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Abstract: Vesicular miRNA has emerged as a promising marker for various types of cancer, including
prostate cancer (PC). In the advanced stage of PC, the cancer-cell-derived small extracellular vesicles
(SEVs) may constitute a significant portion of circulating vesicles and may mediate a detectable
change in the plasma vesicular miRNA profile. However, SEVs secreted by small tumor in the
prostate gland constitute a tiny fraction of circulating vesicles and cause undetectable miRNA pattern
changes. Thus, the isolation and miRNA profiling of a specific prostate-derived fraction of SEVs can
improve the diagnostic potency of the methods based on vesicular miRNA analysis. Prostate-specific
membrane antigen (PSMA) was selected as a marker of prostate-derived SEVs. Super-paramagnetic
beads (SPMBs) were functionalized by PSMA-binding DNA aptamer (PSMA–Apt) via a click reaction.
The efficacy of SPMB–PSMA–Apt complex formation and PSMA(+)SEVs capture were assayed by
flow cytometry. miRNA was isolated from the total population of SEVs and PSMA(+)SEVs of PC
patients (n = 55) and healthy donors (n = 30). Four PC-related miRNAs (miR-145, miR-451a, miR-143,
and miR-221) were assayed by RT-PCR. The click chemistry allowed fixing DNA aptamers onto the
surface of SPMB with an efficacy of up to 89.9%. The developed method more effectively isolates
PSMA(+)SEVs than relevant antibody-based technology. The analysis of PC-related miRNA in the
fraction of PSMA(+)SEVs was more sensitive and revealed distinct diagnostic potency (AUC: miR-145,
0.76; miR-221, 0.7; miR-451a, 0.65; and miR-141, 0.64) than analysis of the total SEV population. Thus,
isolation of prostate-specific SEVs followed by analysis of vesicular miRNA might be a promising PC
diagnosis method.

Keywords: prostate cancer; diagnostics; small extracellular vesicles; SEVs; microRNA; miRNA;
PSMA; PSMA(+)SEVs; click chemistry

1. Introduction

Prostate cancer (PC) is one of the most common cancers among men. PC mortality
rate is strongly correlated to the stage of the disease when first diagnosed. According to the
St. Petersburg population-based cancer registry, the five-year relative survival rate of PC
patients drops dramatically with increasing disease stage: 100% (stage I), 100% (stage II),
69% (stage III), and only 24% (stage IV) [1]. Data arising from other sources including the
United States Surveillance, Epidemiology, and End Results (SEER) database demonstrate a
similar tendency. This indicates an urgent need to develop a new, effective approach to
detect PC earlier and increase the proportion of patients with a good prognosis. Current
diagnostics of PC include serum prostate-specific antigen (PSA) determination, digital
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rectal examination (DRE), transrectal ultrasound (US), and US-guided tissue biopsy [2].
PSA and related markers, such as (−2)proPSA, and the prostate health index (PHI) have
become widely used; however, their wide application did not considerably improve PC
diagnostics, mostly due to low specificity. The effectiveness of DRE and US depends on
the experience of the physician [3] and still lack appropriate standardization [4]. Tissue
biopsy is an expensive and invasive procedure. Thus, the discovery of easily testable and
highly specific markers of PC would fill the gap between PSA testing and tissue biopsy
and would assist with the management of patients with increased PSA levels to improve
the overall effectiveness of PC diagnostics.

Circulating with plasma, small extracellular nanovesicles (SEVs), especially exosomes,
are recognized as a promising marker of different cancers [5], including PC [6]. The involve-
ment of SEVs in PC development and dissemination was comprehensively summarized in
recent reviews [7,8]. Different components of plasma SEVs, including exosomal RNA and
proteins, have been studied as PC markers in dozens of studies (listed in [8]). Vesicular
microRNAs (miRNAs) are the markers of PC most extensively studied over the past few
years [9]. However, the results of these investigations are still not sufficiently reproducible,
most likely due to methodological particularities and the fundamental problem of the high
heterogeneity of plasma SEVs. The population of plasma SEVs derives from different cells
in the bodies in an as-yet unknown ratio. As a small tumor of prostate gland does not
alter considerably the composition of the plasma SEV population, the quantification of
prostate-derived vesicles with diagnostic purpose would be of little value. The isolation
followed by qualitative analysis of the population of prostate-derived SEVs may present a
more promising approach for vesicle-based liquid biopsy.

The mature prostate gland is composed of columnar epithelial cells lining the prostate
lumen and elongated basal cells separating the lumen from the stroma. PC can arise
from both types of cells. Maintaining a certain level of tissue differentiation, transformed
epithelial cells of the prostate show a tissue-specific profile of membrane proteins and
secrete SEVs bearing tissue-specific markers. For instance, zinc metalloenzyme glutamate
carboxypeptidase II (GCPII) or prostate-specific membrane antigen (PSMA) is enriched
in prostate epithelial cells and are detected in the membrane of the prostate and prostate-
cancer-secreted SEVs [10,11]. We hypothesized that a population of PSMA(+)SEVs would
much better reflect cancer-specific alterations in the miRNAs occurring in the cells of the
prostate gland than the total population of plasma SEVs. To explore this hypothesis, we
developed a method to isolate PSMA(+)SEVs using super-paramagnetic beads function-
alized by PSMA-specific DNA aptamer [12] via the click reaction. In combination with
the previously described two-phase polymer system for plasma SEV isolation [13], the
proposed technique provides a scaffold for an effective and economic approach to vesicle-
based liquid biopsy. We analyzed four PC-associated miRNAs in PSMA(+)SEVs and the
total population of plasma vesicles, and compared the diagnostic potency of these tests.
The obtained results confirmed that the isolation of PSMA(+)SEVs increases the sensitiv-
ity of PC-associated miRNAs analysis and improves the values of the most important
diagnostic parameters.

2. Materials and Methods
2.1. Patients

Plasma samples were obtained from patients undergoing treatment at N.N. Petrov
National Medical Research Centre of Oncology and Pavlov First Saint Petersburg State
Medical University. The study included patients with a histologically confirmed diagnosis
of prostate cancer (n = 55) who met the specified criteria: age 56–70 years (median age was
63 years); no chronic or metabolic diseases; prostate cancer stage, T1c–T2c N0 M0; and
Gleason score, 5–7. Plasma from healthy male donors (n = 30) age 55–70 years (median
age was 61 years) was obtained from the blood transfusion department of the N.N. Petrov
National Medical Research Centre of Oncology. Donors and patients gave informed consent
to participate in the study.
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2.2. Plasma Sampling and Preparation

Blood samples (5 mL) were placed in EDTA tubes. Plasma was immediately sepa-
rated by centrifugation for 15 min at 1500× g and then stored at −80 ◦C. Before analysis,
the frozen plasma was slowly thawed at 4 ◦C, sequentially centrifuged at 300, 1500, and
2500× g, and filtered through a 0.2 µm syringe filter (Minisart High Flow, Sartorius, Goet-
tingen, Germany) to remove cellular debris. Plasma prepared by this method is hereafter
referred to as pellet pure plasma (PPP) and was used for all experiments.

2.3. Labeling and Isolation of the Total Population of Plasma Extracellular Nanovesicles (SEVs)

The PPP was stained with lipophilic dye and fractionated by size-exclusion chro-
matography (SEC) as recently described [14]. Briefly, 2 mL of PPP was mixed with 2 µL
of Vybrant™ Dil Cell-Labeling Solution dye solution (50 µM in DMSO; Thermo Fisher
Scientific, Walthman, MA, USA) incubated at 37 ◦C for 20 min under moderate stirring.
Each sample of stained plasma was loaded into the SEC column (HansaBioMed, Tallin,
Estonia), and 23 fractions of 500 µL were collected in according to the producer’s manual.
Fractions 9–11 were mixed and used for further experiments.

2.4. Total EVs Isolation by Two-Phase Polymer System

The total EV population was isolated from PPP using a two-phase polymer system
as previously described [13], with slight modifications. Briefly, a solution of dextran
(450–650 kDa, 1.5%) and polyethylene glycol (35 kDa, 3.5%) (both from Sigma-Aldrich,
St. Louis, MO, USA) was prepared in the required volume of PPP. To prepare a protein-
depleting solution (PDS), the same amounts of polymers were dissolved in an equal volume
of phosphate-buffered saline (PBS). The PPP-based solution was centrifuged for 10 min at
1000× g to achieve phase separation. The upper phase, containing plasma proteins, was
replaced with PDS, then the solution was well-mixed and centrifuged again. The upper
phase formed during the second round of centrifugation was removed. The lower phase
containing SEVs was resuspended in 100 µL of PBS.

2.5. Nanoparticle Tracking Analysis (NTA)

The size and concentration of the isolated vesicles were measured using a NanoSight
NS300 analyzer (Malvern Panalytical, Malvern, UK) at camera level: 10, shutter slider: 696,
slider gain: 55, and threshold level: 5. Each sample was pumped through the observation
camera to record 5 measurements for 30 s for 749 frames at different microvolumes of the
same sample. Based on the results of five measurements, the average values of the size
and concentration of the nanoparticles in the suspension were calculated. The data were
processed in Nanosight NTA 3.4.

2.6. Transmission Cryo-Electron Microscopy (Cryo-TEM)

Visualization was performed using cryo-electron microscopy on a JEOL JEM-1400
transmission electron microscope (JEOL Ltd., Tokyo, Japan) at the Research Resource
Center for Molecular and Cell Technologies of Saint-Petersburg State University. The SEV
samples at a concentration of 1012 particles/mL were deposited on carbon-coated copper
mesh/lacey carbon-supported copper grids, 50 nm in size (Sigma-Aldrich, St. Louis, MO,
USA). The excess sample was removed with filter paper. After, the sample was immersed
in liquid ethane for rapid freezing and transferred to a cryostat for subsequent analysis
using a cryo-microscope.

2.7. Bead-Assisted Flow Cytometry of the Total SEV Population

Plasma SEV surface markers were detected by flow cytometry using an Exo-FACS
kit (HansaBioMed, Tallinn, Estonia) according to the manufacturer’s protocol. SEVs were
absorbed nonspecifically to the surface of latex microparticles. Tetraspanins CD9 and CD63
were labelled using antibodies conjugated with fluorescent labels PE (CD9-PE, 312105,
BioLegends, San Diego, CA, USA) and FITC (CD63-FITC, Ab18235, Abcam, Cambridge,



Cells 2021, 10, 2372 4 of 15

UK). Measurements were performed on a Cytoflex analyzer; data were processed using
CytExpert software (both from Beckman Coulter, Brea, CA, USA).

2.8. Dot Blotting

SEVs were isolated from the PPP (2 mL) of healthy donors with a two-phase polymer
system and dissolved in 100 µL of PBS. SEV samples (0.4 µL) were applied to a nitrocel-
lulose membrane and allowed to dry. The membrane was incubated in blocking buffer
containing 5% bovine serum albumin (BSA) in tris-buffered saline (TBS) at room tempera-
ture for 20 min under moderate stirring. Membranes with spotted samples were incubated
with primary antibodies against PSMA (133579, Abcam, Cambridge, UK), CD9 (312102,
BioLegend, San Diego, CA, USA), CD63 (353039, BioLegend, San Diego, CA USA), and
HSP70 (kindly provided by the author of Patent RF, 2722398) at an equivalent concentra-
tion of 1 ng/mL in 0.2% BSA solution at 4 ◦C overnight. Unbound primary antibodies
were washed with TBS. Membranes were incubated first in a blocking buffer (inactivated
plasma centrifuged for 5 min at 17,000× g and filtered through a 0.1 µm syringe filter),
then with secondary antibodies, either goat anti-mouse IgG (6789, Abcam, Cambridge, UK)
or goat anti-rabbit IgG (7171, Abcam Cambridge, UK) at a concentration of 0.13 ng/mL
in 0.1% BSA solution at 4 ◦C for 20 min. Finally, membranes were washed twice in TBS
and evaluated with PierceTM ECL Western Blotting Substrate and the iBrightTM FL1500
Imaging System (both from ThermoFisher Scientific, Walthman, MA, USA).

2.9. Formation of Complexes for PSMA(+)SEVs Sorption

The complex was composed of super-paramagnetic beads (SPMBs) with the surface
functionalized by –N3 groups (Click Chemistry Tools, Phoenix, AZ, USA) and a PSMA-
specific DNA-aptamer (PSMA–Apt) modified by a dibenzocyclooctyne group (DBCO) at
the −5′ end. The sequence of the PSMA-specific aptamer (DBCO-5′-GAA TTC GCG TTT
TCG CTT TTG CGT TTT GGG TCA TCT GCT TAC GAT AGC AAT GCT-3′) was adopted
from [12] and synthesized by Syntol Ltd., Moscow, Russia. Complex SPMB–PSMA–Apt
was formed by the reaction of azide-alkyne cycloaddition. First, 1 µL of SPMB (1 mg/mL)
was incubated in a 200 µL I-Block™ Protein-Based Blocking Reagent (T2015, ThermoFisher
Scientific, Walthman, MA, USA) at 4 ◦C for 1 h to prevent nonspecific binding. The SPMBs
were then washed twice in 200 µL of PBS and resuspended in 100 µL of PBS. Then 1 µL
of PSMA–Apt solution (100 pM) was added to the suspension of blocked SPMB, mixed,
and incubated for 3 h at room temperature. The SPMB–Apt complexes were washed twice
with 200 µM of PBS to remove the unbound aptamers. To test the efficacy of the formed
complexes, we used Cy5.5-labelled aptamer. In this case, the pellet of SPMB–Apt was
resuspended in 100 µM of PBS and used for flow cytometry. To capture PSMA(+)SEVs,
the pellet of SPMB functionalized by unlabeled aptamer was mixed with the suspension
of SEVs.

2.10. PSMA(+)SEVs Sorption by the SPMB–Apt Complex

As described above, 100 µL of SEVs suspension was added to the pellet of SPMB-Apt
complexes, mixed, incubated at 4 ◦C overnight under moderate stirring, washed twice
in 200 µL of unbound SEVs, and resuspended in 100 µL of PBS. To assay the efficacy of
PSMA(+)SEVs captured by flow cytometry, plasma SEVs were labeled and isolated by SEC
as described in Section 2.3. To assay the efficacy of PSMA(+)SEVs captured by dot blotting,
plasma SEVs were isolated with a two-phase polymer system, as described in Section 2.4.

2.11. Formation of Immuno-Beads for PSMA(+)SEVs Immune-Sorption

To isolate PSMA(+)SEVs, we used the complex of super-paramagnetic beads with the
surface functionalized by streptavidin (SPMB-St, K0180, Sileks, Moscow, Russian Feder-
ation) and PSMA-specific antibodies (Ab-PSMA, PSMCC8, HyTest Ltd., Turku, Finland)
modified by biotin. The complex of SPMB-St–PSMA-Ab was formed as previously de-
scribed [15]. Briefly, the SPMB-St was washed 3 times in 200 µL of PBS. Then, 0.5 µL of
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PSMA-Ab (3.4 mg/mL) was mixed with 1 µL of SPMB-St (1 mg/mL) in 100 µL of PBS
and incubated at 4 ◦C for 1 h. Then, unbound Ab was washed twice in 200 µL of PBS;
SPMB-St–PSMA-Ab complexes were used in the following experiments.

2.12. MiRNA Isolation

RNA from the SEVs was isolated with an RNAGEM kit (MicroGem, Dunedin, New
Zealand) according to the manufacturer’s protocol. Both the total population of SEVs
and PSMA(+)SEVs were isolated from 2 mL of PPP. The total population of SEVs was
isolated by a two-phase polymer system. PSMA(+)SEVs were isolated by SPMB–PSMA–
Apt complexes. Proteolysis was performed in 50 µL of water solution containing 5 µL of
10× BLUE buffer and 0.2 µL of RNAGEM reagent at 75 ◦C for 5 min. The concentration of
the RNA was estimated using a Qubit 1.0 fluorimeter.

2.13. RT-PCR

The isolated RNA was analyzed by reverse transcription (RT), followed by real-time
polymerase chain reaction (PCR) using a commercial ALMIR kit: AL145-5p, AL221-3p,
AL451a-3p, AL141-3p (Algimed Techno, Minsk, Belarus) according to the manufacturer’s
protocol. RT-reaction mix contained 2 µL of total RNA solution (Section 2.11), RT primer
(50 pM), M-MLV reverse transcriptase (40 U) and proprietary RT buffer in a final volume
10 µL. The RT reaction was conducted for 45 min at 25 ◦C, then for 5 min at 85 ◦C
to inactivate the enzymatic activity of reverse transcriptase. The following PCR was
performed in a reaction volume of 20 µL including: RT reaction mix (4 µL), forward and
reverse primers (each for 250 pM), FAM-labelled probe (150 pM) and 10 µL of 2xPCR
master mix. Conditions of PCR: 5 min—95 ◦C, then 40 cycles: 5 s—95 ◦C; 15 s—60 ◦C. Any
reaction was conducted in technical duplicate.

2.14. Statistics

The experimental data were processed using ImageJ, SigmaPlot 12.0, GraphPad Prizm
8, OriginPro 9.1, and CFX Manager Software 3.1. Statistical differences between groups of
samples were evaluated using the nonparametric Mann–Whitney test. ROC analysis was
used to assess the diagnostic significance of the developed method.

3. Results
3.1. Characteristics of the Total Population of Plasma Nanovesicles

The total population of nanovesicles was isolated from pellet pure plasma (PPP)
samples using a two-phase polymer system [13]. Unless otherwise specified, SEVs were
isolated from 2 mL of PPP and resuspended in 100 µL of PBS. To estimate the size and
concentration of the isolated vesicles by NTA, the suspension was again dissolved by PBS
at 1:100. For each sample, results of five measurements were averaged during analysis.
Concentration averaged for eight control samples used for validation of PSMA(+)SEV
isolation method was 1.4 (±3) × 1011 particles/mL with averaged size 122 ± 13 nm. The
concentration of the SEVs in individual samples used in further experiments was in a
ranged from 1 × 1011 to 3 × 1011 particles/mL, with the predominant particle size ranging
from 100 to 130 nm. A representative example is shown in Figure 1A. A cryo-TEM revealed
that in the round form of isolated vesicles formed by a thin membrane, the average size
of vesicles was 43 ± 16 nm (Figure 1B). Discrepancy of NTA and Cryo-TEM data was
expectable due to methodological issues. Surface exosomal markers, tetraspanins CD9 and
CD63, were detected by flow cytometry (Figure 1C). Given the size, shape, and presence of
surface markers, we assumed that the isolated particles had a vesicular structure and were
represented, at least in part, by exosomes.
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Figure 1. Characteristics of the total SEV population. (A) A representative example of NTA vesicles
isolated by a two-phase polymer system. (B) Cryo-electron microscopy image of extracellular vesicles.
(C) Detection of exosomal markers by flow cytometry. EVs attached to latex beads were stained with
PC5.5-labelled antibodies to CD9 or FITC-labelled antibodies to CD63. Beads stained with antibodies
were assayed as a negative control.

3.2. Estimation of the Number of PSMA(+) Vesicles in the General Population

Prostate-specific membrane antigen, PSMA (or folate hydrolase 1 (FOLH1)), a type
2 membrane glycoprotein, is expressed in various tissues [14], and is enhanced in the brain,
intestine, and prostate [16]. PSMA overexpression is associated with PC development [17],
with a high Gleason score of PC [18], whereas PSMA can be explored as a marker for the
detection of recurrent disease and therapy with PSMA-targeted radioligands [19]. PSMA
was detected in the membranes of SEVs secreted by PC cells in vitro [10], and the feasibility
of PSMA(+)SEVs isolation from plasma was previously reported [11]. However, the relative
amount of the PSMA(+)SEVs fraction in the plasma of healthy donors was never estimated.
The relative mass of the prostate can be roughly assumed to be 0.03–0.05% of body weight
(average body mass = 62 kg, average weight of a prostate = 20–30 g [20]). If we neglect the
difference in the secretory activity and the degree of vascularization of all tissues, these
percentages can be extrapolated to the relative amount of prostate-derived SEVs within the
total population of plasma vesicles. This small amount can be difficult to detect. To evaluate
relative amount of PSMA(+)SEVs, the total population of vesicles was isolated from PPP
of healthy male donors (n = 8) age 55–65 (median age was 60 years), and expressions of
exosomal surface markers (CD9, CD63, HSP70) and PSMA were measured in parallel by
dot blotting. Since the limit of detection of PSMA(+)SEVs was unknown, each experiment
was performed in triplicate using samples of SEVs isolated from 200, 500, and 1000 µL of
PPP. The results are presented in Figure 2.
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Figure 2. Membrane markers expression in plasma SEVs. Assessment of the relative concentration
of membrane markers (PSMA, CD9, CD63, and HSP70) in the total population of plasma SEVs
isolated from 200, 500, and 1000 µL of pellet pure plasma of healthy male donors by dot blotting. The
integrated density values were obtained from spots, and the results of 8 participants were averaged.

In contrast with our expectation, the amount of PSMA in plasma SEVs was comparable
to amounts of other common markers. It accounted for 15–34% of CD9, 20–24% of CD63,
and 9–22% of HSP70. Notably, the intensity of the signal from HSP70 was saturated
in this experiment, whereas intensity of the signal from CD9 was close to its saturation
level. If the intensity of CD63 and the PSMA expression in the vesicular membrane are
comparable, the amount of PSMA(+)SEVs reached 20–24% from the total population of
plasma CD63(+)SEVs. It seems unlikely that PSMA is so highly present in the membranes of
prostate-derived SEVs to mediate such an intensive signal from a small number of vesicles.
A more plausible explanation for the obtained results is the secretion of PSMA(+)SEVs
by the cells of different tissues, not by cells of the prostate only. Thus, the fraction of
PSMA(+)SEVs is apparently enriched by prostate-derived vesicles but does not consist of
them exclusively; PSMA is not a very specific marker.

3.3. Formation and Evaluation of PSMA(+)SEV-Capturing Complex

Next, we aimed to develop a new technology for the effective isolation of PSMA(+)SEVs
by their capturing with a PSMA-specific DNA aptamer (PSMA–Apt) fixed to the surface of
super-paramagnetic beads (SPMBs). We applied the click chemistry approach using SPMBs
with an azide group and PSMA–Apt with dibenzenecyclooctine at the 5′ end (Figure 3).

Figure 3. Scheme of SPMB–PSMA–Apt complex formation.
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To optimize the conditions of SPMB–PSMA–Apt complex formation, we used a DNA
aptamer modified with cyanine 5.5 (Cy5.5) dye at the 3′ end, and assayed the efficacy of
complex formation by flow cytometry. Selected results are presented in Figure 4.

Figure 4. Efficacy of SPMB–PSMA–Apt formation. (A) Scheme of experiment: the signal from non-modified SPMBs was set
as 0, SPMBs modified with Cy5.5-labeled aptamer were counted as positive events; (B–G) efficacy of complex formation
with increased amounts of aptamer in a reaction mix (0.01, 0.1, 0.5, 0.7, 1, and 2 pM) for 3 h at room temperature; (H)
efficacy of complex formation in the presence of DMSO (10%) in reaction mix (1 pM of Apt, 3 h, RT); (J) efficacy of complex
formation in optimal conditions (1 pM of aptamer, 10% DMSO) overnight at a temperature of 4 ◦C.

We tested different conditions for complex formation including aptamer concentra-
tions, the presence of dimethylsulfoxide (DMSO), temperature (RT vs. 4 ◦C), and reaction
time (3 h vs. overnight). An increase in aptamer concentration in the reaction mix up to
2 pM was associated with an increase in the percentage of SPMB modified with Cy5.5.
aptamer (Figure 4B–G); further increases in aptamer concentration did not improve the
efficacy of complex formation. As a positive effect of DMSO in an analogic reaction was
reported [21], we tested the efficacy of complex formation in the presence of 5%, 10%, and
20% DMSO in reactions with 1 and 2 pM of aptamers. We found that 10% DMSO led to the
modification of 87.65% of SPMBs using an aptamer concentration of 1 pM (Figure 4H). We
expected the increase in incubation time (overnight vs. of 3 h), or adjusting the reaction
temperature (4 ◦C vs. RT) would improve reaction efficacy. However, the parameters
did not increase the efficacy of SPMB–PSMA–Apt formation (Figure 4J). On the basis of
obtained results, we set the optimal reaction conditions as: 1 µg SPMBs in 100 µL of PBS,
1 pM PSMA–Apt, 10% DMSO, RT, and 3 h of incubation time.

3.4. Efficacy of PSMA(+)SEVs Isolation

Next, we aimed to compare the efficacy of PSMA(+)SEVs capturing with complexes
formed by either PSMA–Apt or antibodies against PSMA (PSMA-Ab). To form SPMB–
PSMA–Apt complexes, we used PSMA–Apt without modification by Cy5.5. The formation
of immuno-beads from SPMBs modified by streptavidin and biotin-labeled antibodies was
reported previously [15]; herein, we used the same technology with validated antibodies
against PSMA. An equal amount of SPMB (1 µg) with a diameter of 1 µm modified either by
an –N3 or by a streptavidin group was functionalized either by PSMA–Apt or by PSMA-Ab
as described in Sections 2.9 and 2.11. Both complexes were incubated with equal amounts
of SEVs stained with lipophilic dye (Vibrant Dil) and isolated from plasma of healthy
male donors (n = 8) by SEC (Section 2.3 and [14]). The efficacy of PSMA(+)SEVs capture
was estimated by flow cytometry; a representative example of one sample’s analysis is
presented in Figure 5.
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Figure 5. Efficiency of the PSMA(+)SEVs capture by complexes composed of PSMA-specific DNA
aptamers and antibodies. (A) SPMBs with the surface functionalized by –N3 groups (no aptamer)
incubated with Vibrant-Dil-labeled SEVs (negative control); (B) SPNBs modified with PSMA–Apt
via alkyne-azide cycloaddition and incubated with Vibrant-Dil-labeled SEVs; (C) SPMBs with the
surface functionalized by streptavidin (no antibodies) incubated with Vibrant-Dil-labeled SEVs
(negative control); (D) SPMBs modified by antibodies against PSMA via a biotin–streptavidin link
and incubated with Vibrant-Dil-labeled SEVs.

The SPMB non-functionalized by SPMA-binding ligands was used as a negative
control: a certain level of nonspecific binding of Vibrant-Dil-labeled vesicles was detected
in both cases (Figure 5A,C). In the group of eight samples, the percentage of positive
events varied between 0.5% and 1.3% in the case of SPMBs functionalized by an –N3
group and between 0.2% and 0.7% in the case of SPMBs functionalized by streptavidin.
These levels of nonspecific interaction were assumed to be acceptable. PSMA(+)SEVs were
captured from the total population of plasma vesicles by SPMB–PSMA–Apt complexes
with an efficacy of 6.5–10.8%, and by SPMB–SPMA–antibody complexes with an efficacy
of 1.1–3.4% (Figure 5B,D). Comparing the efficacy of PSMA(+)SEVs isolation of the two
methods from the same sample, the efficacy of SPMB–PSMA–Apt complexes was 4–6-fold
higher than that of SPMA–SPMA–antibody complexes.

As the amount of PSMA(+)SEVs was assessed as being significant, we wanted to eval-
uate the capabilities of the developed method and to test the effectiveness of PSMA(+)SEVs
depletion from the total population of plasma vesicles. To prepare SEVs, samples of PPP
were stained with Vibrant-Dil and fractionated by SEC as in the previous experiment. The
PSMA(+)SEVs were captured from the general population during overnight incubation.
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The complexes were isolated, washed, and analyzed by flow cytometry, and the super-
natant with unbound SEVs was used for the second round of PSMA(+)SEVs isolation
with fresh complexes. After the second round of overnight incubation, complexes were
isolated, washed, and analyzed by flow cytometry as well. In parallel, we analyzed the
level of membrane vesicular markers (PSMA, CD9, CD63, and HSP70) in the reaction mix
before the first incubation, after the first incubation, and after the second incubation with
SPMB–PSMA–Apt complexes. The scheme of the experiment is presented in Figure 6A.

Figure 6. Evaluation of the efficiency of the isolation of PSMA(+)SEVs from the total population of plasma SEVs.
(A) Experiment scheme. (B) Effectiveness of two consequent rounds of SPMA(+)SEVs capture was assayed by flow
cytometry. SPMB non-functionalized by PSMA–Apt was stained with SEVs and assayed as a negative control. (C) The
effectiveness of PSMA(+)SEVs depletion from the total population of plasma SEVs through two rounds of incubation with
PSMB–PSMA–Apt complexes was analyzed by dot blotting. The amounts of PSMA, CD9, CD63, and HSP70 were assayed
in parallel. Representative images from one sample’s analysis are presented. All images were digitalized by ImageJ, the
results were averaged within the groups, the statistical significance of the difference between paired groups was assayed
using the Mann–Whitney test: *** p < 0.0005.

We used eight samples of SEVs isolated from the plasma of healthy male donors.
SPMBs functionalized by an –N3 group (without PSMA–Apt) were stained overnight and
assayed as the negative control (signal varied from 0.2% to 0.9%). Analysis of SPMB–
PSMA–Apt complexes incubated with SEVs and washed revealed 6.7% to 10.3% positive
events. The second round of SPMA(+)SEVs isolation with fresh complexes produced
a much lower percentage of positive events (3.4–6.1%). Representative results of the
experiment are presented in Figure 6B. In parallel, dot blotting revealed a significant
decrease in PSMA in the reaction mixture; the reduction in CD9 and CD63 was negligible
and statistically not significant; the amount of HSP70 did not change through the two
rounds of PSMA(+)SEVs isolation (Figure 6C). Moreover, the first round of isolation was
much more effective and resulted in the substantial depletion of PSMA(+)SEVs compared to
the second round. Thus, the obtained results demonstrated the possibility of the successful
isolation of PSMA(+)SEVs from the total population of vesicles from healthy donors plasma,
so we suggested that using SPMB–PSMA–Apt complexes should also be effective with
vesicles from PC patients.
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3.5. Evaluation of the Diagnostic Potency of miRNAs from PSMA(+)SEVs

After the PSMA(+)SEVs isolation method was established, we aimed to test if the
analysis of PC-related miRNAs from this specific population of SEVs has higher diagnostic
potency than miRNA from the total population of plasma SEVs. We used material from
healthy donors (n = 30) and patients with histologically confirmed PC (n = 55). miRNA
was isolated from the general population and from the PSMA(+)SEVs in parallel. We
selected four miRNAs involved in PC development: mir-141 [22], mir-145 [22], mir-221 [23],
and mir-451a [24]. Mir-141 is reported to be consistently up-regulated in PC compared
with healthy controls and has been suggested as a biomarker for biochemical failure and
clinical outcome [25]. MiR-145 regulates tumor growth, invasion, and metastasis, and it
also has a role in tumor angiogenesis and tumor stem cell proliferation [26]. Mir-221 is a
cancer-associated miRNA, and its overexpression contributes to the progression of prostate
carcinoma. The levels of miR-221 were significantly higher in aggressive prostate cancer
tissue samples than in non-aggressive prostate cancer tissue samples [27]. MiRNA-451
influences the progression of tumorigenesis and drug resistance [28]. It was shown that
miR-451 levels were significantly higher in exosomes from human prostate cancer cells
under hypoxic conditions than in those under normoxic conditions [24].

All these molecules were expected to be detectable in the plasma SEVs of healthy
donors according to our previous experiments and to the open database ExoCarta [29].
Semi-quantitative assessment of the concentration of the selected molecules was conducted
by RT-PCR. The reactions were performed in duplicate, and the Ct values were averaged.
Hsa-mir-93 was assayed in parallel and used as a reference to normalize the obtained data
by the standard method: ∆Ct = 2 (Ctmir93 − CtmirX). Figure 7 shows the normalized values
of the concentrations of the four selected miRNAs in two clinical groups (PC patients and
healthy donors). Analysis was performed in parallel with RNA isolated from the total
population of plasma SEVs (grey border) and from PSMA(+)SEVs (red border).

Figure 7. Comparative analysis of mir-145, mir-221, mir-451a, and mir-141 in plasma SEVs of prostate
cancer patients and healthy donors. Plasma samples from PC patients’ (n = 55) and healthy donors’
(n = 30) RNA were used. From each sample, the total population plasma SEVs and PSMA(+)SEVs
were assayed. RNA was isolated and RT-PCR analysis of miR-145, miR-221, miR-451a, miR-141, and
miR-93 was performed in duplicate. Results were normalized versus miR-93 and averaged within
groups. Statistical significance between paired groups (PC vs. healthy donors) was determined using
the Mann–Whitney test: * p < 0.05, ** p < 0.005, and *** p < 0.00005.
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Analysis of miRNAs in the total population of plasma SEVs revealed a certain amount
of these molecules; however, no difference between PC patients and healthy donors was
detected. When RNA was isolated from the population of PSMA(+)SEVs, PC-associated
miRNAs were confidently detected. The difference between groups of PC patients and
healthy donors was statistically significant in all four cases.

Receiver operating characteristic (ROC) analysis was used to assess the diagnostic
potential of miRNA from the total population of plasma SEVs and PSMA(+)SEVs. The
results are shown in Figure 8. For the miRNAs isolated from the general population of
SEVs, the area under the curve (AUC) value deviated slightly from the midline, which
indicates the low predictive potential of the model. AUC values in the range from 0.64 to
0.76 were obtained for miRNAs isolated from the PSMA(+)SEVs, which indicates a good
prognostic potential. The obtained results correlate with the data presented in Figure 8:
the maximum difference between the groups of patients and healthy donors (p < 0.0005)
and the highest AUC (0.76) value were observed for miR-145. A less prominent difference
between clinical groups (p < 0.05) and lower AUC values (0.65 and 0.64) were observed for
miR-451a and miR-141.

Figure 8. Evaluation of the diagnostic potential of the method. Receiver operating characteristic
(ROC) curves for mir-145, mir-221, mir-451a, and mir-141 for total (A) and PSMA(+) (B) SEVs were
created using the results from 85 samples: PC patients (n = 55) and healthy donors (n = 30) using
Graph Pad Prism software.

For a more detailed assessment of the diagnostic potential of miRNAs analysis from
PSMA(+)SEVs, additional indicators of diagnostic significance were calculated (Table 1).
However, these parameters depend on a cutoff level selected for calculation. Different
ratios of the sensitivity and specificity, and positive and negative predictive values can
be obtained by altering the cutoff levels. For instance, the combination of sensitivity,
specificity, and accuracy for miR-145 varied from 93.3%, 53.6%, and 68.2% to 65.5%, 83.3%,
and 71.8%, respectively. Thus, the diagnostic potential of the method can be adjusted to
more effectively solve clinical problems: markers with optimized specificity can be used at
the stage of choosing diagnostic tactics for patients whose total PSA value is in the gray
zone (between 4 and 10 ng/mL).

Table 1. Parameters of diagnostic significance for the selected miRNAs.

Statistic Mir-145 Mir-221 Mir-451a Mir-141

Sensitivity 65.45 70.71 66.67 74.55
Specificity 83.33 70.00 61.29 60.00

Positive Predictive Value 87.80 81.25 75.00 77.36
Negative Predictive Value 56.82 56.76 51.35 56.25

Accuracy 71.76 70.59 64.71 69.41
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4. Discussion

Neoplastic transformation induces specific alterations in the cellular miRNA profile.
These alterations are supposed to be translated into the composition of miRNAs released
from cells into the extracellular space within SEVs. However, the total SEV population is
extremely heterogeneous; so, small amounts of tissue-specific vesicles do not significantly
affect the overall profile of circulating vesicles. Thus, for diagnostics, it is more considerable
to use specific fractions of microvesicles. To create a diagnostic method, SEVs secreted by
cells of certain tissue must be separated to detect cancer-indicative alterations in the miRNA
content of these vesicles. First, we performed a proof-of-principle study by analyzing
the miRNAs in SEVs bearing thyroid peroxidase and revealed the potent ability of this
test to discriminate follicular adenoma and follicular cancer of the thyroid gland [15].
For prostate cancer, the effectiveness of the analysis of specific fractions of SEVs has
already been highlighted in the work of Chiara Foroni et al. [30]. However, in this study,
the vesicles with undisclosed cancer-specific surface marker were isolated by immune-
capturing and multiple PC-relevant alterations of the androgen receptor were profiled
in SEV-associated DNA. In our study, we explored other tactics and a different strategy.
We aimed to isolated prostate-derived SEVs instead of cancer-specific vesicles; and we
explored aptamer-based technology instead of antibody-based immune-capturing. We
supposed that PC-associated alterations of miRNAs in prostate-derived SEV will have
diagnostic potency. The obtained results confirmed our hypothesis; however, certain issues
requiring further research were highlighted.

The first unexpected result was the high relative amount of PSMA(+)SEVs in plasma.
The dot blot analysis cannot distinguish the signal from a few vesicles enriched by the
marker of interest from a high number of vesicles with a low amount of the marker.
Comparative analysis of certain markers’ expression in vesicles separated by stochastic
optical reconstruction microscopy (STORM) would help resolve this issue and will be
applied in the future. We suppose that PSMA is expressed at a similar or lower level
than CD63 in prostate-derived SEVs, and the obtained ratio of PSMA to CD63 signal
intensity reflects the ratio of PSMA(+) to CD63(+) vesicles. This interpretation of the results
allows us to state that PSMA(+)SEVs constitute 20–24% of the total vesicular population.
If this is true, PSMA(+)SEVs cannot be secreted exclusively by prostate cells. Thus, the
fraction of PSMA(+)SEVs is not prostate-specific but rather enriched by prostate-derived
SEVs. This conclusion justifies further optimization of the isolating technology using other
prostate-specific markers and their combination.

The second interesting result of our investigation is the higher efficacy of complexes
functionalized by DNA aptamers compared to complexes functionalized by antibodies. To
explain this difference, we assumed similar affinity of both ligands to PSMA and calcu-
lated the number of ligand molecules apparently attached to the same amount of SPMBs.
Thus, SPMBs were functionalized with PSMA–Apt in 100 µL of reaction mix containing
1.7 × 10−6 g of DNA aptamers with a molecular mass of 17 kDa, which corresponds to
60.2 × 1012 molecules per reaction. Likewise, SPMBs were functionalized with PSMA-Ab
in a 100 µL of reaction mix containing 1.7 × 10−6 g of antibodies with a molecular mass of
150 kDa, which corresponds to 6.8 × 1012 molecules per reaction. This calculation indicates
an eight-times higher density of SPMA binding sites on the surface of SPMB–PSMA–Apt
complexes than on the surface of SPMB–PSMA-Ab complexes. Excluding the possible
differences in the efficiency of the binding of ligands to SPMB and the affinity of interaction
of ligands with PSMA, this calculation can, in part, explain the higher PSMA(+)SEVs bind-
ing capacity of SPMB–PSMA–Apt complexes and may stimulate further development of
aptamer-based technology. Also, to prove the effectiveness of using the SPMB-PSMA-Apt
complex (via flow cytometry), for determining significant results, magnetic particles with-
out PSMA-aptamer incubated with vesicles labeled with Vibrant-Dil were used as a limit
of detection and negative control. It would be more correct to use the lowest concentration
of PSMA(+) vesicles that can be detected by a developed method as a limit of detection.
Unfortunately, there is no method available to determining this concentration. Therefore,
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we are planning to continue working on the development of a method to estimate the
concentration of PSMA (+) SEVs.

Finally, we want to indicate the most important issue that requires extensive further
investigation to advance the proposed technology from bench to bedside. In our study,
we empirically selected four PC-related miRNAs and revealed a method to improve their
diagnostic potency. We considered that the cancer-related expression alterations of these
molecules translate to the miRNA content of prostate-derived SEVs. However, it was
reported that the packaging of miRNAs into exosomes or other vesicles is an active and
regulated process, and the cellular miRNA pattern is not the same as the vesicular miRNA
pattern. This indicates the importance of deeper analysis and miRNA profiling of prostate-
derived SEVs isolated from the plasma of healthy donors and PC patients. The selection
of highly relevant miRNA markers would increase the overall diagnostic potency of the
proposed method.
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