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Abstract: An experimental investigation is presented for the stress distributions in functionally
graded plates containing a circular hole. On the basis of the authors’ previously constructed the-
oretical model, two kinds of graded plates made of discrete rings with increasing or decreasing
Young’s modulus were designed and fabricated in virtue of multi-material 3D printing. The printed
graded plates had accurate size, smooth surface, and good interface. The strains of two graded
plates under uniaxial tension were measured experimentally using strain gages. The stresses were
calculated within the range of linear elastic from the measured strains and compared with analytical
theory. It is found that the experimental results are consistent with the theoretical results, and both of
them indicate that the stress concentration around the hole reduces obviously in graded plates with
radially increasing Young’s modulus, in comparison with that of perforated homogenous plates. The
successful experiment in the paper provides a good basis and support for the establishment of theo-
retical models and promotes the in-depth development of the research field of stress concentration in
functionally graded plates.

Keywords: functionally graded plate; 3D printing; circular hole; stress analyses; experiment

1. Introduction

Functionally graded materials (FGMs) are a class of advanced composite materials
in which the material properties change uninterruptedly along one or more directions.
FGMs are characterized by a compositional gradient of one material into another, which
is totally different from the conventional composite materials. The continuous change in
microstructure of FGMs avoids the mismatch of material properties across the interface,
and thus stress concentration can be effectively reduced compared with that existing at
material interfaces [1,2]. Especially when the structures contain various holes, the stress
concentrations around the holes can be decreased by choosing the properly radial changes
of the elastic properties [3,4].

A lot of research has been carried out on the problem of stress concentration around
holes in FGM plates with radially varying elastic properties in the past 20 years. Two
analytical approaches to this problem are mainly employed. One is the numerical investi-
gations on the basis of the finite element method. The other is rigorous theoretical analyses
according to the linear elasticity theory.

In the aspect of numerical investigations, Venkataraman et al. [5] proposed a two-
dimensional numerical model of the plate with a hole having a radially varying elastic
modulus, inspired by the special material distributions near the blood vessel holes in bone.
They explained how bones design holes by optimizing the structure of the perforated
plates with biological variables. To reduce stress concentration and increase load-carrying
capacity of the plate with holes, Huang et al. [6,7] also optimized the material distribution
near the hole by mimicking bones through axisymmetric and nonaxisymmetric FGMs. On
the basis of the finite element method, Kubair and Bhanu-Chandar [8] and Wang et al. [9]
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studied the stress concentration coefficient (SCF) in FGM plates with circular and elliptical
holes, respectively, under uniform tensile traction. The elastic properties varying along
three directions (X, Y, and radial direction) are discussed. Goyat et al. [10,11] analyzed the
reduction of SCF around a rectangular hole and a pair of circular holes in homogenous
plates by using a FGM layer based on the extended finite element method. Berezhnoi
et al. [12,13] presented the exact solutions of stress distribution in the graded layers of
super flywheel and discussed the effect of the relative radius of the holes in the flywheel
on the specific energy.

In the aspect of theoretical analyses, Zhang et al. [14] proposed an analytical model of
radial FGM plates with a circular hole and derived exact thermal stress solutions for the
plates under axisymmetric thermal loading. Yang et al. [15,16] developed the theoretical
models for the cases of non-axisymmetric loads, including arbitrary uniform tension and
elastic wave. They decomposed the continuous FGM plates into a homogeneous plate
containing multi-rings with different elastic constants and then solved the elastic fields on
the basis of complex function theory. Mohammadi et al. [17] presented the general solution
of SCF around a circular hole in a radially inhomogeneous plate under uniaxial tension,
biaxial tension, and pure shear. Sburlati et al. [18] proposed a method to relieve the SCF
around holes in homogeneous plates by using radial FGM ring and presented an analytical
solution of SCF, as Young’s modulus varies with a monotonic power law. Kubair [19,20]
considered the SCF and stress-gradients due to a circular hole in a radial FGM plate under
anti-plane shear and presented the exact expressions for the elastic fields. Nie et al. [21]
studied the problems of material tailoring for reducing SCF at circular holes in a FGM plate.
Nie and Batra [22] further studied the reduction of SCF in homogeneous plates with holes
by inserting a functionally graded incompressible material layer.

However, few experiments have been performed on the topic compared with present
theoretical and numerical investigations. It is well known that the experiments play a
fundamental and supporting role in scientific research. The first-hand experimental data
can provide basis and support for the establishment of theoretical models and promote the
in-depth development of the corresponding research field. The activities in the experimen-
tal research on stress concentration in FGM plates are limited mainly by the complexity and
difficulty of the manufacturing technology of specimens. Buskirk et al. [23] experimentally
studied the strength of a FGM biomimetic plates with a hole, which is designed based
on the functional gradation in elastic modulus properties, as observed in the bone. The
FGM plate was fabricated by different foam types, such as cellular, solid, and high den-
sity. Combined with finite element analyses, they verified that the FGM biomimetic plate
has a higher load carrying capacity than a homogenous plate. In this paper, we present
the experimental investigation for the stress distributions in graded plates fabricated by
multi-material 3D printing. The surface morphology of the printed plates was observed
by optical microscope. The objective of this paper is to present the design, fabrication,
analysis, and results from mechanical tests of FGM plates with a circular hole and compare
the results to the theoretical predictions given by the authors’ previously theoretical model.

2. Theoretical Model

In the authors’ previous work [15], the theoretical model was developed for the stress
concentration in an infinite FGM plate with a circular hole subjected to remote uniform
loads σ∞

x , σ∞
y , and τ∞

xy, as shown in Figure 1. σ∞
x , σ∞

y , and τ∞
xy are the normal stress and

shear stress at infinity, respectively. The radius of the hole is denoted by r0. The elastic
properties are assumed to change continuously and arbitrarily in the radial direction.
With the method of piece-wise homogeneous layers, the domains of FGM plate can be
decomposed into N homogeneous rings Ω(1), Ω(2), · · ·Ω(j), · · ·Ω(N) with equal width and
an outer homogeneous plate. When the number of rings N is large enough, the radially
continuous Young’s modulus E(r) and Poisson’s ratio ν(r) is approximately regarded as
constant Ej and νj(j = 1, 2, · · ·N) in each ring. Therefore, the boundary condition of force
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and displacement at the surface of the hole and the interface between the rings Ω(j) and
Ω(j+1) can be expressed as

Xn = Yn = 0, (1)

X(j)
n = −X(j+1)

n , Y(j)
n = −Y(j+1)

n , (2)

u(j) = u(j+1), v(j) = v(j+1), (3)

where Xn, Yn, u, and v symbolize the components of force and displacement.
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Figure 1. The theoretical model of a FGM plate with a circular hole developed in the authors’ previous
work [15].

Based on the theory of the complex variable functions, the boundary conditions for a
plane problem of a homogeneous solid in a fixed rectangular coordinate system (x, y) can
be expressed as [24]

ϕ(z) + zϕ′(z) + ψ(z) = ±i
∫ s

0
(Xn + iYn)ds, z = x + iy, (4)

κϕ(z)− zϕ′(z)− ψ(z) = 2G(u + iv), (5)

where ϕ(z) and ψ(z) stand for the potential functions. κ and G are elastic constants with
different values for the cases of plane stress and plane strain.

According to Equations (4) and (5), Equations (1)–(3) can be expressed as

ϕ1(z) + zϕ1
′(z) + ψ1(z) = 0, (6)

ϕj(z) + zϕj
′(z) + ψj(z) = ϕj+1(z) + zϕj+1

′(z) + ψj+1(z), (7)

1
Gj

[
κj ϕj(z)− zϕj

′(z)− ψj(z)
]
=

1
Gj+1

[
κj+1 ϕj+1(z)− zϕj+1

′(z)− ψj+1(z)
]
, (8)

The complex potential functions in each circular ring Ω(j)(j = 1, 2, · · ·N) and the plate
can be expressed as [24]

ϕj(z) =
∞

∑
−∞

a(j)
−k

(
R0

z

)k
, ψj(z) =

∞

∑
−∞

b(j)
−k

(
R0

z

)k
, (9)

ϕN+1(z) = τz +
∞

∑
k=0

a(N+1)
−k

(
R0

z

)k
, ψN+1(z) = τ′z +

∞

∑
k=0

b(N+1)
−k

(
R0

z

)k
, (10)
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where a(j)
−k, b(j)

−k a(N+1)
−k , b(N+1)

−k are the unknown coefficient and R0 is a reference radius.

τ and τ′ are the constants dependent on the remote stresses as τ =
(

σ∞
x + σ∞

y

)
/4,

τ′ =
(

σ∞
y − σ∞

x

)
/2 + iτ∞

xy.
Substituting Equations (9) and (10) into Equations (6)–(8), we can get a set of linear

equations containing all unknown coefficients a(j)
−k, b(j)

−k, a(j)
k , b(j)

k and a(N+1)
−k , b(N+1)

−k . These
equations can be applied to determine these unknown coefficients. In this case, the general
solution of the stress fields in each ring and the homogenous plate can be derived based on
the following field equations for the two-dimensional problem of the solid [24]

σy + σx = 4Re
[
ϕ ′(z)

]
, (11)

σy − σx + 2iτxy = 2
[
zϕ′′ (z) + ψ′(z)

]
, (12)

where σx, σy, and τxy are the components of stresses.
In the work [15], authors discussed the effect of different functions of the Young’s

modulus on the stress distribution in the plate. On the base of analysis and comparison, the
desired optimal distribution of Young’s modulus in the selected functions is the following
exponential form:

E(r) = E0

(
1− 0.8

e
er/r0

)
, (13)

where E0 is a constant. As the Young’s modulus changes in the above function, there is no
stress concentration around the hole, and the stress distribution is almost uniform in the
plate.

3. Experimental Procedures

In this paper, the experiment was designed and conducted based on the theoretical
model. Two kinds of FGM plates made of discrete rings were fabricated for the cases
of Young’s modulus, increasing and decreasing along the radial direction in virtue of
multi-material 3D printing. The PolyJet 3D Printer named Stratasys Objet260 Connex3
(Stratasys Ltd., Rehovot, Israel) was used for printing the specimens of the FGM plate. This
3D Printer had a system size of 870 × 735 × 1200 mm and maximum build size of (XYZ)
255 × 252 × 200 mm. The printing accuracy reached up to 0.2 mm for full model size, and
minimum build layer thickness could be as fine as 16 µm.

3.1. Tension Test of the Printing Materials

Two types of base materials (VeroWhitePlus and TangoBlackPlus, Stratasys Ltd.,
Rehovot, Israel) were used by the 3D Printer. VeroWhitePlus was rigid at room temperature
and made from isobornyl acrylate, acrylic monomer, urethane acrylate, epoxy acrylate,
acrylic monomer, acrylic oligomer, and a photoinitiator. TangoBlackPlus was rubbery at
room temperature and formed from urethaneacrylate oligomer, Exo-1,7,7-trimethylbicyclo
hept-2-yl acrylate, methacrylate oligomer, polyurethane resin, and photoinitiator [25,26].
The 3D printer mixed two base materials to form a broad range of intermediate materials
with different strengths, which were predefined by the manufacturer. Six materials were
selected to design and fabricate the required FGM plate for the experiment. Material 1
was the first base material VeroWhitePlus. Materials 2–6 were intermediate materials with
graded strengths. The manufacturer only reported Young’s modulus of VeroWhitePlus
as E = 2000–3000 MPa. In order to obtain the specific Young’s moduli of six materials,
their tensile properties were tested according to the Standard Test Method of Plastics
D638-14 made by the American Society for Testing Material (ASTM). The dog-bone-shaped
specimen for tension test in the Standard is shown in Figure 2 [27].
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Figure 2. Dog-bone-shaped specimen for tension test (ASTM D638-14).

The 3D models of the tension specimens were firstly built with commercial software
Solidworks (sw2018, 2018, Concord, Massachusetts, America); then, with the models
imported into the printing software Objet Studio, 3D objects could be automatically printed
by 3D Printer. The six obtained specimens can be found in Figure 3. The tensile properties
of specimens were tested by electronic universal testing machine. Stress-strain curves
are shown in Figure 3. It can be found that the strength of material 1 was the highest
and material 6 was the lowest. The strengths of material 2–5 were between those of
material 1 and 6. The Young’s moduli of six printing materials were also measured and
listed in Table 1. It is found that six Young’s moduli showed a well-graded change, which
was in accordance with our expectation. In the following experiment, the specimens of
FGM plates were designed and fabricated with using six printing materials.
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Table 1. Elastic modulus Ej of six printing materials (MPa).

Material 1 Material 2 Material 3 Material 4 Material 5 Material 6

2154 1881 1576 1174 880 445

3.2. Design and Fabrication of FGM Plate with a Circular Hole

On the basis of the theoretical model in Section 2, two FGM plates with the same
geometrical sizes but different material distribution were designed, as shown in Figure 4.
In terms of geometric design in Figure 4a, the width and thickness of the FGM plate were
taken as 120 mm and 3 mm, respectively. The diameter of the center hole was 10 mm. There
were five rings, and the width of each ring was 4 mm. The width of the plate was more
than 10 times the diameter of the hole. According to the results shown in Figures 10 and 11
in the paper by Yang et al. [28], who discussed the effect of FGM plate size on the stress
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concentration, the plate can be approximately considered infinite in the case and it causes
few errors, which can be neglected. Therefore, the following experimental results for the
designed plates can be compared with the theoretical solution, which was derived based
on the assumption of the infinite plate in Section 2.
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In terms of material design, two different cases, in which Young’s modulus decreases
and increases in the radial direction, were designed, as shown in Figure 4b. The materials
in the five rings and outer plate were set in the order of materials 1-6 and 6-1, respec-
tively. They are named the decreasing FGM plate and increasing FGM plate, respectively,
throughout the paper. During the design of increasing FGM plate, we matched the desired
optimal distribution of Young’s modulus given by Equation (13) as best we could, given
the available materials.

In order to fabricate two FGM plates, 3D models were firstly built by Solidworks,
according to the geometric sizes of two FGM plates. It is worth emphasizing that in order to
set different material types in the software of 3D Printer, each part with different material in
the plate should be separately built during the modeling process. The complete 3D model
of FGM plate was obtained by assembling each separate part. The specimens of FGM
plate were then fabricated, similar to the printing process of previous tension specimen.
The obtained specimens are shown in Figure 5. According to different material colors
in Figure 5a,b, it can be found that the material distributions in two FGM plates were in
accordance with material design. Figure 5c,d shows the surface macromorphology of two
FGM plates observed by microscope DSX 100 (Olympus Corporation, Tokyo, Japan). It
is clear that the surface was smooth and there were no macroscopic cracks, inclusions, or
other defects in two plates. Figure 5e,f shows the interface morphology observed by Carl
Zeiss Axio Imager (Carl Zeiss AG, Oberkochen, Germany). It is found that two FGM plates
had high density, good bonding interface, and forming quality.
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morphology of decreasing FGM plate, (f) interface morphology of increasing FGM plate.

3.3. Strain Measurement of FGM Plates

In this work, strain gages were utilized to determine the strain distribution along
the radial direction in the FGM plate. The physical dimensions of strain gauges were
3.5 × 2.2 mm. Seven measuring points were chosen, and their radial positions on the x-axis
are listed in Table 2. The points with numbers #1–5 were located in five rings, and points #6
and #7 were located in the outer plate. For the two-dimensional plane stress problems in the
paper, stress calculation required knowledge of normal strain in both X and Y directions.
Therefore, two strain gages were pasted parallel to the X and Y axis, respectively, for each
measuring position. Moreover, in order to monitor and minimize the out-of-plane warping
deformation of the plate after fabrication or any other possible out-of-plane bending during
loading, a further seven groups of strain gages were mounted on the back faces of the plate
corresponding to each measured position. Two strain gauges with the same radial position
on two faces were connected to the half bridge circuit in the experiment.

Table 2. Radial positions of seven measured points on the x-axis (mm).

Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7

7 11 15 19 23 35 45

The incremental loading method was employed in the tension test. The load was
increased with the same scale as ∆F = 100 N each time and from 100 N up to 700 N in seven
loads. The strains εx and εy at seven measured points were read out for each load level, as
listed in Tables 3 and 4. Since the measurement was made on the half bridge connection,
the original measured strains in Tables 3 and 4 are two times the real strain. The real strains
in the paper were expressed as εij, where the superscript i represents the loading times and
the j represents the number of measured points. It is worth noting that all materials in the
whole FGM plate were within the range of linear elastic deformation under the maximum
tensile load 700 N. In order to show the measured strains more visibly, the variations of
the strains εij along the x direction were drawn, as in Figure 6 for two FGM plates under
seven different loads. It can be seen that as the loads increase, the strains ε

ij
x and ε

ij
y at each

measured point decrease or increase with equal magnitude. In particular, two strains ε
ij
y for

the loads F = 600 N and 700 N fluctuated obviously at point #6 in the decreasing plate. The
reason for fluctuations may be the instability of resistance strain gauge or the problem of
bridge balance during measurement.
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Table 3. Measured strains 2εij (10−6 ) in the decreasing FGM plate under different loads Fi.

Load
Fi

Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7

2εi1
y 2εi1

x 2εi2
y 2εi2

x 2εi3
y 2εi3

x 2εi4
y 2εi4

x 2εi5
y 2εi5

x 2εi6
y 2εi6

x 2εi7
y 2εi7

x

100 N 484.2 −59.2 370.2 −38.4 422.7 −75.1 379.2 −81.4 502.5 −153.7 309.7 −151.7 263.4 −142.9
200 N 997.4 −174 772.0 −96.2 714.5 −145.3 778.8 −163.9 951.3 −309.5 605.4 −287.9 602.5 −289.4
300 N 1530.1 −285.3 1177.3 −155.2 1173.5 −217.8 1192.3 −239.4 1389.2 −454.3 910.3 −414.1 955.5 −431.1
400 N 2151.3 −389.4 1662.5 −211.4 1698.7 −285.8 1669.3 −308.8 1854.2 −588.7 1235.7 −529.5 1387.3 −562.4
500 N 2746.2 −490.4 2129.4 −256.9 2193.6 −345.7 2122.2 −379.7 2281.4 −730.6 1610.7 −657 1812.1 −694.1
600 N 3290.3 −602.5 2605.7 −311.6 2601.2 −415.6 2589.7 −447 2712.9 −870.4 3200.5 −813.2 2239.6 −843.8
700 N 3828.0 −717.5 3043.2 −361.9 2891.7 −476.5 2989.0 −510.2 3072.8 −999.3 3619.9 −947.4 2604.9 −986.1

Table 4. Measured strains 2εij (10−6 ) in the increasing FGM plate under different loads Fi.

Load Fi

Point #1 Point #2 Point #3 Point #4 Point #5 Point #6 Point #7

2εi1
y 2εi1

x 2εi2
y 2εi2

x 2εi3
y 2εi3

x 2εi4
y 2εi4

x 2εi5
y 2εi5

x 2εi6
y 2εi6

x 2εi7
y 2εi7

x

100 N 659.4 −78.1 496.5 −58.8 435.2 −49.2 388 −52.7 341.6 −74.2 198 −33.7 127.3 −39.9
200 N 1238.6 −121.9 971.4 −116.1 872.5 −92.7 746.3 −96.9 688.3 −120.9 410.7 −59.3 286.4 −69.2
300 N 1795 −170.1 1455.7 −174 1346.5 −141.2 1157 −148.7 1055 −165.9 640 −88.2 464.9 −98.3
400 N 2376.8 −212.3 1948.9 −234.9 1824.5 −189.2 1568.9 −194.5 1446.1 −214.6 860 −113.7 651.2 −129.9
500 N 2965.8 −258.1 2407.9 −294.3 2294.7 −235.4 1978.4 −242.7 1825.6 −260.9 1074.6 −139.2 833.5 −158.5
600 N 3567.6 −300.2 2876 −354.2 2764.9 −283.3 2380.8 −292.7 2210.6 −307.6 1285 −169.5 1014 −187.9
700 N 4238.4 −340.3 3293.6 −412.3 3187.2 −327.9 2740.5 −343 2557.1 −349.3 1476.9 −194.6 1182.6 −219.4
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4. Results and Discussions
4.1. Theoretical Results

The theoretical solution of the stress field was firstly presented via the analytical
method [15] before discussing the experimental results. According to the dimensions
of printed FGM plates, we took the radius of circular hole as r0 = 5 mm in the theoret-
ical model and decomposed the FGM plate into five homogenous rings in the domain
r = 5 ∼ 25 mm and an outer homogenous plate. The Young’s moduli Ej(j = 1, 2, · · · 5)
in the rings and E6 in outer plate were chosen as those listed in Table 1. Moreover, the
remote loading stresses were taken as σ∞

x = 0, τ∞
xy = 0, and

σ∞
y = Fi/A, (14)

where the cross-sectional area of the plate is A = 360 mm2. Since the variation of Poisson’s
ratio has little influence on the stress distribution [15], Poisson’s ratio in the whole plate is
assumed to be a constant ν(r) = 0.3, which is the common value for materials.



Materials 2021, 14, 7845 9 of 13

The theoretical results of stress σy in two FGM plates under seven load levels are
shown in Figure 7. The solid lines represent the full field stress distributions. In order to
make a more intuitive comparison with the experimental results, the theoretical results of
stress at the measured points are marked with asterisks in Figure 7. It can be seen that the
full-field stress in two FGM plates increased in a regular manner, with the load increasing
from 100 N to 700 N. Due to the difference of Young’s modulus between each ring, the
hoop stress had an obvious abrupt change at the interface of each ring. By comparing the
results in Figure 7a,b, it can be found that the stresses σy of two FGM plates differ small
away from the hole but differ greatly near the hole. For the decreasing FGM plates, the
stresses near the hole were very high and about 4–5 times of those in the far field. On the
contrary, for the increasing FGM plates, the stresses near the hole were very low and even
lower than those in the far field.
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4.2. Experimental Results

Based on the experimental strains ε
ij
x and ε

ij
y in Tables 3 and 4, the stresses σ

ij
y at seven

measured points can be calculated according to the generalized Hooke’s law due to the
tensile deformation within the range of linear elastic

σ
ij
y =

Ej

1− ν2

(
ε

ij
y + νε

ij
x

)
, (15)

where Ej is Young’s modulus corresponding to each measured point.
The variations of the experimental stress σy along the x direction were drawn as in

Figure 8 for two FGM plates under seven different loads. It can be seen that, as the load
Fi increased from 100 N to 700 N, the experimental stress at most positions in two plates
increased by the same amount. In particular, there were certain fluctuations at the point
of strain gage #6 in the decreasing plate in Figure 8a. It can be also found from Figure 8a
that the stress value decreased rapidly away from the hole. The stresses near the hole were
significantly higher than those in the far field. For the increasing FGM plate in Figure 8b,
the stresses near the hole were lower than those in the far field, and the maximum stress
appeared at the position of strain gage #5. The stress concentration did not occur at the
edge of hole. The experimental results here were consistent with the theoretical analysis
in Figure 7 and further prove an important conclusion proposed by Yang et al. [15]. That
is, the decreasing Young’s modulus along the radial direction in the plate results in more
severe stress concentration at the hole, while the increasing Young’s modulus can alleviate
or even eliminate the stress concentration near the hole.
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4.3. Comparison of Experimental and Theoretical Results

In order to make a comparison of experimental and theoretical results, their aver-
age stresses under seven loads were calculated. For the experimental results, we firstly
calculated the strain increments ∆ε

j
x and ∆ε

j
y, corresponding to the loading increment

∆F = 100 N at each point, and then calculated their average strain increments ∆ε
j
x−ave and

∆ε
j
y−ave. Finally, the average stresses σ

j
y−ave can be derived at each point in the linear range

σ
j
y−ave =

Ej

1− ν2

(
∆ε

j
y−ave + ν∆ε

j
x−ave

)
. (16)

The comparison of experimental and theoretical results of dimensionless hoop stresses
along x direction is shown in Figure 9. The influences of the radius of a circular hole and
loads were eliminated in the x-coordinate and y-coordinate, respectively. The referring
stress σ0 in y-coordinate was taken as σ0 = ∆F/A. The black solid curve in Figure 9 denotes
the stress distribution of a homogeneous plate containing a circular hole under uniaxial
tension, which is one of the classical solutions in the elastic theory [24–29]. It is well known
that the SCF is 3 for the case. The blue and red curves represent the stress distributions in
decreasing and increasing FGM plates, and the theoretical and experimental results of two
FGM plates are denoted by solid and dash lines, respectively. It can be found that, among
three types of plates, the peak stress or SCF was highest in the decreasing FGM plate but
lowest in the increasing FGM plate. It can also be found that, although the overall varying
trend of experimental and theoretical results was consistent, three experimental points only
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of 14 points lay on the theoretically calculated curves. The other experimental points were
more or less out of the theoretical predictions.
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The errors between the experimental and theoretical results of dimensionless stresses
σave

y /σ0 were calculated and listed in Table 5. It can be observed that the error was more
than 15% at measured point #1 and more than 20% at points #6 and #7 in both plates.
For measured point #1, the error was mainly caused by the limitation of the strain gauge
method. As we all know, one strain gage can only measure one “point”, and the measured
strain was just the average value measured over the active area of the strain gage. The
active area of the strain gage covered a steep gradient of stress concentrations at the edge
of hole (point #1). Therefore, its accuracy was much less. The errors at points #6 and
#7 were mainly caused by the size of chucks in the testing machine. The width of the
chucks was smaller than that of the plate, as shown in Figure 8. Therefore, the chucks
only held the middle part of the plate during loading. The marginal area of the plate was
not loaded enough. Therefore, the experimental stresses at points #6 and #7 were much
lower than the theoretical predictions. The errors at other points mainly came from some
assumptions in theoretical calculation and the operation of the experimental process; for
example, (1) neglect of the variation of Poisson’s ratio in the theoretical analysis, (2) errors
in the measurement of Young’s modulus of printing materials, (3) human operations,
including mounting of strain gauge, clamping of specimen, etc. With the above factors
taken into account, it can be considered that the experimental results verify the theoretical
analysis within the reliable accuracy of the test.
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Table 5. The errors for experimental and theoretical results of dimensionless stresses σave
y /σ0.

Point Number
Theoretical Result Experimental Result Error

Decreasing
Plate

Increasing
Plate

Decreasing
Plate

Increasing
Plate

Decreasing
Plate

Increasing
Plate

Point #1 2.631 0.682 2.234 0.514 −15.1% −24.6%
Point #2 1.635 0.921 1.597 0.781 −2.3% −15.2%
Point #3 1.342 0.995 1.220 1.033 −9.1% 3.8%
Point #4 1.101 1.146 0.960 1.177 −12.8% 2.7%
Point #5 0.954 1.207 0.672 1.323 −29.6% 9.6%
Point #6 0.835 1.114 0.451 0.874 −46.0% −21.5%
Point #7 0.921 1.058 0.306 0.711 −66.8% −32.8%

5. Conclusions

Based on the authors’ previous theoretical model, two kinds of FGM plates contain-
ing holes with radially increasing and decreasing Young’s modulus were designed and
fabricated by means of modern multi-material 3D printing. The strains at different radial
points in two FGM plates were experimentally measured using strain gages under uniaxial
tension. The stresses were calculated within the range of linear elastic from the measured
strains. The results were compared with the theoretical solutions derived on the basis of
the authors’ previously theoretical model. It is found that the experimental results agree
with the theoretical solutions. They both demonstrate that the stresses near the hole in the
decreasing FGM plate were much higher than that of homogeneous plate, while the stress
concentration reduced obviously in the increasing FGM plate. The successful experiment
and fabrication of the specimens in the paper are of great significance to the application of
FGM in reducing stress concentration in the future.
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