overlapping SNPs are shown. c An example of MGST1 showing the relationship
between QTL effects on exon expression in milk cells and their effects on dairy cattle milk fat yield
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As one of earliest investigations of large animal ex-
pression QTLs, our study has its potential limitations.
While the overlaps between sQTLs detected with exon
and intron analyses were significantly more than ex-
pected by random chance, the absolute amount of over-
lap was still small. Through all analyses, there were
always many more splicing events detected by intron
analyses implemented by leafcutter [10] than the exon
analysis (Additional file 5: Table S3). This appears to be
consistent with Li et al. [10], the authors of leafcutter.
They suggested that intron-centred analyses can be both
more sensitive (lower proportion of false negatives) and
more accurate (lower proportion of false positives) than
the exon based splicing mapping methods, such as
Altrans [40].
We found that the strongest sharing of expression

QTLs was either between white blood and milk cells or
between liver and muscle tissues, at the threshold of
FDR < 0.01 (Fig. 5). The white blood and milk cells sam-
pled from the same Holstein and/or Jersey cattle of ex-
periment III had a larger sample size and higher read
coverage, compared to the liver and muscle tissues sam-
pled from different Angus bulls of experiment IV. The
reduced expression QTL sharing detected between, e.g.,
muscle and milk cells, could be due to differences in the
tissue, the physiological state of the cattle or the breed.
However, it can be also due to different power in the milk
cells, liver and muscle datasets compared to the white
blood cell data. Nevertheless, in the multi-transcriptome
meta-analysis where expression QTLs with low threshold
were examined (p < 0.05), the combined effects of all types
of expression QTLs of the three tissues from different ex-
periments were highly significant (Fig. 6). Many of these
expression QTLs were also found in liver with p < 0.05
(Table 3). This evidence supports the proposal that the
sharing of cis expression QTL is extensive across tissues,
but these shared expression QTLs may not necessarily
have strong effects in each studied tissue. In the latest hu-
man expression QTLs mapping study (GTEx consortium)
where RNA seq data of 44 tissues from up to 450 individ-
uals were analysed, cis expression QTL tended to be either
shared across most tissues or specific to a small subset of
tissues [11]. As sample numbers for each tissue increased,
GTEx consortium identified more tissue specific expres-
sion QTLs [11]. Future studies with significantly increased
power and selection of cattle tissues and breeds may up-
date our current results.
Another potential limitation of our study is the use of

imputed sequence data, which may introduce imputation
errors that lead to inaccurate identification or exclusion
of expression QTLs. However, the average imputation
accuracy of the 1000 bull genome project data used in
this study was high (0.926) [21] and there was a good
consistency between the imputed sequence genotypes

and RNA sequence genotypes (average concordance =
0.943, Additional File 2: Figure S3). Stringent thresholds
were also imposed to control the false discovery rate of
expression QTLs mapping (either FDR < 0.01 or FDR ap-
proximately < 0.01 for sQTLs). In the current study, we
did not consider the case where a haplotype can be po-
tentially associated with expression phenotypes. While a
haplotype analysis can be informative, it would require a
very large sample size to achieve reliable results due to
testing a large number of combinations of haplotype
blocks. In a human study where over 2000 individuals
were analysed, expression QTLs conditioning on expres-
sion levels of transcription factor genes were reported
[12]. Finally, our results obtained from genome-wide asso-
ciations do not necessarily contain causal relationships.
However, our findings are important for prioritising in-
formative SNP candidates for future validation of causal
relationships.

Conclusions
We found that eeQTLs overlapped with both geQTLs,
due to polymorphisms affecting the level of expression of
the whole gene, and with sQTLs, due to polymorphisms
affecting the exon usage within the gene. sQTLs tended to
be closer to the transcription start sites more often located
in introns than geQTLs. We found the largest number of
sQTLs in white blood cells probably because the power to
find them was greatest in this dataset. However, many of
the sQTLs found in other tissues were also detected in
blood cells and many sQTLs found in blood could be de-
tected in other tissues at higher p-values. The genetic cor-
relation between expression QTLs in different tissues was
often indistinguishable from 1.0 indicating that many ex-
pression QTLs operate in a similar way across tissues.
Consequently, combining results from several tissues
using the multi-transcriptome meta-analysis increased
power to detect all three types of expression QTLs. The
potential of exon-level QTLs information was demon-
strated by the identification of several strong candidates of
putative causal mutations for complex traits: sQTL
Chr6:87392580 within CSN3 for milk production and
eeQTL Chr5:93945738 within MGST1 for milk fat yield.

Methods
Sample collection
For Experiment I, the sampling of 18 tissues from one lac-
tating Holstein cow followed procedures described by
Chamberlain et al. [41]. For Experiment II and III, the
sampling and processing of all tissues including white
blood and milk cells is detailed in Additional file 1:
Supplementary Methods. Briefly, animals of Experiment II
and III were selected from Agriculture Victoria Research
dairy herd at Ellinbank, Victoria, Australia. In Experiment
II, milk and mammary tissue samples were taken from six
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Holstein cows. In the Experiment III, milk and blood sam-
ples were originally taken from 112 Holstein and 29 Jersey
cows, but only RNA sequence data of 105 Holstein and 26
Jersey with > 50 million reads for milk cells or > 25 million
reads for white blood cells and had aconcordant alignment
rate [18] > 80% were used. For Experiment IV, the sampling
of 41 semitendinosus muscle and 35 liver from Angus bulls
was previously described by [42, 43]. As recommended by
ENCODE guidelines (https://www.encodeproject.org/about/
experiment-guidelines/) biological replicates were favoured
over technical replicates for experiments II–IV. However
Chamberlain et al. [41] assessed technical replicates for
experiment I.

RNA seq data
For Experiment I, RNA extraction and sequencing
followed the procedures described by Chamberlain et al.
[41]. For Experiment II and III, the RNA extraction and
sequencing procedure is detailed in Additional file 1:
Supplementary Methods. For Experiment IV, RNA extrac-
tion and sequencing is previously described by Khansefid
et al. [43]. For all experiments sequence quality was
checked and were aligned to the Ensembl UMD3.1 bovine
genome assembly using TopHat2 [18]. The RNA sequence
data processing and quality checking are detailed in
Additional file 1: Supplementary Methods.

Whole genome seq data
Experiments III and IV had whole genome sequence ge-
notypes imputed from the SNP chip genotypes using
FImpute [44] based on the 1000 bull genomes project
[19]. The overall imputation accuracy of the most recent
genome sequence data ranged from 0.898 to 0.952 de-
pending on chromosomes [21]. Fifty thousand Illumina
genotypes were used for imputation for experiment III
with previous protocols [26, 45]. For experiment IV, 800
and 50 K Illumina genotypes were used with procedures
following [32]. SNPs were filtered for minor allele fre-
quency > 0.01 and resulted in 14,302,604 and 13,632,145
SNPs used in the analysis in experiment III and IV, re-
spectively. There were 10,242,837 SNPs shared between
experiment III and IV.

Gene/exon analysis
Gene count data were generated by Python package
HTSeq [46] using default settings. The exon count data
were generated by Bioconductor package featureCounts
[47] in R v3.3.2 [48]. The Ensembl based bovine genome
reference (UMD3.1) was used to define genes and exons.
Genes and exons with count per million > 0 in more
than 40% of RNA samples were used for all the follow-
ing analyses. This filtering allowed the analysis to focus
on exons or genes with relatively robust expression in
many RNA sequencing samples. The exon-based tissue

principal components analysis used DEseq2 based on
the 250 exons, the expression of which were most vari-
able across studied tissues [49]. The usage of 500 and
1000 exons with the most variable expression across tis-
sue samples were also tested. Consistent with [49], the
selection of different numbers of exons had little impact
on the clustering patterns (Additional file 2: Figure S4).
The significance of the clustering was determined using
ellipse method proposed by [22] and implemented in
ggplot2 [50]. The confidence interval was set to 0.95 to
which ellipses were drawn based on data categorised by
tissue types or by experiments. The separation of ellipses
indicated independence of categories of data. The
phenotype of exon inclusion was calculated as the exon
to gene expression ratio. The phenotype of intron exci-
sion was estimated using the publically available soft-
ware leafcutter [9, 10]. Briefly, leafcutter used RNA seq
BAM files as input and generated ratios of reads sup-
porting each alternatively excised intron as the intron
excision phenotype [10] (http://davidaknowles.github.io/
leafcutter/). Those exons and introns with ratio values <
0.001 were removed and the remaining ratio values were
transformed to log2 scale, then underwent exon/intron –
wise quantile normalisation and individual –wise zscore
standardisation [51].

Gene differential splicing
Both exon inclusions and intron excisions were analysed
and used in combination for gene differential splicing
for (1) the overall tissue effects and (2) the breed effects.
Primarily, differential splicing was defined for the gene
containing exons whose variation in inclusion ratios
were significantly (FDR < 0.1) associated with the tissue
or breed variable. To be called as significantly spliced
exons, they were required to have at least one adjacent
intron whose variation in excision ratios were also sig-
nificantly (FDR < 0.1) associated with the tissue or breed
variable. The tissue effects were analysed in a linear
mixed model in lme4 [52] in R as:

yijk ¼ bi þ x j þ tk þ e ð1Þ

Where y = exon inclusion or intron excision ratios,
bi = the animal random effects (i = 214), xj = the ex-
periments (j = 4), tk = tissue type (k = 19), e = random
residual term. The fitting of the animal random ef-
fects accounted for the fact that only one animal
was used in experiment I. The P values of F tests
were calculated using Satterthwaite approximation
implemented in lmerTest [53]. The breed effects for
the milk transcriptome data were analysed in a linear
model in R as:
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yl ¼ breedl þ e ð2Þ

Where y = exon inclusion or intron excision ratios in
the milk cell transcriptome, breedl= breeds (l = 2, Holstein
and Jersey). p values of exons/introns for the tissue effects in
Eq. (1) or the breed effects in Eq. (2) were used to calculate
the false discovery rates (FDR) using qvalue [54] in R. The
FDR threshold of such detected exon/intron group was con-
sidered as approximately 0.1× 0.1 = 0.01, as a combination of
FDR thresholds of exon and intron analyses to reflect our se-
lection criteria for significant splicing events. For genes
showing significant differential splicing for (1) the overall tis-
sue effects and (2) the breed effects as described above, en-
richments of biological pathway were tested using GOrilla
[55]. As many genes had differential splicing events associ-
ated with tissue differences, top 10% of the genes with sig-
nificant differential splicing were selected based on the
approximate FDR with combined FDR values of both exon
and intron analyses.

cis expression splicing QTLs
Only transcriptomic data of experiment III and IV were
used in sQTLs mapping. Similar to differential splicing
analysis described above, a significant (FDR < 0.01) cis
splicing QTLs was expected to satisfy two conditions
simultaneously: (1) a SNP, within or up to ±1 Mb away
from the exon, was significantly (FDR < 0.1) associated
with the variation in the exon inclusion ratio and (2) the
same SNP was significantly (FDR < 0.1) associated with
at least one event of the excision of the intron next to
the same exon at the same significance level. Both indi-
vidual exon inclusion and intron excision values were
used as phenotype to map associated QTLs with widely
used [8] Matrix eQTL [56] package in R. For each cell
type of the experiment III (white blood and milk cells)
and experiment IV (liver and muscle), SNPs ±1 Mb from
the exon or intron were tested for regressions with the
exon inclusion or intron excision phenotype. For milk
cell transcriptome, breed was fitted as a covariate.
To compare cis sQTLs with exon expression cis

eeQTLs and cis gene expression geQTLs, the expression
count data were normalised by voom [57] estimating
mean-variance relationship to calculate observation-level
weighted expression values. Normalised expression
values of exons and genes were used as phenotype to
map cis expression QTLs (within ±1 Mb) at FDR < 0.01
level as described above.

SNP annotation
The gene transcription start site coordinates were down-
loaded from Ensembl (http://www.ensembl.org) and the
absolute difference between the position of a SNP and
the transcription start site of the gene were calculated
for the SNP with significant cis effects. The SNP

functional categories were generated using predictions
from Ensembl Variant Effect Predictor [27] in conjunc-
tion with NGS-SNP [28]. All analysed SNPs were
assigned a functional category.

Dairy and beef cattle pleiotropic QTL
To test the significance of overlap between cis expres-
sion QTLs and SNPs associated with cattle phenotype,
meta-analyses of dairy and beef cattle pleiotropy were
performed using single-trait GWAS results from Xiang
et al. [31] and Bolormaa et al. [32]. HD 800 K SNP chip
genotypes were used for trait GWAS. Twenty-four dairy
cattle traits with matching phenotype in 9662 bulls and
cows and 16 beef cattle traits with animal numbers >
2000 were selected. Briefly, the multi-trait χ2 statistic for
the ith SNP was calculated based on its signed t values
generated from each single trait GWAS [32]:

χ2 ¼ t0iV −1ti ð3Þ
For dairy cattle, the meta-analysis was based on the

weighted SNP effects tw combining SNP effects calcu-
lated separately in bulls and cows. The tw accounting for
the phenotypic error differences between bulls and cows
[26] was calculated as:

tw ¼ Bw

sew
¼

Bbull

sebull2
þ Bcow

secow2
1

sebull2
þ 1
secow2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1
sebull2

þ 1
secow2

vuut
ð4Þ

Where the weighted SNP t value tw was the quotient
of the weighted SNP effects Bw and the weighted effect
error sew. Bbull and sebull were the SNP effects and error
obtained from single-trait GWAS in bulls and Bcow and
secow were the SNP effects and error of cows. Those
SNPs which had meta-analysis FDR < 0.01 were chosen
to be compared with cis expression QTLs. The lead SNP
loci were defined as ±1 Mb from the lead SNPs identi-
fied in the previous analysis [31, 32].

The significance of overlaps
The significance of overlaps were compared with the ex-
pected number using the Fisher’s exact test (p) imple-
mented in GeneOverlap [58] in R. This analysis required
four types of counts: the size of overlap between set A
(e.g., SNPs that were blood sQTLs) and set B (e.g., SNPs
that were milk sQTLs), the size of set A, the size of set
B and the size of background. The union number of
whole genome sequence SNPs with MAF > 0.01 in each
breed and the bovine high density chip SNPs were used
as the background. Where expression QTL categories
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from different breeds of dairy and beef cattle were tested
for overlap, the number of common SNPs between
breeds was used.

Genetic correlations using local genomic relationship
matrices
The cross-tissue sharing of SNPs were confirmed by bi-
variate GREML analysis using GCTA [59]. For an exon or
a gene of interest, its inclusion ratios or expression levels
in two different tissues were treated as two different
phenotype, tr1 and tr2. The SNPs within 1 Mb of this exon
or gene were used to make a local genomic relationship
matrix, i.e., LGRM, representing the local polygenic com-
ponent a with potential associations with the variation in
the splicing or expression level of the exon or gene. This
allowed linear mixed modelling of the local additive gen-
etic variances of tr1, varlg(tr1) and of tr2, varlg(tr2) and the
local additive genetic covariance between t1 and t2,
covlg(tr1, tr2) using GREML [59]. This approach agreed
with the definition of cis expression QTLs defined in this
study (also within 1 Mb distance to the exon or gene) and
allowed the estimation of genetic correlation

rlg ¼ covlg tr1; tr2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varlg tr1ð Þ varlg tr2ð Þp : ð5Þ

Genetic correlations were also tested for their signifi-
cance of being different from 0 or 1, by fixing the correl-
ation value to 0 and 1 using GCTA [59].

Validation by multi-transcriptome meta-analysis
The validation based on expression QTL effect com-
monality across tissues was conducted by comparing the
combined expression QTL effects from white blood cells
(experiment III), milk cells (experiment III) and muscle
(experiment IV) transcriptomes with their effects in the
liver transcriptome (experiment IV). The standardised
expression QTL effects, b/se, signed t values were calcu-
lated from single-transcriptome results of white blood
cells (t1), milk cells (t2) and muscle (t3). The significance
of multi-transcriptome effects of an expression QTL was
tested by χ2 distribution with 1 degree of freedom:

χ 1ð Þ
2 ¼

XN
n¼1

tnffiffiffiffi
N

p
" #2

ð6Þ

N = the number of studied tissues (N = 3 in this case)
where the original SNP t values were estimated. Pro-
vided the individual t-values followed a t-distribution
under the null hypothesis, the properties of the average t
value in the current study was a simple mathematical re-
sult which approximated the chi square distribution with
1 degree of freedom, the null hypothesis of which was
that the SNP does not have any significant associations

in any of the three tissue types. Previously, the concept
of meta-analysis combining SNP t values estimated from
different datasets has been also applied to analyse mul-
tiple quantitative phenotypic traits in large animals to in-
crease power (see [32, 60] and Eq. (3)). The expression
QTLs that participated in the validation analysis had
single-transcriptome effect p < 0.05 in each tissue and the
significance of the multi-transcriptome effects was defined
as p < 1e-05. Significant multi-transcriptome expression
QTLs were compared with the liver single-transcriptome
effects at p < 0.05 level. We chose to combine two tissues
which appeared to display strong power (white blood and
milk cells, experiment III) with the third tissue from a dif-
ferent experiment with relatively weak power (muscle, ex-
periment IV). The single tissue left to be compared with
was liver, a tissue which also appeared to show weak power
and was from experiment IV. These choices intended to
create enough differences for the meta-analysis to combine
the SNP effects and for the combined SNP effects to be
compared with the SNP effects in the single tissue.
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