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Abstract

New approaches targeting metastatic neovasculature are needed. Payload capacity, cellular transduction efficiency, and
first-pass cellular uptake following systemic vector administration, motivates persistent interest in tumor vascular
endothelial cell (EC) adenoviral (Ad) vector targeting. While EC transductional and transcriptional targeting has been
accomplished, vector administration approaches of limited clinical utility, lack of tumor-wide EC expression quantification,
and failure to address avid liver sequestration, challenged prior work. Here, we intravenously injected an Ad vector
containing 3 kb of the human roundabout4 (ROBO4) enhancer/promoter transcriptionally regulating an enhanced green
fluorescent protein (EGFP) reporter into immunodeficient mice bearing 786-O renal cell carcinoma subcutaneous (SC)
xenografts and kidney orthotopic (KO) tumors. Initial experiments performed in human coxsackie virus and adenovirus
receptor (hCAR) transgenic:Rag2 knockout mice revealed multiple ECs with high-level Ad5ROBO4-EGFP expression
throughout KO and SC tumors. In contrast, Ad5CMV-EGFP was sporadically expressed in a few tumor vascular ECs and
stromal cells. As the hCAR transgene also facilitated Ad5ROBO4 and control Ad5CMV vector EC expression in multiple host
organs, follow-on experiments engaged warfarin-mediated liver vector detargeting in hCAR non-transgenic mice.
Ad5ROBO4-mediated EC expression was undetectable in most host organs, while the frequencies of vector expressing
intratumoral vessels and whole tumor EGFP protein levels remained elevated. In contrast, AdCMV vector expression was
only detectable in one or two stromal cells throughout the whole tumor. The Ad5ROBO4 vector, in conjunction with liver
detargeting, provides tractable genetic access for in-vivo EC genetic engineering in malignancies.
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Introduction

The tumor neovascularization field remains challenged by the

multiple evasion mechanisms induced in malignancies during

antiangiogenic therapies [1]. The discovery of vascular endothelial

growth factor (VEGF) [2] and its delineation as one of the

predominant tumor produced angiogenic factors spawned a

plethora of drugs and biologics targeting tumor production,

stromal availability, and VEGF receptor signal transduction [3].

Despite impressive tumor size reductions in some patients, tumor

growth eventually resumes. De novo or acquired tumor anti-

angiogenic therapy resistance is due to several factors. One evasion

mechanism is cancer cell production of untargeted angiogenic

factors [1]. Another mechanism is tumor chemo- and cytokine

endocrine secretion mobilizing and recruiting proangiogenic bone

marrow myeloid and immune cells [4]. A related mechanism is

production of untargeted angiogenic factors by tumor-activated

stromal fibroblasts [5]. Finally, tumors can shift their growth

patterns and invade deeply into tissues by host blood vessel

cooption [6].

While the principal function of tumor vasculature was presumed

to be a conduit for nutrient and oxygen influx and metabolic

efflux, emerging studies demonstrated that the microvasculature

and the vascular endothelial cell (EC), are crucial components for

establishment and maintenance of niches for host organ stem cells

[7]. Tumor stem/initiating cells have also been identified in these

perivascular niches [8]. This perivascular niche is maintained by

short range, ‘‘angiocrine’’, EC growth factor secretion and direct

contact between tumor cells and host microvessels [9]. Angiocrine

niche functions could be responsible for angiogenic inhibitor

resistance and provide a permissive focal microenvironment for

selection of aggressive tumor emergence [9].

These multifaceted resistance mechanisms have fostered

renewed interest in targeting tumor EC signaling pathways that

encompass both angiocrine and perfusion functions. Adenovirus
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(Ad) is one potential delivery vehicle for tumor EC targeting

[10,11]. Systemic injection of EC targeted Ads circumvents the

recurring challenge of tumor permeation vexing local vector

injection, and addresses the ultimate challenge of multiorgan

metastatic disease. However, prior studies failed to investigate

vector vascular expression in an extensive panel of host organs,

and elucidate global determination of reporter expression distri-

bution throughout the tumor neovasculature. Here we took initial

steps toward implementation of endothelial targeting using a first

generation adenovirus serotype 5 (Ad5) vector. We engaged a

transcriptional targeting strategy, creating a vector whose reporter

gene was regulated by the endothelial predominant human

roundabout4 (ROBO4) enhancer/promoter [12]. In hypervascular

786-O renal carcinoma xenografts, orthotopic tumors, and

spontaneous metastasis, Ad5ROBO4 directed enhanced green

fluorescent protein (EGFP) expression to the neovasculature,

whereas a vector whose reporter was controlled by the human

cytomegalovirus (CMV) enhancer/promoter produced sporadic

EC reporter expression in only one or two vessels throughout the

tumors. Ad5ROBO4 is the first step towards a portfolio of vectors

with the capacity for genetic manipulation of tumor ECs to disrupt

the ability of the microenvironment to support tumor growth and

therapy resistance.

Methods

Adenoviral vector construction
Replication incompetent E1- and E3-deleted Ad5CMV-EGFP

and Ad5-ROBO4-EGFP vectors were created using a two-plasmid

rescue method. The plasmids encoded expression cassettes

comprised of the human cytomegalovirus (CMV) major immedi-

ate-early promoter/enhancer or the ROBO4 enhancer/promoter

elements coupled to the enhanced green fluorescent protein EGFP

gene, followed by the bovine growth hormone polyadenylation

signal. These expression cassettes were cloned into a shuttle

plasmid (pShuttle, Qbiogene, Carlsbad, CA) and confirmed using

restriction enzyme mapping and partial sequence analysis. The

shuttle plasmids were linearized with Pme I enzyme and integrated

into the Ad5 genome by homologous recombination with

pAdEasy-1 plasmid in E. coli strain BJ5183. Recombinant viral

genomes were transfected into HEK293 cells using SuperFect

Transfection Reagent (QIAGEN, Chatsworth, CA), where they

were packaged into virus particles. Ad5CMV-EGFP and

Ad5ROBO4-EGFP were propagated in HEK293 cells, purified

twice by CsCl gradient centrifugation and dialyzed against 10 mM

HEPES, 1 mM MgCl2, pH 7.8 with 10% glycerol. The viral

particle (vp) concentration was determined by absorbance of

dissociated virus at A260 nm using a conversion factor of

1.161012 vp per absorbance unit. Viral titer also was measured

by a 50% tissue culture infectious dose (TCID50) assay. Briefly,

HEK293 cells were plated into 96-well tissue culture plates at

56103 cells per well, and then serial dilutions of viral stock were

added directly to the cells. Cells were incubated for 14 days, and

relative cell density was determined using a crystal violet staining

assay. Cell culture medium was removed and surviving cells were

then fixed and stained with 2% (w/v) crystal violet (Sigma-Aldrich)

in 70% ethanol for 3 hours at room temperature. The plates were

extensively washed, air-dried, and optical density was measured at

570 nm using a V Max plate reader (Molecular Devices

Corporation, Sunnyvale, CA). The number of wells with

observable cytopathic effect per each row was determined. The

viral titer was calculated by the Karber equation: T = 101+D(S-0.5)

6V21, where T is infectious titer in TCID50 ml21, D is the log10

of the dilution, S is the log10 for the initial dilution plus the sum of

ratios, and V is the volume in ml of the diluted virus used for

infection. Adenoviral vectors with the viral particle concentrations

1.122.961012 vp ml21, 1.322.061010 TCID50 ml21 and 1:84-

1:92 TCID50 to vp ratios were used in presented study.

Ethics statement
The Animal Studies Committee of Washington University in St.

Louis approved all procedures under protocol numbers 20120029

and 20110035. During surgery for orthotopic tumor implantation,

animal pain and suffering was minimized by using inhalational

anesthesia and postoperative analgesia.

Generation of composite mice
Rag22/2 (Rag2tm1.1Cgn) mice [13], in a mixed genetic back-

ground, were bred in house. Transgenic human coxsackie virus

and adenovirus receptor (hCAR) mice on a mixed genetic

background, likely C57Bl6/J and DBA [14], were obtained from

Sven Pettersson. ROSAR26R (Gt(ROSA)26Sortm1Sor) knock-in mice

were obtained in house. Rag22/2 mice were serially intercrossed

with R26R and hCAR transgenic mice to generate the composite

mouse line, hCAR/wt:R26R/R26R:Rag-22/2, subsequently denot-

ed as hCAR:Rag22/2 mice. The warfarin liver detargeting

experiments were performed using wt/wt:R26R/R26R:Rag22/2

littermates. The R26R conditional LacZ alleles were designed for

Cre recombination experiments but were not used in this study.

Creation of orthotopic and subcutaneous heterotopic
tumors

Mice from 6 to 12 weeks of age were used in the present work.

The 786-O human kidney cancer cell line was freshly obtained

from ATCC and cultured in RPMI with 10% FBS with penicillin/

streptomycin/amphotericin B. Xenograft tumors were established

by injection of 56106 cells in 50 ml of RPMI media using aseptic

technique. Kidney orthotopic tumors were established by left

kidney subcapsular injection of 46106 786-O cells in 40 mL of

RPMI media. Carprofen, 5 mg/kg sc X 3 days, (Pfizer Animal

Health, NY, NY) was used for postop analgesia. A total of 36 mice

were both injected with 786-O cells and subsequently with Ad

vectors (see below). As preliminary experiments revealed a 100%

kidney orthograft ‘‘take’’ rate, bioluminescence imaging was not

preformed in this study. Mice were sacrificed 4–6 weeks post 786-

O injection when the subcutaneous xenograft tumors reached a

diameter of 4 mm.

Ad vector injections, host organ, and tumor harvest
Mice harboring established subcutaneous and kidney tumors

were tail vein injected with 5.061010, 1.061011, or 1.561011 viral

particles of Ad5ROBO4-EGFP or Ad5CMV-EGFP in 200 ml of

saline. For warfarin experiments, mice were administrated

warfarin (5 mg/kg) dissolved in peanut oil subcutaneously on

day 23 and day 21 prior to vector injection. Organs and tissue

were harvested from mice anesthetized with 2.5% 2, 2, 2-

tribromoethanol (Avertin, Sigma-Aldrich, St. Louis, MO)

72 hours post vector injection for all experiments.

Tissue harvest and immunofluorescent localization of
reporter gene expression

Mice under Avertin anesthesia were perfused via the left

ventricle with phosphate-buffered saline (PBS, pH 7.4), followed

by 4% paraformaldehyde/PBS for whole body fixation. Mouse

organs and tumors were collected, post-fixed in 4% paraformal-

dehyde for 2 hours at room temperature, cryopreserved in 30%

sucrose for 16 hours at 4uC, and cryo-embedded in NEG50

Ad5ROBO4 Targeted Tumor Neovascular Expression
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(Thermo Fisher Scientific, Waltham, MA) over 2-methylbutane/

liquid nitrogen. Sixteen-micrometer frozen sections were air-dried,

washed in PBS, blocked with protein block (1% donkey serum in

PBS containing 0.1% Triton X-100), and incubated with primary

antibodies including: rat anti-endomucin, 1:1,000, (#14-5851-81

eBioscience, San Diego, CA), Armenian hamster anti-CD31,

1:1,000, (#MAB1398Z EMD-Millipore, Billerica, MA), and

rabbit anti-GFP, 1:400, (#A11122 Life Technologies, Carlsbad,

CA). After PBS washes, the slides were incubated with

corresponding Alexa Fluor 488 and Alexa Fluor 594, 1:400,

(Jackson ImmunoResearch Laboratories, West Grove, PA) conju-

gated secondary antibodies and counterstained for nuclei with

SlowFade Gold Antifade mounting reagent with 49,6-diamidino-2-

phenylindole (DAPI) (Life Technologies). Fluorescence microscope

images were collected using an FVII digital camera with Extended

Focal Imaging (EFI) function (Olympus America, Center Valley,

PA). To quantify the tissue section GFP fluorescence, the areas of

GFP (+) cells and dual CD31/endomucin (+) blood vessels were

measured and normalized by total tissue area per field. Imaging

experiments were repeated 2–4 times on independent sets of

vector-injected mice. Quantitative imaging experiments were

based on the ratio of Ad5ROBO4 vector expression (green

fluorescence emission from fluorophore tagged the anti-EGFP

secondary antibody) divided by total vascular endothelial area (red

fluorescence emission from the fluorophore tagged anti-CD31/

endomucin secondary antibodies) using image analysis software

(MicroSuite Biological Suite Version 5, Olympus), from 4–5 mice

in each group.

Cultured cell, tissue, and whole organ protein expression
analysis by immunoblotting

Anesthetized mice were perfused via the left ventricle with cold

phosphate-buffered saline (PBS, pH 7.4) containing 1 mM PMSF

(Sigma-Aldrich), organ tissues and tumors were snap frozen in

liquid nitrogen, and stored in the liquid nitrogen vapor phase.

Frozen tissues were pulverized using a liquid nitrogen-chilled

mortar and pestle (Cell Crusher, Thermo-Fisher), and the crushed

powder lysed on ice in radioimmunoprecipitation assay buffer

(RIPA; 20 mM Tris-HCl (pH 7.6), 0.15 M NaCl, 1% sodium

deoxycholate, 1% NP40, 1 mM EDTA, 1 mM EGTA) supple-

mented with Protease Inhibitor Cocktail, 1:10, Sigma-Aldrich) for

30 minutes. The late log-phase 786-O cells grown on a 10-

centimeter tissue culture dish was washed once with cold PBS, and

lysed on ice with 500 ml cold RIPA buffer supplemented with

protease inhibitors (see above). Protein lysates were separated on

polyacrylamide gels and transferred to polyvinylidene difluoride

(PVDF) membranes. Protein loading in individual lanes was

normalized first to b-tubulin and then VE-Cadherin. Membranes

were blocked in Tris-buffered saline (TBS, pH 7.6) containing

0.5% Tween 20 (TBST) and 5% nonfat dry milk and incubated in

5% BSA in TBST, containing the following antibodies: rabbit

polyclonal anti-ROBO4 (generous gift from Dean Li, University of

Utah), chicken anti-EGFP, 1:1,000, (#A10262 Life Technologies),

goat anti-VE-Cadherin, 1:400, (#A1002 R&D Systems, Minne-

apolis, MN), and polyclonal anti-b-tubulin, 1:20,000, (Novus

Biologicals, Littleton, CO) overnight. Membranes were washed

three times with TBST and incubated in TBST containing 5%

milk with the corresponding IgG-horseradish peroxidase conju-

gate, 1:5,000, (Santa Cruz Biotechnology, Santa Cruz, CA) for

1 hour. After three TBST washes, peroxidase activity was revealed

by enhanced chemiluminescence using ECL2 or SuperSignal West

Femto Western Blotting Substrate (both from Thermo Scientific)

and imaged using a Chemidoc XRS imaging system (Bio-Rad

Laboratories, Hercules, CA). The immunoblotting was quantified

by densitometry with Quantity One one-dimensional analysis

software (Bio-Rad Laboratories). Immunoblotting was repeated 2–

4 times using extracts from independent experiments from

separate sets of mice. Representative blots and densitometry

analysis were presented for each group of immunoblots in each

experiment.

Statistical analysis
Significance between groups in the differential fluorescent area

experiments was determined using one-way ANOVA with Tukey’s

correction for multiple group comparisons (GraphPad Prism, San

Diego, CA).

Results

Endogenous ROBO4 in renal cancer xenografts and
orthotopic tumors

While investigators agree that ROBO4 expression is restricted

to ECs and bone marrow hematopoietic stem cells [15–17],

ROBO4 expression level in normal organs and particularly in

tumors is controversial [18–22]. The 786-O human kidney cancer

cell line was chosen for our proof of concept tumor endothelial cell

(EC) expression engineering because these cells form hypervas-

cular tumors in immunodeficient hosts due to constitutive, high

level expression of hypoxia-inducible factor-2, and its downstream

target vascular endothelial growth factor [23,24]. To determine

differential expression of ROBO4 in this kidney cancer model, and

to provide a backdrop for our investigation of the human ROBO4

enhancer/promoter fragment used in our Ad5ROBO4-EGFP

vector, we tested ROBO4 protein levels in 786-O orthotopic (KO)

and subcutaneous (SC) tumors compared to liver using a validated

ROBO4 antibody (Figure 1) [25,26]. Prior to immunoblotting, we

noticed that the 786-O tumor vascular density appeared to be less

than that of normal organs despite its hypervascularity in tissue

sections stained with a CD31/endomucin cocktail (Figures 1A and

2). Indeed, image analysis revealed a 1.6- and a 1.7-fold lower

vascular area density in KO and SC 786-O tumors, respectively,

compared to liver (Figure 1B). Based on this vascular density

analysis, we immunoblotted for the EC specific marker, VE-

cadherin in our ROBO4 immunoblots and all subsequent

Westerns to normalize for this differential tumor/host organ

vascular density. Consistent with the tissue immunofluorescence,

densitometric analysis of VE-cadherin immunoblotting revealed a

2.3- and 1.6-fold decrease in KO and SC tumor versus liver

expression (Figures 1C and 1D). Liver was selected as our control

normal organ because of its avid Ad vector uptake [27,28]. To

further test for ROBO4 endothelial specificity, 786-O cells grown

in culture were lysed and run on the same immunoblots as livers

and tumors obtained from the mice. Compared to prior reports

suggesting robust ROBO4 upregulation in tumor angiogenesis

[12,17,18], endogenous ROBO4 was very modestly upregulated

2.0-fold in KO, and 1.4-fold in SC 786-O tumors, compared to

liver (Figure 1E).

Endothelial specificity of the Ad5ROBO4 vector following
systemic administration

While the 3 kb enhancer promoter fragment of human ROBO4

enhancer/promoter had been previously validated for endothelial

expression in single copy and endogenous locus transgenic knock-

in mice [12,29], there was no guarantee of its similar specificity

when used in the context of an Ad vector. Therefore to test

expression localization, we compared our Ad5ROBO4 versus

Ad5CMV vectors in a nine organ panel harvested from tumor

bearing immunodeficient Rag22/2 mice (negative littermate mice

Ad5ROBO4 Targeted Tumor Neovascular Expression
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derived from hCAR:Rag22/2 6 Rag22/2 matings, Materials and

Methods) (Figures 2A and 2C). Ad5ROBO4-mediated reporter

gene expression was exclusively EC localized predominantly in the

liver, with sporadically detectable rare EC expression in spleen

and heart (Figure 2A). In stark contrast, Ad5CMV-mediated

EGFP expression was predominantly detectable in liver hepato-

cytes, and occasional reticuloendothelial system (RES) cells in

spleen and adrenal gland (Figure 2C). Large format images

highlighted the potent cell type specific transcriptional retargeting

from hepatocytes to liver ECs mediated by the 3 kb ROBO4

enhancer/promoter (Figure S1).

Enhanced but promiscuous endothelial Ad vector
expression mediated by ubiquitous hCAR transgene
expression

As undetectable host organ Ad5ROBO4 vector expression was

likely due to extremely low levels of EC CAR protein, we

intercrossed Rag22/2 with hCAR transgenic mice to test the

maximal EC expression capacity of our Ad5ROBO4 vector. We

performed comparative experiments by intravenously injecting

1.061011 vp of either Ad5ROBO4-EGFP or Ad5CMV-EGFP

vectors into hCAR:Rag22/2 tumor bearing composite mice, but for

this analysis focused on host organs (Figures 2B and 2D).

Endothelial expression was markedly increased in all organs

except for liver and skin in Ad5ROBO4 injected mice (Figure 2B).

The Ad5CMV vector expression pattern in composite mice was

surprisingly complex (Figure 2D). Frequent EC expression was

detected in kidney glomeruli and peritubular vessels, muscle,

myocardium, adrenal and skin, with focal expression in brain

vessels (Figure 2D). In sharp contrast, liver Ad5CMV-mediated

EGFP expression remained restricted to hepatocytes, while splenic

expression was a composite of vessel ECs and interfollicular RES

cells (Figure S1 and Figure 2D). Of interest, and consistent with an

intravenous injection ‘‘first pass’’ phenomenon, appreciable

hepatocyte detargeting was produced by ubiquitous hCAR

transgene expression (Figure S1).

Ad5ROBO4 transcriptionally targets tumor endothelial
cells

After elucidation of EC expression patterns of the Ad5ROBO4

and Ad5CMV vectors in host organs either without (Figures 2A

and 2C) or with (Figures 2B and 2D) the hCAR transgene, we next

tested for differential vector expression in 786-O tumors (Figure 3).

In contrast to our nine-organ host panel wherein Ad5ROBO4

vector expression was essentially restricted to liver ECs, both KO

and SC tumors evidenced easily detectable, though sporadic,

Ad5ROBO4 EC EGFP immunofluorescence in Rag22/2 mice

(Figure 3A). The addition of the hCAR transgene produced

markedly increased intratumoral Ad5ROBO4 vessel expression

(Figure 3B). To test for tumoral Ad5ROBO4 mediated EC cell

Figure 1. Endogenous ROBO4 upregulation despite lower vascular density in orthotopic and xenograft tumors. A.
Immunofluorescence of the vascular endothelium in liver (upper panel) and 786-O human renal cell carcinoma (RCC) subcutaneous xenograft
tumor (lower panel). B. Vascular area analysis of liver (Li), kidney orthotopic (KO) tumors, and subcutaneous (SC) xenograft tumors (n = 6 mice
analyzed). C. Immunoblot of endogenous ROBO4 and the endothelial cell specific VE-cadherin from liver, kidney orthotopic and subcutaneous
xenograft 786-O RCC tumors, and from the derivative 786-O cells grown in culture. D. Densitometry analysis of VE-cadherin/tubulin ratio from C
mirrors the vascular area determination in B. E. Densitometry analysis of endogenous ROBO4 normalized to VE-cadherin expression reveals a 1.4- to 2-
fold increase in SC and KO tumors compared to liver. C–E: Immunoblot and densitometry was repeated twice with two independent sets of protein
extracts from two different tumor-bearing mice with essentially the same results. A. Magnification: 100X, Red: endomucin/CD31 antibody cocktail,
Blue: DAPI. B. *p,0.05, one way ANOVA with Tukey’s correction, mean 6 SD.
doi:10.1371/journal.pone.0083933.g001
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type specificity, we co-stained tumor sections with antibodies

cognate for pericyte, desmin, PDGFRb, and NG2, or inflamma-

tory cell, CD45, antigens (Figure S2). As a subset of intratumoral

vascular pericytes remained intimately associated with capillary

ECs, a fraction of these cells labeled with the red-emitting

fluorochrome appeared to partially co-localize with the green

EGFP immunofluorescent signal. However, closer examination

revealed distinct segmentation of vector transgene expression to

ECs rather than overlying pericytes (Figure S2). These data

supported the EC specificity of the Ad5ROBO4 vector in the

intratumoral microenvironment. In contrast to Ad5ROBO4,

Ad5CMV-mediated EGFP expression was undetectable in KO

and SC tumors grown in Rag22/2 mice (Figure 3C). The presence

of the hCAR transgene only elevated intratumoral Ad5CMV-

mediated EGFP expression to a level approaching, but still lower

than, that of Ad5ROBO4 in hCAR negative mice (Figure 3D

versus 3B). Moreover, only half of the sporadically dispersed

intratumoral EGFP positive cells in Ad5CMV vector injected

hCAR:Rag22/2 mice were co-localized within ECs, while the other

half were perivascular stromal cells (Figure 3D, third and sixth

columns, 400X magnification).

To semiquantitatively test for differential Ad vector-mediated

host organ versus tumor expression, we immunoblotted extracts

from both KO and SC tumors as well as liver, in hCAR:Rag22/2

mice injected with 5.061010 vp of either the Ad5ROBO4 (n = 4

mice) or Ad5CMV (n = 4 mice) vectors, and probed for EGFP

protein expression normalized to either VE-cadherin or b-tubulin

(Figures 4A–D). Four independent experiments yielded consistent

results, and one representative data set of the four is presented in

Figure 4A. The near total absence of Ad5CMV-regulated tumor

immunofluorescent expression (Figure 3D) was validated as

neither the orthotopic nor xenograft immunoblots contained

detectable EGFP protein (Figures 4A and 4D). In contrast, KO

and SC tumor extracts from Ad5ROBO4 injected mice contained

easily detectable EGFP expression that was 2.1- to 2.3-fold

elevated compared to liver when normalized to either b-tubulin or

VE-cadherin respectively (Figures 4A, 4B, and 4C).

Ad5ROBO4 vector transcriptionally targets metastatic
tumor endothelial cells

During tissue immunofluorescence analysis we serendipitously

detected intra-ovarian and peritoneal metastases in an

Ad5ROBO4 injected (1.561011 vp) hCAR:Rag22/2 mouse bear-

ing an orthotopic tumor (Figure S3A–D). Nearly all of the

microvessels within the intra-ovarian and peritoneal metastases

expressed EGFP. In contrast, there was almost no expression

within stromal ECs within the metastasis-bearing ovary except for

perifollicular microvessels (Figure S3A–3C). Nor was expression

detectable in ECs within the fallopian tube abutting the peritoneal

metastasis (Figure S3D).

Pharmacological liver detargeting increases the tumor EC
expression bias of the Ad5ROBO4 vector

As real world clinical applications demand sufficient target cell

vector payload expression in the context of low hCAR expressing

ECs, we manipulated Rag22/2 host mice attempting to decrease

liver vector uptake and conversely increase tumor viral particle

delivery without the necessity of the hCAR transgene. For

simplicity and across the board comparative analyses we chose

warfarin administration, because the predominant mechanism for

Ad vector liver sequestration is mediated by coagulation Factor X-

viral capsid hexon binding [30,31]. However, it is important to

keep in mind that levels of vector liver detargeting similar to

warfarin can be achieved using vector capsid mutation(s) [31–33].

First we tested liver detargeting efficiency in our Rag22/2 mice.

Warfarin, 5 mg/kg, pretreatment on day 23 and 21 before

injection of 1.061011 vp AdCMV-EGFP, revealed a marked

diminution of hepatocyte reporter expression (Figures 5C, 5D and

S4). Compared to the multiorgan EC expression mediated by the

hCAR transgene (Figures 2B and 2D), warfarin failed to achieve

appreciable multiorgan EC expression in Ad5CMV injected mice

(Figures 5C and 5D) except for clusters of EGFP positive RES cells

in the spleen, sporadic EC expression in the lung and adrenal

gland, and only 1–4 individual positive ECs in muscle and skin.

Brain lacked Ad5CMV EC vector expression. Encouragingly,

warfarin treatment prior to Ad5ROBO4 vector injection pro-

duced a similar paucity of host organ EC expression other than in

Figure 2. Adenoviral Type 5 (Ad5) vector expression in a host organ panel in tumor bearing immunodeficient Rag22/2, and
hCAR:Rag22/2 composite mice. Host organ EGFP reporter expression following intravenous injection of 1.061011 viral particles (vp) of either (A, B)
Ad5ROBO4-EGFP (ROBO4) or (C, D) Ad5CMV-EGFP (CMV) vectors. A. Ad5ROBO4 vector expression in Rag22/2 mice is widespread but focal in liver
endothelial cells (ECs), and rarely detectable in single splenic microvessels. All other organs are negative for vector reporter expression. B. Multiorgan,
EC restricted vascular expression is evident in Ad5ROBO4-injected hCAR:Rag22/2 composite mice. C. Ad5CMV vector expression in Rag22/2 mice is
detectable in liver hepatocytes, sporadic splenic (inflammatory) and adrenal cells. D. Ad5CMV vector expression in hCAR:Rag22/2 mice is complex,
hepatocyte localized, but decreased in frequency compared to C in liver, mixed inflammatory and endothelial cell localized in spleen, and EC localized
in all other organs including brain and skin. A and B: n = 5–6 mice, combined from 3–6 independent experiments, C and D: n = 3–4 mice combined
from 3–4 independent experiments Magnification: 100X, Red: endomucin/CD31, Green: EGFP immunofluorescence, Blue: DAPI.
doi:10.1371/journal.pone.0083933.g002
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liver and spleen, and very focal areas in the lung (Figures 5A, 5B

and S5).
Ad5ROBO4 EC targeting is maintained and differentially
enhanced in both orthotopic and xenograft tumors
compared to host organs following warfarin-liver
detargeting

As warfarin-mediated liver detargeting effectively eliminated

Ad5ROBO4-mediated EC expression in most host organs

Figure 3. Vascular restricted ROBO4-directed reporter expression in kidney orthotopic and subcutaneous xenograft tumors. The
tumors were harvested from the same Ad vector injected mice whose host organs were depicted in Figure 2. A. Ad5ROBO4 vector expression in
Rag22/2 mice is sporadic yet easily detectable in vascular ECs within tumors in either orthotopic or subcutaneous microenvironments. B. The hCAR
transgene markedly increases Ad5ROBO4 vector expression throughout both the orthotopic and subcutaneous tumors following injection into
hCAR:Rag22/2 mice. C. Ad5CMV expression in Rag22/2 mice is undetectable in either orthotopic or subcutaneous tumors. D. Isolated intratumoral
endothelial cell reporter expression in hCAR:Rag22/2 mice. White line: kidney-tumor boundary; Arrows: glomerular tufts. Magnifications: 40X, first and
fourth columns, and 200X, second and fifth columns, 400X, third and sixth columns. Red: endomucin/CD31, Green: EGFP immunofluorescence, Blue:
DAPI.
doi:10.1371/journal.pone.0083933.g003

Figure 4. Semiquantitative immunoblotting reveals differential Ad5ROBO4 reporter expression in tumor compared to liver. A.
Immunoblot of EGFP, VE-cadherin, and b-tubulin loading controls in tissue protein extracts from hCAR:Rag22/2 mice injected with either Ad5ROBO4,
left three lanes, or Ad5CMV, right three lanes. B. and C. Densitometry analysis of Ad5ROBO4 vector EGFP expression normalized to either VE-cadherin
or b-tubulin. D. Densitometry of AdCMV vector EGFP expression. As AdCMV expression was hepatocyte specific, this blot was only normalized to b-
tubulin. A–D: Representative immunoblots from n = 4 mice injected with either Ad5ROBO 4 or Ad5CMV vectors. Li: liver, KO: kidney orthotopic tumor,
SC: subcutaneous tumor.
doi:10.1371/journal.pone.0083933.g004

Ad5ROBO4 Targeted Tumor Neovascular Expression

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e83933



examined (Figure 5B and S5), our next question was whether EC

expression in the tumors of mice whose host organs were

examined in Figure 5, would be similarly diminished (Figure 6).

Similar to data reported in Figure 2, scattered EC vector

expression was detectable in both KO and SC tumors of vehicle

(peanut oil) treated, Ad5ROBO4-injected mice (Figure 6A).

Warfarin pretreatment produced a heterogeneous, but high level,

regional increase in intratumoral EC vector expression (Figure 6B).

In contrast, Ad5CMV expression was undetectable in intratu-

moral vessels either without or with warfarin pretreatment

(Figure 6C and 6D). To quantify warfarin’s effects on

Ad5ROBO4-mediated EC expression in KO and SC tumors

versus host organs, we measured the area of EC co-localized

reporter versus total EC immunofluorescent areas in tissue sections

from Ad5ROBO4-injected vehicle (n = 4) or warfarin-injected

(n = 5) mice (Figure S5). Warfarin produced an eight-fold increase

in EGFP-EC co-localization in orthografts and a six-fold increase

in xenografts (p,0.05 warfarin compared to vehicle, Figure S5).

Five of seven host organs evidenced minimal areas positive for

Ad5ROBO4 expression, albeit with single outlier mice in each

organ. Warfarin produced a 1.7-fold decrease in EGFP-EC co-

localization in liver and a 2.6-fold increase in co-localization in the

spleen (p,0.05 compared to vehicle, Figure S5).

To quantitatively test for warfarin mediated shifts of host organ

versus tumor vector expression we immunoblotted tissue extracts,

probing for EGFP, VE-cadherin, and the b-tubulin loading

control (Figures 7A–7C). As the ultimate question was the

warfarin-mediated differential tumor EC versus host organ

expression, we focused our experiments exclusively on mice

injected with the Ad5ROBO4 vector. Host organ whole tissue

extract immunoblotting of vehicle treated mice substantiated the

markedly predominant liver vector expression (Figure 7A, left

seven lanes and 7B, white bars). Warfarin pretreatment produced

a 2.5-fold increase in spleen and a 3-fold decrease in liver vector

expression (Figure 7A, right seven lanes and 7B, black bars).

Following this determination of host organ expression distribution,

the effect of warfarin on tumor versus liver expression was tested in

independent immunoblotting of KO, SC, and liver whole tissue

extracts (Figure 7C). Warfarin pretreatment produced a 2.1-fold

increase in KO, a 2.0-fold increase in SC, and a 4.7-fold decrease

in liver vector expression normalized to VE-cadherin compared to

vehicle (Figure 7C, left three gel lanes vehicle, right three lanes

warfarin). The fold-increase in tumor Ad5ROBO4 expression

mediated by warfarin-liver detargeting was closely comparable to

that produced by ubiquitous hCAR transgene expression, and

reinforces the conclusion that the Ad5ROBO4 vector is prefer-

entially, though not exclusively, expressed in tumor versus host

organ endothelium.

Discussion

The tumor gene therapy field is challenged by several key issues;

target cell vector transduction, hepatic toxicity due to viral gene

expression, and innate and adaptive host vector immune response

[27,34]. ECs are enticing targets for vector-mediated genetic

manipulation as they are the first cells exposed to intravenously

injected particles. Moreover, as tumor microvessels are conduits

distributed throughout tumors, particularly in hypervascular

tumors such as renal cancer, EC targeting in combination with

systemic vector injection can overcome intratumoral vector

distribution obstacles inherent in local injection. Here we took

our first steps towards EC targeting using a vector transcriptional

approach. The use of a previously characterized 3 kb enhancer/

promoter of the human ROBO4 gene [12] produced vascular

endothelial localized gene expression in mice injected with the

Ad5ROBO4 vector. This Ad5ROBO4 vector also predominantly

targeted the endothelium within renal cancer xenografts, subcap-

sular orthotopic and metastatic tumors. In addition, we discovered

that experimental renal cancers evidenced a remarkable pharma-

cological induction of tumor EC vector expression compared to

the concomitant decrease in the target organ most at risk for

adenoviral toxicity, the liver.

Figure 5. Warfarin pretreatment ‘‘detargets’’ the liver without producing multiorgan Ad5ROBO4 vector expression. A. Ad5ROBO4
injection into vehicle-treated Rag22/2 mice produced vascular EC expression predominantly in liver and spleen. B. Warfarin pretreatment, 5 mg/kg,
on day 23 and 21 prior to Ad5ROBO4 injection vector injection increased the frequency of splenic and lung EC expression and produced sporadic,
infrequent expression in kidney and heart. Liver expression was present but diminished. C. AdCMV injection into vehicle treated mice predominantly
produced hepatocyte expression with focal RES cell splenic and scattered lung expression. D. Warfarin pretreatment prior to AdCMV injection
markedly decreased the frequency of hepatocyte EGFP expression, while increasing sporadic splenic, and lung expression, inducing focal adrenal
cellular and rare muscle and skin EC expression. A, B and S5: Representative images from n = 5 mice from 2 independent experiments, C and D: n = 3
mice from 3 independent experiments. 161011 vp were injected in each group. Magnification 100X; Red: endomucin/CD31, Green: EGFP
immunofluorescence, Blue: DAPI.
doi:10.1371/journal.pone.0083933.g005
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Gene therapy approaches to the vascular endothelium have

utilized several approaches. Vector-host cell transduction was

manipulated to produce tumor EC targeting [35,36]. Adenoviral

and adeno-associated vectors were engineered for capsid display of

peptides identified on tumor-activated endothelium, or bispecific

antibodies cognate for integrins, selectins, or vessel luminal cell

surface receptors [37–39]. Vector pseudotyping using fiber-knobs

from serotypes other than adenovirus type 5, other animal host

species, or fiber replacements, either from other viruses or virus-

synthetic chimeric fibers, also achieved EC tropism [38,40]. Some

studies focused on the dual goals of liver sequestration inhibition,

and hCAR de-targeting concomitant with tumor EC transduc-

tional targeting [37]. EC specific transcriptional targeting efforts

have used vectors containing enhancer/promoter elements that

are induced by intratumoral growth factor production or hypoxia

[11,41,42]. EC production of conditionally replicative adenoviral

vectors have been constructed engaging the dual strategies of

tumor angiogenic factor induced EC proliferation, and DNA

enhancer/promoters activated by intratumoral hypoxia [43–45].

Most recently, a vector designed and preclinically tested for tumor

EC expression has advanced to a Phase I trial [46]. Despite this

progress, detailed comparative analysis of preclinical studies using

EC-targeted vectors has been challenging. Some studies were

solely performed in cultured ECs [39,47]. Bridging studies tested

in vitro transduced ECs in mixed tumor-EC injections [48]. Other

approaches used direct injection of vascular-targeted vectors into

tumors [49]. These experimental strategies failed to address the

crucial challenge of tumor vessel delivery following systemic

administration that is the preclinical translational lynchpin. Prior

work engaging systemic vector delivery predominantly used

enzymatic luciferase assays of whole tissue that were not linearly

quantitative and also failed to co-localize vector expression within

ECs [44]. Studies documenting co-localization frequently present-

ed ‘‘coned down’’ high magnification views of single vessels but

failed to evaluate tumor-wide vascular distribution [37,50,51]. Our

efforts focused on evaluation of vector reporter gene expression

using a combination of wide field low power, intermediate, and

high power microscopic magnification bolstered by quantitative

immunoblotting. This experimental design allowed us to uncover

definitive evidence for vascular EC vector co-localization within

primary and metastatic cancers, and enabled us to screen multiple

host organs to determine the degree of vector tumor EC

specificity.

We focused our first-line study on endothelial transcriptional

targeting of an Ad5 vector using a human ROBO4 enhancer/

promoter as previous work suggested that the endogenous gene

was uniquely expressed in vascular ECs [17]. However subsequent

studies in mice additionally detected endogenous Robo4 expression

in lymphatic endothelium, hematopoietic stem cells, and in

neocortex neurons during embryonic development [15,52,53].

While core ROBO4 functions including EC migration, vascular

permeability, and angiogenesis modulation have been delineated

[54], the data vary according to species and context, and in some

cases are contradictory. ROBO4 is necessary for angiogenesis

zebrafish [55], but dispensable during normal mammalian

development [25]. ROBO4 has been reported to either inhibit,

[26], stimulate [56], or repulse [57] EC migration. Contextual

modulation of EC biology by ROBO4 was particularly highlighted

in the murine breast, wherein Robo4 loss of function failed to affect

the quiescent mammary gland, but negatively regulated pregnan-

cy-associated, VEGF-mediated angiogenesis [21]. At the molec-

ular level, ROBO4 was shown to bind paxillin ultimately leading

to inhibition of Rac activation and lamellipodial formation via

GIT1-GAP Arf6 GTPase inactivation [58]. Most of the ROBO4

functions were delineated using Slit proteins as presumptive

ligands [21,25]. However Biacore analysis of recombinant proteins

failed to detect ROBO4-SLIT binding and instead, definitively

demonstrated the UNC5B receptor as the ROBO4 binding

partner [57,59].

Similar to function, it has been challenging to discern a

literature consensus on differential ROBO4 expression in tumor

versus host ECs. ROBO4 has been suggested to be a tumor EC

specific marker with minimal to undetectable expression in host

ECs [17,18,20]. In contrast, studies using the 3 kb ROBO4

enhancer/promoter engineered into our Ad vector, demonstrated

multiorgan EC expression [12,29]. However, as these were

enzymatic LacZ assays, low-level EC expression would be

amplified. Whole tumor ROBO4 expression assays revealed either

induction [22] or downregulation [19]. Our immunoblotting

analysis was consistent with both overexpression of endogenous

Figure 6. Warfarin liver detargeting enhances tumor neovascular endothelial cell reporter expression of the Ad5ROBO4 vector. A.
Ad5ROBO4 produced easily detectable scattered tumor endothelial cell EGFP immunofluorescence in both kidney orthotopic and subcutaneous 786-
O tumors in vehicle-treated Rag22/2 mice. B. Warfarin pretreatment markedly enhanced the multiplicity of tumor endothelial cell reporter gene
expression within both orthotopic and subcutaneous tumors in Ad5ROBO-injected mice. C. Ad5CMV injection failed to produce detectable tumor EC
expression in vehicle-treated, or D. warfarin-treated mice. A–D: tumors from the same mice as in Figure 5. Magnifications: 40X first and fourth
columns, 100X second and fifth columns, and 400X third and sixth columns. Red: endomucin/CD31, Green: EGFP immunofluorescence, Blue: DAPI.
doi:10.1371/journal.pone.0083933.g006
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ROBO4 in hypervascular 786-O renal KO and SC cancers, but

also detectable host organ expression. However, our studies using

hCAR nontransgenic mice clearly revealed differential

Ad5ROBO4 expression in tumor versus most host organs except

for spleen when liver vector sequestration was inhibited by

warfarin. In the original studies of this 3 kb enhancer/promoter

fragment ETS family and Sp1 transcription factors were necessary

for the ROBO4 enhancer/promoter fragment activity [12,29].

These transcription factors may also mediate our Ad5ROBO4

differential tumor versus host organ vector expression [60].

As ECs have negligible CAR levels we first chose the hCAR

transgenic mouse, to isolate transcription as a single experimental

variable for our proof of concept experiments [14]. These mice

ubiquitously express a truncated receptor lacking the cytoplasmic

domain necessary for signaling, but retain Ad5 binding. In the

original paper describing these mice, EC reporter gene expression

was demonstrated in a limited number of tissues, brain and lung,

using b-galactosidase [14]. Our multiorgan co-immunofluores-

cence analysis revealed promiscuous EC expression of Ad5CMV

in multiple organs at levels comparable to Ad5ROBO4 particu-

larly following high titer intravenous administration. The endo-

thelial CMV promoter transcriptional activation was likely due to

several elements including ETS, AP1, and NFkB sites [61]. The

striking lack of hepatocyte vector reporter gene expression in

Ad5ROBO4 injected mice, and markedly reduced expression in

Ad5CMV vector injected hCAR transgenic mice, supported the

concept that transcriptional or transductional retargeting can

ameliorate the liver toxicity of Ad5 vectors even with no

pharmacological or viral capsid alterations for hepatic sequestra-

tion diminution [31]. However, the promiscuous vascular EC

expression of the Ad5CMV vector revealed the limited utility of

hCAR transgenic mice as testing models for tumor selective

endothelial expression. Despite this confounding host organ

challenge, the striking differential Ad5ROBO4 versus Ad5CMV

EC vector expression in tumors grown in hCAR transgenic/

immunodeficient mice reinforced the notion of the Ad5ROBO4

Figure 7. Warfarin pretreatment enhances tumor Ad5ROBO4 vector expression. A. Multiorgan immunoblot of vehicle (left lanes) or
warfarin (right lanes) pretreated Rag22/2 mice injected with 1.061011 vp of Ad5ROBO4. B. Densitometry of A revealed that vehicle pretreatment was
associated with robust liver, detectable splenic, and trace to undetectable expression in all other sampled organs. Warfarin pretreatment produced a
2.5-fold increased splenic and a 3-fold decreased liver expression while all other organs still evidenced trace to undetectable expression. C.
Immunoblot and densitometry of liver and tumor EGFP, VE-cadherin, and b-tubulin expression in vehicle (left lanes) or warfarin (right lanes) from the
same pretreated, Ad5ROBO4-injected mice as in A and B. EGFP densitometry normalized to VE-cadherin, revealed a 4.7-fold decrease in liver and 2-
fold increase in increase KO and SC tumor expression produced by warfarin pretreatment. A–C: representative immunoblots from n = 2 mice from 2
independent experiments.
doi:10.1371/journal.pone.0083933.g007
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vector expression bias in tumor ECs. The paucity of intratumoral

EC expression in Ad5CMV injected mice was perplexing, but

suggestive of the fact that the tumor microenvironment failed to

upregulate transcription factors in the appropriate context to

activate the CMV promoter.

Our most impressive finding was six to eight-fold induction of

Ad5ROBO4 vector EC expression in tumors following factor X-

mediated liver detargeting in Rag22/2 mice lacking the hCAR

transgene. The only host organ whose EC expression increased

followed warfarin was the spleen, but here the 2.6-fold induction

was still lower than that of tumor. As endothelial CAR levels are

extremely low, our data also suggested utilization of CAR

independent vector transduction pathways in tumor and possibly

splenic ECs, one candidate being av/b5 integrin [62,63]. As this

integrin is differentially upregulated in tumor ECs [64], its

potential facilitation of vector-tumor EC transduction could

contribute to the differential expression bias of the Ad5ROBO4

vector in warfarin-liver detargeted mice.

Despite our encouraging data, we realize the need for further

vector optimization to achieve both greater selective tumor EC

expression specificity, and anticoagulant independent liver detar-

geting. It is likely that no enhancer/promoter will mediate tight

expression restriction confined to tumor compared to host ECs.

Even promising agents engineered for hypoxic induction likely

mediate expression within organ regions with physiological

hypoxia such as the kidney medulla and papilla, the centrilobular

regions of the liver parenchyma, and the subendocardial zone of

the heart. Thus, additional genetic engineering of this and likely

other vectors with EC targeting capability will likely be necessary

to enhance tumor versus host organ selectivity. Two candidate

genetic manipulations include 39 DNA sequences cognate for

microRNAs downregulated in tumor versus host ECs [65,66], or

59 DNA elements whose secondary structure resolution requires

the intracellular signaling milieu of growth factor activation for

efficient vector transgene mRNA translation [67]. Genetic

manipulation of the vector capsid will also be added to our EC-

targeted vectors [32–34] to obviate the need for warfarin that is an

obvious obstacle for clinical translation. However, it is most

important to consider the goals of Ad vector tumor EC targeting.

In the past, angiogenesis inhibition coupled with intratumoral

microvascular ablation was paramount. Increasingly tumor

vascular biologists are focusing on the flow-independent tumor

growth promoting and perivascular trophic functions of ECs [9].

In this context, absolute tumor EC specificity might not be

essential because the Ad vector mediated EC expression that is

targeted to the perivascular tumor microenvironment may have

minimal biological effect even though its present in normal organs

such as the spleen. That said, enhancement of Ad5ROBO4 vector

expression in tumor endothelium using liver detargeting opens the

door for studies in a wide gamut of preclinical models to gain the

most insight for optimal translational design of tumor EC-targeted

vectors ultimately suitable for clinical trials.

Supporting Information

Figure S1 Large format views of Ad5ROBO4 endothelial
specificity and liver detargeting mediated by ubiquitous
hCAR expression in transgenic mice. Magnification: 100 X.

Red: endomucin/CD31 cocktail, Green: EGFP immunofluores-

cence, Blue: DAPI.

(TIF)

Figure S2 Tumor Ad5ROBO4-EGFP expression is endo-
thelial cell restricted. 786-O kidney orthotopic (KO) and

subcutaneous (SC) xenograft expression of the pericyte and

stromal fibroblast markers desmin, PDGFRb, and neural glial

antigen-2 (NG2) is contained within a tissue compartment distinct

from EGFP expressing cells. Similarly CD45 cells lack EGFP

expression. Magnification: 200X. Red: each stromal protein;

Green: EGFP immunofluorescence; Blue: DAPI.

(TIF)

Figure S3 Ad5ROBO4 transcriptionally targets meta-
static endothelium. A–D. Intra-, and peri-ovarian ‘‘Kruken-

berg’’ renal carcinoma metastases from subcapsular 786-O

orthografts in hCAR:Rag22/2 mice injected with 1.561011 vp

display extensive and intense microvessel EGFP immunofluores-

cence. A. and B. Nearly all vessels within the two ovarian

micrometastases (arrowheads) express the Ad5ROBO4 vector,

whereas EGFP immunofluorescence is only detected in circum-

ferential microvessels immediately adjacent to host ovarian follicles

(asterisks), but not in stromal microvessels. C. Higher magnifica-

tion view of one of the metastases revealing near ubiquitous

intratumoral Ad5ROBO4 vector vascular expression. D. Near

ubiquitous Ad5ROBO4 vascular expression is also evident in

microvessels within a peritoneal metastasis adherent to the

adjacent host fallopian tube (asterisks) whose vessels are negative

for vector expression. Magnification: A and B 40X, C 200X, D

100X. A, C and D: Red: endomucin/CD31 cocktail, Green:

EGFP immunofluorescence, Blue: DAPI. B: EGFP immunohisto-

chemistry (brown) and hematoxylin counterstain.

(TIF)

Figure S4 Large format view of warfarin mediated liver
detargeting. A. Vehicle (peanut oil) pretreated Rag22/2 mice

injected with 1.061011 vp of Ad5CMV evidence EGFP expression

localized to liver hepatocytes. B. Warfarin pretreatment markedly

decreased the frequency of positive hepatocyte expression of the

Ad5CMV vector, while producing sporadic expression in

reticuloendothelial system and rare endothelial cells. Magnifica-

tion: 100X. Red: endomucin/CD31 cocktail, Green: EGFP

immunofluorescence, Blue: DAPI.

(TIF)

Figure S5 Warfarin liver detargeting markedly increas-
es intratumoral and splenic EGFP positive vascular
areas without significant host organ expression. Ratios of

tissue section areas positive for EGFP colocalized with CD31/

endomucin immunofluorescence over total CD31/endomucin

immunofluorescence determined using image analysis software.

In vehicle treated mice (n = 4), liver, spleen, kidney orthotopic and

subcutaneous tumors are the only vascular beds with an

appreciable extent of Ad5ROBO4 endothelial cell expression.

Warfarin (n = 5 mice), mediated a marked enhancement of the

extent of vector expressing tumoral vascular areas with a decrease

in liver vascular area vector expression. Splenic vector positive

area also appreciably increased with barely detectable induction in

all other host organs except for a single outlier mouse. Blue dots:

mean of four 100X fields for each vehicle-treated mouse, Red dots:

mean of four 100X fields for each warfarin-treated mouse.

*p,0.05 one-way ANOVA with Tukey’s multigroup correction

comparing vehicle and warfarin.

(TIF)
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