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Abstract

Aging is closely associated with cognitive decline affecting attention, memory and

executive functions. The hippocampus is the core brain area for human memory,

learning, and cognition processing. To delineate the individual functional patterns of

hippocampus is pivotal to reveal the neural basis of aging. In this study, we developed

a group-guided individual parcellation approach based on semisupervised affinity

propagation clustering using the resting-state functional magnetic resonance imaging

to identify individual functional subregions of hippocampus and to identify the func-

tional patterns of each subregion during aging. A three-way group parcellation was

yielded and was taken as prior information to guide individual parcellation of hippo-

campus into head, body, and tail in each subject. The superiority of individual

parcellation of hippocampus is validated by higher intraregional functional similarities

by compared to group-level parcellation results. The individual variations of hippo-

campus were associated with coactivation patterns of three typical functions of hip-

pocampus. Moreover, the individual functional connectivities of hippocampus

subregions with predefined target regions could better predict age than group-level

functional connectivities. Our study provides a novel framework for individual brain

functional parcellations, which may facilitate the future individual researches for

brain cognitions and brain disorders and directing accurate neuromodulation.
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1 | INTRODUCTION

Aging not only affects individuals' lifestyle, but also gradually modu-

lates brain structures and functions, especially attention and memory

capacities (Damoiseaux, 2017; Onoda, Ishihara, & Yamaguchi, 2012;

Mather & Carstensen, 2005; Mcdonough, Wood, & Miller, 2019). The

aberrant aging trajectory is related to the onset of Alzheimer's disease,

a syndrome with severe cognitive decline (Agosta et al., 2012; Cha,

Hang, Kim, Sang, & Lee, 2013; Conwell et al., 2018; Wu et al., 2016).

The hippocampus is pivot for cognition, learning, and memory

processing in the human brain (Bartsch & Wulff, 2015; Duzel, Praag, &

Sendtner, 2016; Knierim, 2015; Max, 2017). During aging, declined

overall volume of hippocampus, especially in people after 60 years has

been widely reported (Fjell, Mcevoy, Holland, Dale, & Walhovd, 2014;

Flores, Joie, & Chételat, 2015). The previous reports showed that ele-

vated age-related coupling between the bilateral hippocampus is associ-

ated with lower episodic memory performance indicating hippocampus

collapse leads to memory loss and potentially causes a fast transition to

Received: 6 May 2021 Revised: 18 August 2021 Accepted: 4 September 2021

DOI: 10.1002/hbm.25662

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2021;42:5973–5984. wileyonlinelibrary.com/journal/hbm 5973

https://orcid.org/0000-0002-0783-3705
https://orcid.org/0000-0002-0421-5709
mailto:jiaojianwang@uestc.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


AD in elderly individuals (O'Brien et al., 2010; Salami, Pudas, &

Nyberg, 2014). At the subregion-level, recent studies found lower func-

tional connectivity between posterior hippocampus and medial prefron-

tal cortex in venerable age compared to younger age population

(Damoiseaux, Viviano, Yuan, & Raz, 2016; Wang et al., 2010). All these

studies demonstrated that to delineate the functional patterns of hippo-

campus is important to reveal the neural basis of cognition and memory

decline during aging (Andrewshanna et al., 2007; Koch et al., 2010).

Hippocampus is a functionally heterogamous area with different

functional subregions having different functions (Das et al., 2011;

Zarei et al., 2013; Zhong et al., 2019). The anterior hippocampus is

mainly involved in emotion processing while the posterior hippocam-

pus primarily participates in spatial memory (Blum, Habeck, Steffener,

Razlighi, & Stern, 2014). Thus, to uncover the aging effects at the

subregion-level may better identify the neural mechanism of aging.

Although subregions of the hippocampus have been defined with

cytoarchitecture or connectivity-based parcellation approaches, how-

ever, different parcellation studies proposed different parcellation

schemes for hippocampus (Amunts et al., 2005; Cheng & Fan, 2014;

Cheng, Zhu, Zheng, Liu, & He, 2020; Robinson et al., 2015; Zhong

et al., 2019). Moreover, all the previous parcellation schemes for hip-

pocampus are based on group-level mapping and thus are hardly to

reflect the individual differences.

Individual differences in cognition and behaviors have been widely

reported in neuroscience researches (Brown, 2017; Tavor et al., 2016).

The brain structural and functional variability across individuals has also

been identified in recent literatures (Mueller et al., 2013). The individual

brain functional parcellation and functional networks mapping were

developed and employed to reveal the functional underpinnings for

brain cognitions and disorders (Han et al., 2019; Wang, Buckner,

et al., 2015). However, all the existing individual brain mapping

approaches are based on the predefined prior brain atlas to guide

parcellation, and thus they are constrained by the parcellation schemes

of the used atlases (Han et al., 2019; Li et al., 2019; Wang et al., 2018).

Although consistent anatomical and functional topological architecture

of some brain areas have been documented, the topological variations

between structural, anatomical, and functional parcellations have been

demonstrated (Caspers et al., 2008; Ruschel et al., 2014; Wang

et al., 2012; Wang et al., 2017). Thus, atlases-free individual parcellation

and functional mapping are essential and may better characterize the

individual functional organization to delineate the individual differences

compared to group-level mapping.

In this study, we proposed a new individual brain parcellation

approach using affinity propagation clustering which is able to auto-

matically define the number of clusters (Frey Brendan &

Detbert, 2007). Then, we validated the superiority of our proposed

method by measuring the functional similarities compared to group-

based parcellation results. In addition, the relationship between indi-

vidual variations and coactivation patterns of hippocampus mostly

related cognitive functions were evaluated. Finally, we applied this

approach to define individual functional subregions of hippocampus in

aging population and to test whether individual parcellation could bet-

ter predict age than group-level parcellation.

2 | MATERIALS AND METHODS

2.1 | Subjects

A public adult lifespan resting-state functional magnetic resonance

imaging (rs-fMRI) data (Southwest University Adult lifespan Dataset,

SALD) was accessed through f1000 project (http://fcon_1000.

projects.nitrc.org/indi/retro/sald.html). By excluding the bad fMRI

data with large head motion (see the following fMRI preprocessing), a

total of 262 healthy subjects (101 males/161 females, age range of

19–75 years, mean and SD = 42.03 ± 16.73 years) with high quality

rs-fMRI were finally used in this study.

2.2 | Resting-state fMRI data acquisition

The rs-fMRI data were scanned using a Siemens 3T Tim Trio MRI

scanner with echo planar imaging sequence. The subjects were

instructed to lie down, close their eyes, and rest without thinking any-

thing and not fall asleep. The acquisition parameters were the follow-

ings: TR = 2,000 ms, TE = 30 ms, voxel size = 3.4 � 3.4 � 3 mm3

with 1 mm gap, 32 axial slices, and 242 volumes. The detailed infor-

mation about subjects and rs-fMRI scanning parameters can be found

in a previous study (Wei et al., 2018).

2.3 | Resting-state fMRI data pre-processing

The preprocessing of resting-state fMRI data including the follow-

ing steps: discarding the first 10 volumes to facilitate magnetiza-

tion equilibrium; realigning all the remained volumes to the first

volume to correct head motion; normalizing to the standard EPI

template in MNI space; regressing out Friston 24-parameter model

of head motion, white matter, cerebrospinal fluid and global mean

signals; filtering with a temporal band-pass of 0.01–0.1 Hz. To

exclude the head motion effects, the data were discarded if the

head-movement exceeded 2 mm or 2� in any direction. Moreover,

scrubbing was further used to eliminate the bad images (before

two time points and after one time point) exceeding the pre-set

criteria (frame displacement [FD], FD < 0.5) for excessive motion.

If the deleted number of volumes exceeding half of the time

points, that is, 116 volumes for each subject, this subject was dis-

carded for the following analysis. Under these criteria, 232 subjects

were excluded and the remained 262 subjects were used for

analyses.

2.4 | Hippocampus definition

To define the individual functional subregions of hippocampus, the

human bilateral hippocampus seed masks were defined using

Harvard-Oxford cortical atlas with 25% probability (Desikan

et al., 2006). After obtaining the hippocampus masks, the bilateral
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masks were downsampled into 3 mm cubic voxel to calculate func-

tional connectivity for parcellation.

2.5 | Group-guided individual parcellation of
hippocampus

To achieve individual parcellation of hippocampus, we first performed

the group-level parcellation of hippocampus across all the subjects.

For group-level parcellation, we first calculated the whole brain func-

tional connectivity map for each voxel within hippocampus. Next, the

similarity for the functional connectivity maps of every pair of voxels

within the hippocampus was defined using eta2 (Wang, Yang,

et al., 2015; Wang et al., 2016), and a similarity matrix S for each sub-

ject was obtained. Then, all the similarity matrixes were averaged to

obtain one similar matrix which was clustered to obtain the

parcellation results of hippocampus. To automatically identify the

optimal number of clustering, the affinity propagation method (Frey &

Dueck, 2007) was employed to segment the similarity matrix.

The AP algorithm requires two input parameters: input similarity

matrix S, in which S(i,k) is the negative value of the squared Euclidean

distance between points i and point k in the similarity matrix (for simi-

larity matrix X = {x1,x2,…,xN}, s i,kð Þ¼� xi�xkk k2, i ≠ k, i, k�{1,2,…,N});

and preference “P,” recommended as the median of S(i,k) when there

is no prior, determines the number of clustering (Frey & Dueck, 2007).

The algorithm takes all data points as potential exemplars and calcu-

lates the following two messages including the “availability” a(i,k) and

the “responsibility” r(i,k)) to characterize the appropriateness of exem-

plars selection for the data points iteratively to obtain the optimal

clustering results (Zhang, Li, et al., 2011; Zhang, Tuo, et al., 2011). The

number of clusters was finally determined when the iterative process

converges. The details of AP clustering are as follows (Xia

et al., 2008):

Step 1: initialize the availabilities:

a i,kð Þ¼0:

Step 2: update the responsibilities:

r i,kð Þ S i,kð Þ� max
k0s:t:k0 ≠ k

a i,k0
� �þS i,k0

� �� �

Step 3: update the availability:

a i,kð Þ min 0, r k,kð Þþ
X

i0s:t:i0 ≠ i,k

max 0,r i0,k
� �� �

8<
:

9=
;

a k,kð Þ 
X

i0s:t::i0 ≠ k

max 0,r i0,k
� �� �

Step 4: iterations convergence terminate:

ci argmax
k

r i,kð Þþa i,kð Þf g

For parameter of preference “P,” the recommended value usually

does not obtain a satisfactory result. In our study, we used a

semisupervised algorithm for step optimization to search the optimal

“P.” The optimal “P” value was determined by identifying the largest

silhouette value across different “P” values (Kaufman &

Rousseeuw, 1990). At a specific clustering solution, silhouette value,

sil, is defined as follows:

sil ið Þ¼ b ið Þ�a ið Þ
max a ið Þ,b ið Þf g

where a represents intracluster similarity, that is, the average distance

between data point i and the other points in a specific cluster, and b is

the interclusters similarity, that is, average distance between data

point i in one cluster and all the data points in the other cluster. The

average of the silhouette values is defined:

AS¼ 1
N

XN
i¼1

sil ið Þ

where N is the total number of data points. “AS” reflects the quality

of clustering results varying from 0 to 1, and a larger “AS” represents
better clustering quality. To initialize the “P” value, Smed and Smin as

median and min of S(i,k) were calculated, respectively. The “P” chan-

ged from Smed recommended by the original paper to the values of

the end of search (Smed + step � number of steps, where step = Smin/

T, T is a random value to determine the length of step, T = 100 used

in this study). If the “AS” values go smooth from one step to all the

other steps behind it, the corresponding “P” value is considered to be

optimal. The smooth of the changing “AS” values was characterized

by the gradient values calculated as the latter value minus the previ-

ous value, and no blunt change of the gradient value was considered

to be smooth. The number of clusters corresponding to the optimal

“P” was taken as the optimal group-level parcellation results.

Next, the group-level parcellation of hippocampus was used to

guide the individual parcellation using Litekemans method which has

fast speed and high accuracy (http://www.cad.zju.edu.cn/home/

dengcai/Data/code/litekmeans.m). The mean whole brain functional

connectivity map of each subregion of hippocampus yielded by

group-level parcellation was first calculated and taken as initial clus-

tering centers across all the voxels within each subregion and across

all the subjects. Finally, the whole brain functional connectivity maps

of all the voxel in hippocampus in each subject were clustered to

achieve individual parcellation of hippocampus.

2.6 | Validation of the individual parcellation
approach

To test and validate the reliability of the developed group-guided indi-

vidual functional parcellation approach, we applied this method to

parcellate supplementary motor area (SMA), a brain region that has

been widely used to test the applicability and reliability of resting-
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state fMRI-based functional parcellation because of its established

functional architecture (Johansen-Berg et al., 2004; Kim et al., 2010;

Zhang et al., 2015). SMA mask was defined using automated anatomi-

cal labeling template (Tzourio-Mazoyer et al., 2002). Then, individual

parcellation of SMA was performed using our developed group-

guided individual parcellation approach. Both two- and three-way

parcellations of SMA were performed in both group and individual

levels referring to previous studies.

2.7 | Functional similarity validation

To validate the superiority of individual parcellation results compared

to group-level parcellation, intraregional functional connectivities and

time series similarities were calculated in this study. The intraregional

functional connectivity similarity is the average Pearson correlation

coefficients between any pair of voxels in each subregion. The

intraregional time series similarity is characterized using Kendall's

coefficient concordance (KCC) of all the voxels' time series in a spe-

cific subregion (Kendall, 1990).

KCC¼
P

Rið Þ2�n R
� �2

1
12K

2 n3�nð Þ

where Ri is the sum rank of the ith voxel in a specific subregion of hip-

pocampus, R¼ nþ1ð ÞKð Þ=2 is the mean of the Ri, K is the number of

voxels in a specific subregion, and n is the number of total time

points.

2.8 | Relationship between individual parcellation
variations and coactivation patterns

To explore relationship between the variations of individual

parcellation and the coactivation patterns of hippocampus most

related cognitive functions including cognitive memory, episodic

recall, and emotion of angry. Meta-analyses of cognitive memory,

episodic recall, and emotion of angry were performed in the

BrainMap database. To obtain the peak ALE value of the hippo-

campus associated with cognition memory, episodic recall, and

angry emotion, the meta-analysis was employed in the BrainMap

database. The search criteria as follows: the behavior domain was

cognition memory and emotion of angry; the paradigm class was

episodic recall; the imaging modality was fMRI; and the experiment

content was normal mapping. Meta-analysis of cognition memory

identified 386 papers, 1,233 experiments. Meta-analysis of epi-

sodic recall identified 22 papers, 97 experiments, and meta-

analysis of emotion of angry identified 37 papers, 97 experiments.

Next, activation likelihood estimation (ALE) was employed to map

the coactivation patterns for the three functions. Then, ALE value

of each voxel in hippocampus was extracted and voxel-wise corre-

lation analyses were performed between ALE values and individual

variations.

2.9 | Age prediction

To further validate the superiority of individual functional parcellation,

the individual and group-level functional connectivities were sepa-

rately taken as features to predict individual ages. To define hippo-

campus involved functional networks, the voxel-wise whole brain

functional connectivity analysis of bilateral hippocampus was first per-

formed to define the target brain areas. One-sample t test was used

to identify the significantly connected brain areas with hippocampus.

The significant level was corrected using family discovery rate method

with p < .001, and minimum cluster size > = 100.

Next, the functional connections of each hippocampus subregions

yielded by individual and group-level parcellation with these target

brain areas were calculated and taken as features for prediction. Rele-

vance vector regression method which showed better performances

than other prediction methods was applied to predict the age (Cui &

Gong, 2018; Cui et al., 2016). A 10-fold cross-validation strategy was

used to estimate the generalization ability of the prediction mode

(Tang et al., 2018). Pearson correlation coefficient between the real

age and predicted age was calculated to depict the prediction perfor-

mance. The mean absolute error (MAE) values between real and

predicted age were also calculated to evaluate prediction.

2.10 | Age-related functional connections with
hippocampus

To explore age associated functional connections with hippocampus,

correlation analyses were performed between seed-to-target func-

tional connections and age. The seed to targets functional connec-

tions measured with Pearson's correlation coefficients between time

series were calculated for individual and group-level hippocampus

subregions. The Fisher r-to-z transformation was used to change the

r value to z value. Finally, correlation analysis between each individual

and group-level functional connectivity and age was performed, and

the significant level was set at p < .05 with Bonferroni correction.

2.11 | Comparisons with iteration adjusted
individual parcellation approach

We also compared our method with the previous iteration adjusted indi-

vidual parcellation approach developed by Wang, Buckner, et al. (2015).

First, a group-level parcellation of hippocampus was obtained and used

to guide individual parcellation. Second, individual parcellation of hippo-

campus for each subject was executed using iteration adjusted individ-

ual parcellation approach proposed by Wang, Buckner, et al. (2015). To

compare the performances of the two individual parcellation

approaches, voxel-wise overlap degree of each hippocampus subregion,

correlations between voxel-wise individual variations and ALE values of

the coactivation patterns for cognitive memory, emotion of angry, and

episodic recall, and age prediction with individual functional connectivi-

ties of hippocampus subregions were investigated.
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3 | RESULTS

3.1 | Individual functional parcellation of the
hippocampus

To determine the number of clusters, the maximum average silhouette

value and smooth variation of gradient of the average silhouette were

taken as the criteria to terminate searching the optimal preference

parameter (Figure 1a,b). Based on the criteria, the optimal three-way

group-level parcellation of bilateral hippocampus was found. The

three-way group-level parcellation identified head, body, and tail of

hippocampus (Figure 2a). Using the group-level parcellation results of

hippocampus as prior information, the individual parcellation results

for hippocampus were obtained, and five randomly selected individual

parcellation results are shown in Figure 2b. The obvious individual

variations of hippocampus parcellation results could be observed.

To quantitatively describe the individual variations, we calculated the

overlap degree at the voxel level for each subregion across all the subjects

(Figure 2c). The tail part in bilateral hippocampus show high overlap

degree, while the overlap degree in body and head part of hippocampus

is relatively lower than tail part, especially at the intersected part.

To validate our developed group-guided individual parcellation

approach, we adopted the same procedures to parcellate SMA in

which the functional topography has been well established. The

group-guided individual functional parcellation identified similar

group-level functional topography of this areas identified by previous

studies (Crippa et al., 2011; Johansen-Berg et al., 2004; Kim

et al., 2009; Zhang et al., 2015). The individual variations of functional

subregions in SMA could be obviously observed in five randomly

selected subjects (Figure S1).

3.2 | Validation of functional similarity

Intraregional functional connectivity and time series similarities ana-

lyses identified significantly higher similarities in individual than

F IGURE 1 The criteria to determine the optima number of clusters. The average silhouette values and the changes of gradient were used to
select the number of clusters. (a) The average silhouette values identified the optimal three-way parcellation for bilateral hippocampus which
show stable changes of the maximum average silhouette across more than 300 steps. (b) The gradient value of average silhouette values across all
the steps were depicted and no blunt change of gradient was found when hippocampus were parcellated into three subregions (K = 3). Thus, the
optimal three-way parcellation of hippocampus was finally used in this study
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group-level parcellation results of hippocampus subregions except for

the right head part of hippocampus which showed higher functional

connectivity (Figure 3a) and time series similarities (Figure 3b) in

group level than individual parcellation results. The functional connec-

tivity and time series similarities results indicated that individual

parcellation approach could better identify functionally homogenous

subregions compared to group-level parcellation method.

3.3 | Individual parcellation variations associated
with coactivation patterns

Voxel-wise correlation analyses identified significant associations of

individual variations with ALE values of cognitive memory (r = .27,

p < .001); episodic recall (r = .34, p < .001); and emotion of angry

(r = .19, p = .003) (Figure 4). These results indicated that the individ-

ual variations of hippocampus parcellations were closely associated

with activity patterns of cognitive functions of hippocampus.

3.4 | Age prediction

Based on the whole brain functional connectivity mapping of hippo-

campus, eight target brain areas showing significantly functional con-

nections with hippocampus were defined (Figure S4 and Table S1).

After obtain the eight target brain areas, the functional connectivity

between each individual and group-level hippocampus subregion and

each target was calculated.

To explore whether individual functional connectivities can better

predict age than group-level functional connections of hippocampus

subregions, the individual and group-level functional connections

were separately used as features to predict ages. Compared with

group-level functional connections-based prediction results (r = .42,

p < .001), individual functional connections (r = .45, p < .001)

exhibited better performance (Figure 5). The MAE values is smaller

using individual functional connections-based prediction compared

with group-level-based prediction (individual MAE = 12.5, group

MAE = 12.95).

3.5 | Associations between hippocampus
connectivities and age

Correlation analyses showed that the functional connection

between the body part of left hippocampus and left retrosplenial

cortex showed significant correlation with age only at the

individual-level (Figure S6a). The functional connectivities of right

tail part of hippocampus with left cerebellum and left retrosplenial

cortex, and functional connections of head part of left hippocampus

with right medial prefrontal cortex were significantly correlated

with ages only at group level (Figure S6b). Moreover, significant cor-

relations between age and the functional connections of left body

part of hippocampus with left cerebellum and left superior frontal

gyrus, and the functional connections of head part of right hippo-

campus with right medial prefrontal cortex were found at both indi-

vidual and group levels (Figure S6c).

F IGURE 2 Group-level and individual hippocampus parcellation results. (a) Three-way group-level parcellation of bilateral hippocampus
identified head, body, and tail subregions from anterior to posterior direction. (b) Five randomly selected individual parcellation of hippocampus
were shown. The individual parcellation of hippocampus showed obvious variability of size and location of each subregion between individuals.
(c) Voxel-level overlap degree of each hippocampus subregion across all the subjects was calculated. Although individual variations, the high
overlap degree for each subregion was observed except the intersected part between subregions
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3.6 | Comparison with iteration adjusted individual
parcellation method

To compare the performance of our and Wang, Buckner,

et al. (2015) developed individual parcellation methods, voxel-level

overlap degree of individual hippocampus subregions were calcu-

lated using both methods. Iteration adjusted individual parcellation

(Figure S2b) showed high overlap degree across the subjects com-

pared with our individual parcellation approach (Figure S2a,c). The

result suggested that our proposed method can better delineate indi-

vidual variability.

In addition, Pearson correlation coefficient of voxel-wise individ-

ual variations defined with iteration adjusted individual parcellation

approach and ALE values of cognitive memory, episodic recall, and

emotion of angry were calculated. Only the coactivation patterns of

cognitive memory and episodic recall showed correlations with indi-

vidual variations of hippocampus, the coactivation pattern of emotion

of angry did not exhibited significant associations with individual vari-

ations (Figure S3). Importantly, the correlation coefficients of individ-

ual variations defined using iteration adjusted individual parcellation

approach are lower than our proposed individual parcellation

approach.

Finally, individual functional connections of individual hippocam-

pus subregions defined using iteration adjusted individual parcellation

approach were taken as features to predict age. Correlation analysis

showed that individual functional connections can well predict age

but with lower correlation coefficient compared to our method

(Figure S5).

F IGURE 3 Functional similarities comparison between the group and individual parcellation results. The intraregional functional connectivity
(a) and time series (b) similarities between any pair of voxels within each hippocampus subregion were calculated. Almost all the functional
connectivity and time series similarities of hippocampus subregions at the individual level are higher than that at group level except the head part
of right hippocampus in which the intraregional functional connectivity and time series similarities at group level are higher than individuals.
(*represents p < .05 after Bonferroni corrected)
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4 | DISCUSSION

This study proposed a novel individual brain parcellation approach

based on the semisupervised affinity propagation clustering using

resting state fMRI. The proposed method was subsequently applied to

parcellate hippocampus to study the aging effects on hippocampus.

The hippocampus was successfully subdivided into three parcels in

each individual guided by a three-way group parcellation results.

Functional connectivity and time signals similarity analyses demon-

strated the superiority of individual parcellation compared to group

results. In addition, individual variations were found to be positively

correlated with coactivation patterns of hippocampus related cogni-

tive functions. Finally, individual and group-level functional connec-

tions of hippocampus subregions with predefined targets were

employed to predict the ages and individual functional connections

showing better performance than group-level functional connections.

Taken together, our study presented a novel individual functional

parcellation approach, which may facilitate the future study to better

investigate the individual cognitive functions and behaviors and guide

individual accurate neuromodulation.

4.1 | Affinity propagation algorithm for brain
parcellation

Affinity propagation algorithm could automatically determine the

number of clusters by setting the preference “P” value which is rec-

ommended as the minimum or median value of the input similarity

matrix to obtain small or moderate number of clusters in the original

affinity propagation method (Frey Brendan & Detbert, 2007). How-

ever, given that the recommended input parameter “P” usually does

not work to achieve the ideal clustering results, especially for brain

parcellation, thus, in this study, we set a range of “P” values and the

optimal “P” value was selected with high silhouette values and small

or smooth gradient variations across these silhouette values. Our find-

ings demonstrated that the method to select the optimal number of

F IGURE 4 Correlations between individual variations and activities patterns of cognitive functions within hippocampus. Voxel-wise
correlation analyses between individual variations of hippocampus parcellation results defined using our proposed approach and coactivation
patterns, that is, activation likelihood estimation (ALE) values, of cognitive memory, episodic recall, and emotion of angry of hippocampus were
performed. Significant correlations between individual variations and ALE values of cognitive memory, episodic recall, and emotion of angry were
found

F IGURE 5 Age prediction using
individual and group-level functional
connections. Both individual and group-
level functional connectivities were
separately taken as features to predict
age. The Pearson correlation coefficient
was used to characterize the prediction
performance. The individual functional
connections showed better performance,

that is, higher correlation coefficient, than
group-level functional connections-based
prediction
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clusters could obtain reliable parcellation results by comparing our

findings with previous hippocampus parcellation results.

4.2 | Individual brain parcellation

The human brain is a complex system with huge individual differ-

ences in brain structure and functions (Mueller et al., 2013). To map

the individual functional atlas is prevalent to reveal the individual

differences in behaviors and cognitions (Goulas et al., 2012; Nebel

et al., 2014). With predefined 18 cortical networks as prior informa-

tion, Wang, Buckner, et al. (2015) developed an individual cortical

parcellation approach and demonstrated that the functional net-

works mapped by this approach were highly reproducible within

subjects and effectively captured the variability across subjects.

Subsequently, Wang et al. (2018) demonstrated that the individual

cortical functional network connections mapped with individual cor-

tical areas could well predict the positive, negative, and manic symp-

toms in schizophrenia and bipolar disorders. In addition, Li et al.

using individual functional mapping approach found that the individ-

ual functional connections could better predict fluid intelligence

than group-level connections (Li et al., 2019). Recently, Meizhen

et al. (2020) employed diffusion MRI and the Brainnetome atlas as

prior information for individual anatomical connectivity-based brain

parcellation. However, all these studies to map individual functional

subregions relied on the previous atlas as prior information, which

may thus miss the important functional subregions not present in

the used atlas and result in different brain atlas yielding different

individual parcellation results. Additionally, iteration adjusted

approach for individual parcellation developed by Wang et al.

achieves individual mapping by measuring the functional similarity

and this process stops when the similarity is below a predefined

threshold. However, how to determine the similarity threshold is

lack of gold standard and different thresholds may affect the final

solutions. To avoid these problems, we developed a fully data-

driven approach without prior information as guide to map the indi-

vidual functional atlas. Our method was applied to hippocampus

and obtained reliable group and individual parcellation results.

4.3 | Individual parcellation of hippocampus

The hippocampus is a critical brain region participating in human

memory, cognition, and emotional processes (Bartsch & Wulff, 2015;

Duzel et al., 2016; Knierim, 2015; Max, 2017). The structural and

functional diversities suggest that the hippocampus can be divided

into distinct functional subregions. Adnan et al. used k-means method

to parcellate the bilateral hippocampus into the anterior and posterior

subregions based on different anatomical connectivity patterns

(Adnan et al., 2016). The anterior hippocampus mainly connects to the

bilateral amygdala, right temporal pole, and right orbitofrontal cortex

while the posterior hippocampus primarily connects with the left dor-

sal posterior cingulate cortex, retrosplenial cortex, and right superior

parietal lobule. Using resting-state fMRI, hippocampus was also

parcellated into head, body, and tail parts (Cheng et al., 2020; Zhong

et al., 2019). Ge et al. (2019) adopted the covariance of gray matter

volume to parcellate the bilateral hippocampus into seven morpholog-

ically different subregions based on high-resolution structural image

data. The corresponding subregions on both hemispheres exhibit simi-

larities in function and structure, and the structural covariance pattern

corresponds to the functional connectivity pattern. Using

coactivation-based parcellation approach, Robinson et al. parcellated

the left hippocampus into three clusters and the right hippocampus

into five clusters (Robinson et al., 2016). Based on combined

cytoarchitecture and chemoarchitecture properties, the hippocampus

was also parcellated into different subregions (Ding & Hoesen, 2015).

Although the hippocampus was parcellated with different techniques,

almost all of these parcellation results are at group level not consider-

ing the individual variations. In our study, we developed a group-level

guided individual parcellation of hippocampus, which could not only

capture the population information but also characterize the individual

variations.

4.4 | Hippocampus and aging

The human brain undergoes a series of complex structural and

functional decline during aging (Damoiseaux, 2017). Existing

researches demonstrate that the overall gray matter volume of

hippocampus in the elderly is significantly smaller than in healthy

adults (Apostolova et al., 2012; Fleischman et al., 2014; Golomb

et al., 1993; Miller & O'Callaghan, 2005), and the anterior hippo-

campus shrinks faster than the posterior hippocampus during aging

(Chen et al., 2010).

Aging is also closely related to functional integrity of hippocam-

pus, but the detailed relationship is still controversial (Blum

et al., 2014). The functional connectivities between hippocampus and

the default mode network including posterior cingulate cortex, medial

prefrontal cortex, and lateral parietal cortex are negatively correlated

with age. The functional connectivity between the left and right pos-

terior hippocampus decreases with age (Damoiseaux et al., 2016).

However, in another study, the coupling between the bilateral hippo-

campus was found to increase with age (Salami et al., 2014). In addi-

tion, the precuneus and bilateral medial temporal lobes were found to

have stronger connections to the anterior hippocampus in young peo-

ple, but have stronger connections to the posterior hippocampus in

the elder (Blum et al., 2014). In spite of inconsistency of these find-

ings, all the evidence suggests an important role of hippocampus in

aging. In our study, we found the functional connectivities between

hippocampus and medial prefrontal cortex, superior frontal gyrus, ret-

rosplenial cortex, and cerebellum were negatively correlated with

ages. Moreover, we found that the functional connections of hippo-

campus with its involved network could well predict age. Our findings

provide further supporting information that to characterize the func-

tional patterns of hippocampus is crucial to reveal the neural basis of

cognitive decline during aging and disease states.
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4.5 | Limitations and prospects

The current research has several limitations. First, how to choose the

preference “P” value is very hard. Although we set a range of “P”
values to find the optimal solution in our study, whether a better

method to determine the optimal “P” should be further investigated.

Second, we did not applied this approach to clinical patient data, the

stability of our proposed method needs to be further validated since

the functional connectivity pattern may changes greatly during dis-

ease conditions.
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