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Abstract: Accurate corn stand count in the field at early season is of great interest to corn breeders
and plant geneticists. However, the commonly used manual counting method is time consuming,
laborious, and prone to error. Nowadays, unmanned aerial vehicles (UAV) tend to be a popular base
for plant-image-collecting platforms. However, detecting corn stands in the field is a challenging
task, primarily because of camera motion, leaf fluttering caused by wind, shadows of plants caused
by direct sunlight, and the complex soil background. As for the UAV system, there are mainly
two limitations for early seedling detection and counting. First, flying height cannot ensure a high
resolution for small objects. It is especially difficult to detect early corn seedlings at around one week
after planting, because the plants are small and difficult to differentiate from the background. Second,
the battery life and payload of UAV systems cannot support long-duration online counting work.
In this research project, we developed an automated, robust, and high-throughput method for corn
stand counting based on color images extracted from video clips. A pipeline developed based on the
YoloV3 network and Kalman filter was used to count corn seedlings online. The results demonstrate
that our method is accurate and reliable for stand counting, achieving an accuracy of over 98% at
growth stages V2 and V3 (vegetative stages with two and three visible collars) with an average frame
rate of 47 frames per second (FPS). This pipeline can also be mounted easily on manned cart, tractor,
or field robotic systems for online corn counting.

Keywords: deep learning; YoloV3; video tracking; corn stand counting

1. Introduction

Stand counting is an important task in breeding and crop management, providing
farmers and breeders with information about the germination rate and population density
of crops. In the breeding stage, the corn stand count can provide the seed germination rate
for breeders and geneticists. As for the planting stage, stand counting can provide the plant
population density to farmers, which is an important trait for crop yield and quality [1–7].
This information can also help farmers with some essential management practices, such as
determining the necessity of replanting [8].

The traditional method for stand counting usually samples the corn population manu-
ally with quadrats [9], which is time consuming, laborious, and cost intensive. In addition,
manual stand counts are not feasible for large fields and are prone to human error. Recent
advances in machine vision provide automatic methods for farmers and breeders to count
plant seedlings and determine yield-related traits such as germination rate and plant popu-
lation density. One popular method has been to use a fixed camera on an unmanned aerial
vehicle (UAV) to capture digital images of plants, then process the images to obtain the
plant stand count offline [10–14].

UAV-based stand counting usually takes images with camera heights varying from
10 m to 50 m [11–13], with some even over 100 m [15,16]. Thus, it is challenging to acquire

Sensors 2021, 21, 507. https://doi.org/10.3390/s21020507 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4594-4158
https://doi.org/10.3390/s21020507
https://doi.org/10.3390/s21020507
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020507
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/507?type=check_update&version=1


Sensors 2021, 21, 507 2 of 13

a high-resolution image of every single plant, especially for the small plants that are in
their early stages. As a result, these small objects cannot be detected accurately. Apart
from UAVs, there are many ways to collect seedling images, such as moving-cart-based
systems [15], tractor-based systems [17,18], and automatic field robots [19], which can
collect images and information accurately and efficiently [20]. Besides RGB-camera-based
methods, there are also some other sensors that can be used for object counting in the field,
such as Lidar sensors [21,22].

Detecting plants accurately from images is the foundation of image-based stand
counting. Different methods and their counting accuracies are summarized in Table 1.
UAV-based stand counting usually requires a stitching and alignment operation. Some
commercial software such as Agisoft Photoscan (Agisoft LLC, St. Petersburg, Russia)
and Pixel4D (Pix4D S.A., Lausanne, Switzerland), as well as some algorithms, have been
developed [11] to align UAV-collected images automatically. Then objects need to be
identified from the images. In traditional image processing, different plant features have
been extracted or designed to identify objects, like edge [23], color [24] and shape [12].
Some are also equipped with a hyperspectral sensor, and identify objects through NDVI
index [11].

Since the significant evolution of computation in 1999, graphics processing units
(GPUs) have been developed for image processing and a revolution has taken place in
the application of deep learning. State-of-the-art networks include the faster region-based
convolutional network (Faster R-CNN) [25], the mask region-based convolutional network
(Mask-RCNN) [26], and You Only Look Once (Yolo) [27–29]. It is a promising method to
develop algorithms for agricultural object detection and counting based on deep convolu-
tional neural networks (CNNs) [13,17,30]. In particular, Faster R-CNN [25] and Yolo [28]
are representative two-stage and one-stage detection networks, respectively. Each of them
has made significant breakthroughs in the detection of different objects. Faster R-CNN
features high accuracy, while Yolo features a high processing speed. The two networks have
been widely applied in agricultural object detection. For example, DeepSeedling integrated
Faster R-CNN as the target detection network, then developed a framework to track and
count cotton seedlings in the videos [17]. In addition, Faster R-CNN was used as the
detection network for detecting other agricultural objects such as plant leaves [31], maize
seedlings [32], kiwi fruit [33], grapes [34], and apples [35]. However, most Faster-R-CNN-
based approaches are offline. Real-time detection for similar objects usually implements
the Yolo network [36–40], which can reach an F1 score of 0.817 for apple detection (with
YoloV3) [39], and 0.944 for mango detection (with YoloV3-tiny) [36]. For this study, we
chose the Yolo model to satisfy the online counting requirement.

The above image-based counting studies have achieved satisfactory counting accu-
racies (Table 1). For example, Rawla et al. (2018) achieved corn stand counting with an
accuracy of over 99%, using a MicaSense RedEdge Multispectral UAV Camera with a 6
mm lens, mounted on a Hexacopter UAV. The images were processed manually through
an ImageJ-based plugin [41]. Cameras equipped with expensive hyperspectral sensors can
also achieve 98% count accuracy [11]. These methods are costly, however, both in money
and time.

In summary Table 1, the most commonly used counting system is UAV-based, but no
real-time counting system has really been developed. The UAV-based counting systems
have two major disadvantages. The first is a need for reliable hardware. A stable UAV is
the basic piece of equipment, and a high-resolution camera is also needed to collect detailed
information on plants from a long distance. Expensive sensors are added to improve the
count accuracy. The second disadvantage is a reliance on trained experts. A trained pilot is
needed to operate the UAV expertly, which is essential to the success of image acquisition
and plant detection. In some methods, the image preprocessing stage also requires human
intervention [8,11,12,23,42]. Apart from this, battery life and payload are also limitations if
considering long-duration work.
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Table 1. Summary of platforms and sensing technology for stand counting in different crops.

Camera/
Platform Study Object Camera

Height Resolution Detect
/Classify

Count
Performance Reference

Hyperspectral
/UAV

Cotton
stand 50 m 1088 × 2048 Segment according

NDVI
Accuracy = 98%

MAPE = 9% Feng et al. (2019) [11]

RGB/UAV Potato emergence 30 m 20 megapixel Edge detection R2 = 0.96 Li et al. (2019) [23]

RGB/UAV Rice seedling 20 m 5427 × 3648 Simplified VGG-16 Accuracy > 93%
R2 = 0.94 Wu et al., (2019) [10]

RGB/UAV Winter wheat 3~7 m 6024 × 4024 SVM R2 = 0.73~0.91
RMSE = 21.66~80.48

Jin et al. (2017) [42]

RGB/UAV Rapeseed seeding stand 20 m 7360 × 4912 Shape feature R2 = 0.845 and 0.867
MAE = 9.79% and 5.11%

Zhao et al. (2018) [12]

RGB/UAS Cotton seeding 15~20 m 4608 × 3456 Supervised Maximum
Likelihood Classifier Average Accuracy = 88.6% Chen et al. (2018) [8]

RGB/UAS Corn early-season stand 10 m 6000 × 4000 Supervised Learning Classification Accuracy = 0.96 Varela et al. [13]

Multispectral
/UAV Corn stand 50 feet 0.05 m ground spatial “Search-Hands” Method Accuracy > 99% Rawla et al. (2018) [41]

RGB/Ground level
(handheld, cart, and tractor) Cotton seeding 0.5 m 1920 × 1080 Faster RCNN Model Accuracy = 93%

R2 = 0.98 Jiang et al. (2019) [17]

RGB/moving cart Wheat density
estimation 1.5 m 4608 × 3072 Gamma Count Model R2 = 0.83

RMSE = 48.27
Liu et al. (2019) [43]

RGB/Hand-held camera On-ear corn kernels / 1024 × 768 Semi-Supervised Deep
Learning

MAE = 44.91
RMSE = 65.92 Khaki et al. (2020) [30]
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Our objective for the study was to develop a machine learning-based image processing
pipeline for real-time early-season corn stand counting, which could be integrated into an
unmanned robotic system for plant growth monitoring and phenotyping. This proposed
corn stand counting pipeline was expected to be an accurate, efficient, and reliable solution
for automatically counting early-season corn plants. No extra sensor was needed, only a
camera. No professional operator was needed. The system could be easily mounted on
manned cart, tractor, or field robotic systems for counting similar plants, like sorghum.

2. Materials and Methods
2.1. Experimental Setting

One week after plant emergence, video sequences were collected in corn plots planted
on 2 August and 30 August 2019 at the Iowa State University Agronomy and Agricultural
Engineering Research Center in Boone, Iowa (Figure 1a). Considering the uneven field, we
chose a Garmin VIRB Ultra 30 action camera, with 3-axis image stabilization that captures
smooth and steady video. The camera was mounted on a cart at 0.5 m above the ground,
at the top of the corn seedlings. The camera’s field of view (FOV) was 118◦ × 69.2◦. The
video was captured at 30 frames per second (FPS) with a resolution of 3840 × 2160 pixels.
The cart was manually pushed between crop rows at about 1 m/s, with the camera looking
perpendicularly down over the crop row (Figure 1b). There were 12 rows of corn plants
in total.
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corn growth; (b) data collection cart.

According to the identification system, corn development can be divided into veg-
etative (V) and reproductive (R) stages [44]. The V stages are designated numerically as
V(n), where (n) represents the number of leaves with visible collars. We collected videos
for plants from stages V1 to V4, which are the vegetative growth stages of corn plants
when the first, second, third, and fourth leaf collars are visible. The row spacing of corn
plants was 0.76 m (30 inches). The number of plants in each row was counted manually as
ground-truth data.

2.2. Image Preparation

For training our detector model, a total of 7.2 GB of video was collected, and one
image per 10 frames was extracted. There was nearly 1.5 GB per row, each of which was
145 feet. Labelme software [45] was used to draw a bounding box to annotate corn plant
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seedlings, and 864 images with corn plants at stages V1–V4 were labeled. The labeled
images were split into train and validation, with a proportion of 722:142. In order to fit the
detector model and improve training efficiency, the images were cropped and resized to
1024 × 1024 pixels. The model was trained on a desktop workstation with an Intel@ Xeon®

CPU E5-2637 v3@3.5GHz ×16, and an NVIDIA TITAN GPU (Pascal) with 31.3GiB memory.
For evaluation, a total of 54.9 GB of video was used, varying from the V1 to V4 stages.

2.3. Corn Plant Stand Counting Pipeline

The tracking-by-detection framework is a reliable and robust tracking method for
the problem of multiple object tracking (MOT), where objects are detected in each frame
and represented as bounding boxes. In this study, we developed a deep-learning-based
automated pipeline to detect and count corn plant seedlings (Figure 2a). Firstly, the
detection det0 in the first frame f0 generated by YoloV3 is initialized as tracker trk0. In
the second frame, a Kalman filter [46] is used for updating. According to the initialized
bounding boxes trks0, the position of objects in the second frame is predicted and denoted
as trkspredict. Then the tracked bounding boxes are associated with bounding boxes det1
detected in the new frame with the Hungarian algorithm. At this stage, a minimum
intersection-over-union (IoU) is added to double-check the association between trkpredict
and det1. If the IoU over associated trkspredict and det1 is smaller than the pre-defined IoU
threshold, the trkspredict will be rejected. After association processing, there are three classes
of results: trackers associated with new detection, unmatched detections, and unmatched
tracking. Unmatched detections will be assigned new tracking IDs. As for the unmatched
tracking, each ID owns its validity, named as max_age, which will be abandoned if it is
not updated in the next few frames (total max_age number of frames). Then, the updated
tracking IDs will be passed to the next epoch (Figure 2a). Finally, the counting stage is
reached. We defined a finish line (the yellow line) at the bottom of the image (Figure 2b).
When the trace of two tracking boxes’ center points, from frame i-1 to frame i, crossed the
finish line, we counted 1, shown in Figure 2b as “count”.
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2.3.1. YoloV3 for Corn Plant Seedling Detection

In this study, both YoloV3 and YoloV3-tiny were trained to find the optimal model
that works effectively with corn plants at various growth stages. Both of the models used
Darknet [47] as the backbone network, which originally had 53 network layers trained
on ImageNet [48]. Based on YoloV3, some feature layers were removed, and only two
independent prediction branches have been retained for YoloV3-tiny. YoloV3-tiny has
22 layers in total, and the simplified structure results in a tiny file of only 34.7 MB, with
an input resolution of 1024 × 1024 in this study. YoloV3 stacked 53 more layers onto the
backbone, producing a 106-layer fully convolutional underlying architecture. In YoloV3,
detection is carried out by applying 1 × 1 detection kernels on feature maps of three
different sizes at three different stages in the network. The shape of the detection kernel is
1 × 1 × (B × (5 + C)), where B is the number of bounding boxes that a cell on the feature
map can predict, “5” includes the four bounding box attributes and one object confidence
score, and C is the number of classes. Taking the YoloV3 model trained on our dataset as
an example (Figure 3), B = 3 and C = 1, so the kernel size is 1 × 1 × 18. The feature map
produced by this kernel has an identical height and width to the previous feature map [28].
YoloV3 makes predictions at three scales, which are given precisely by downsampling the
dimensions of the input image by 32, 16, and 8. On the other hand, YoloV3-tiny only keeps
two feature maps for prediction, 13 × 13 and 26 × 26.
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2.3.2. Corn Plant Seedling Tracking and Counting

Once an object has been detected, it can be tracked along its path with a Kalman
filter. The Kalman filter technique is a recursive solution to estimate the state of a linear
system [46]. There are two main parts to this task: time update and measurement update.
The time update equations are responsible for projecting the current state forward (current
frame objects, detected bounding boxes) and estimating error covariance, to obtain an a
priori estimate for the next frame. The measurement update equations are used to associate
this estimation with the system feedback. The bounding boxes detected by YoloV3-tiny
are annotated as Zk, where the subscript k indicates the discrete time. The object is to
estimate a posteriori X̂k, which is a linear combination of the priori estimate and the new
measurement Zk [49,50].

From the network detection, we get the measurement Z = [u, v, s, r]T . In order to
predict the bounding box in the next frame, we use the following estimation model:

X =
[
u, v, s, r,

.
u,

.
v,

.
s,

.
r
]T (1)

where u and v represent the horizontal and vertical pixel location of the target center, while
s represents the scale of area of the target’s bounding box, and r is the aspect ratio of
bounding box width and height. The video was taken by a camera on a manually pushed
cart moving at a roughly constant speed, so the inter-frame displacement of each object
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was approximated as a constant velocity in the model. Unlike the tracking state model
for normal bounding boxes [17,51], which takes the aspect ratio r as a constant, r was
considered as a variable that changed over time with noise in this study. The variations in r
can be attributed to (1) the bounding box of the same plant changing with the camera view
angles, especially for the plants in V3 and V4, and (2) the aspect ratio of the same object
changing because of leaf movements caused by wind, especially for stage V4. As shown
in Figure 4, one individual plant was detected in consecutive video frames with different
aspect ratios of the bounding box along the movement axis.
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The usual way to count tracking objects is by counting valid tracking IDs, but the
detection accuracy of YoloV3-tiny is not sufficient to satisfy the counting requirement. If
the detecting network misses an object in several frames and redetects it, the old tracking
ID will be abandoned and a new one will be assigned. Apart from this, the Kalman tracker
is not so robust when plants appear from the field margin to the center, where the detector
can detect the plant but the tracker treats it as a new object. Thus, the results of counting
plants by tracking IDs will be much larger than the ground truth. Therefore, we defined
a finish line CD (the yellow line in Figure 5) to count the objects. The center point A of a
Tracker i was connected with the center B of the next Tracker I + 1. The intersection of AB
and CD represents a valid tracking ID passing the finish line.
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3. Results
3.1. Detection

Experiments showed that both YoloV3 and YoloV3-tiny had high mAP (mean average
precision) with corn plants at growth stages V1–V4 (Figure 6). Figure 6 shows detection
results with mAP@IoU 0.5 at different growth stages. The mAP@IoU 0.5 means that average
precision at the IoU threshold is set as 0.5, which means when IoU for the prediction is
over 0.5, we classify the prediction as True Positive. We compared detection performance
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with plants at stages V1–V4, and the detection results varied in different growth stages.
When overlapping occurred, the detection accuracy dropped sharply.
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The YoloV3 and YoloV3-tiny could achieve high mAP for corn plants from the V1 to
V3 stage. The highest mAP@IoU0.5 was 98.07 at stage V2 (Table 2). However, plant canopy
overlapping was a major issue for large plants, where part of the whole plant was usually
considered as a single object. The mAP@IOU0.5 of the V4 stage only reached 63.13 for
YoloV3-tiny, and 76.33 for YoloV3. Because of this, we suggest counting from top-view
images for stages V1–V3. As for the V4 stage and after, side-view image detection will be
our future study plan.

Table 2. Evaluation of YoloV3 and YoloV3-tiny classification on four growth stages.

mAP(%)@IoU0.5 V1 V2 V3 V4 Average FPS

YoloV3 92.78 98.07 96.94 76.33 12.21
YoloV3-tiny 89.12 94.13 93.83 63.13 76.27

There was a trade-off in speed and precision. YoloV3-tiny could be an optimal solution
for online counting. However, the precision needs to be improved to provide robust
measurements for a Kalman filter estimator. We tried two different ways to improve the
detection precision of YoloV3-tiny. The first method was to train the network to treat
the four growth stages as four different classes, and the second method was to train
the different stages as a sequence rather than combining them. These different training
methods did improve mAP, especially for the V1 and V4 stages, and the results are shown
in Figure 7.

Method 1 performed well at detecting the stages on its own. The mAP of four classes
had significant improvement compared with the original YoloV3-tiny. Stage V4 reached
the highest score in this method. In method 1, it was obvious that the four growth stages
appeared like three different objects. The plants at the V2 and V3 growth stages were
similar to each other. In method 2, we manually weighted the stages V1 and V4 in the
detection network to improve the detection mAP. Because the detected mAP was lowest
for stage V4, we first trained the network on stage V4 until its loss converged, then trained
stages V2 and V3 sequentially, then finally trained the V1 stage. The detecting result
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reached the best scores for stages V1, V2, and V3, which were even over 99% for stages V2
and V3. Though the training time was about four times that of the original model, method
2 was still an optimal solution due to its high accuracies.
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Figure 7. The mAP(%) of different training methods for YoloV3-tiny and YoloV3.

3.2. Track and Count

In this study, counting accuracy is defined as the formula (2). NumGT is the manual
seedling count number, and NumM is the seedling number counted through our pipeline.
The reason not to divide NumGT by NumM directly is that the pipeline may count more or
less than the ground truth. So we calculate the counting accuracy through the absolute error.

Counting accuracy =

(
1− |NumGT − NumM|

NumGT

)
× 100% (2)

The count results (Figure 8) show that YoloV3-tiny can handle the detecting problem
better with the customized training method, especially for stage V1. In the other growth
stages, training method 2 was able to reach nearly the same count accuracy as YoloV3-
tiny, but it counted four times faster than YoloV3. YoloV3-tiny’s average count speed
was 47.1 frames per second, while YoloV3 only reached 10.7 frames per second. Aside
from considering the aspect ratio changing in the state vector, we also adopted several
strategies to improve the performance of the YoloV3-tiny-based counting method, including
initializing the YoloV3-tiny detection model with high measurement uncertainty in a
Kalman filter, and adding max age to recycle unmatched tracking IDs. We found that setting
max age as 2 was best for this corn seedling counting task.

Figure 8 shows the counting result of the YoloV3 model and three method-trained
YoloV3-tiny models. Our proposed method 1 and method 2 can improve significantly at
the V1 stage and achieve nearly the same performance as YoloV3 at the V2 and V3 stages,
while decreasing the counting accuracy standard deviation.
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4. Discussion

Counting for corn plants at stages V2 and V3 achieved high accuracies of 98.66% and
98.06%, respectively. However, performance deteriorated when counting plants at stages
V1 and V4. Detection precision for both stages V1 and V4 is lower than for the other two
stages, but the main reason for this low counting accuracy is different. At stage V1, the
YoloV3-tiny model can usually detect objects correctly but the Kalman filter fails to track
them (Figure 9b). When detected bounding boxes are small, the values of s and r are small
and change slightly along the time axis. In our discrete linear tracking system, the noise
from motion is high as a result of the cart vibration and uneven road in the field, and this
makes it difficult to track the small objects. Thus, the performance of counting is much
lower than the detection. As for counting at stage V4, the counting accuracy decreases
because of the overlapping and occlusions of the plant canopies. The similarity between
V4, V2, and V3 will confuse the neural network. The YoloV3 model tends to detect a single
corn plant as several objects (Figure 9c), and new tracking IDs are assigned to them. Thus,
when they cross the finish line, the counting number is larger than the ground truth. That
is the reason why counting accuracies are higher than detecting precisions when using
YoloV3 and YoloV3-tiny original weight at stage V4.

Aside from the two aforementioned reasons, other random noise introduced by the
detection network can also affect performance, such as missed detections (Figure 9d) and
false detections (Figure 9c,e). However, these falsely detected bounding boxes generally
have a very short life (≤2 frames). It is rare that a new tracking ID will be assigned to them,
and even if one is assigned, it usually expires before they cross the finish line successfully.

To improve the performance of stand counting with corn plants at the V1 stage, the
camera height may need to be adjusted to obtain detailed information for tracking. If
one chooses a high-resolution camera to capture images, zooming into a suitable size on
the region of interest will also work (but the network must also retrain based on the old
weight). In addition, there are some advanced filters which have been developed to track
small targets [52–54]. As for counting plants at stage V4 and later stages, the main issue is
caused by the overlap of plant canopies in top-view images. In this case, detecting plant
stems in side-view images may be a better option for stand counting.
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5. Conclusions

In this paper, we present a pipeline for counting corn seedlings in the field at growth
stages from V1 to V4. The pipeline combines a powerful high-speed one-stage detection
network, YoloV3-tiny, with a Kalman filter. A customized training method has also been
introduced to improve YoloV3-tiny’s detection accuracy. Experiments showed that this
method can count corn plants at stages V2–V3 with accuracies over 98% under different
outdoor lighting conditions, outperforming other CNN-based approaches for fruit count-
ing [10,17]. Furthermore, the YoloV3-tiny-based model can achieve real-time counting.
Thus, the pipeline is a cost-effective, high-speed, and real-time method. In addition, only
one camera is needed for the system. We believe this pipeline can most likely be applied to
count similar agricultural objects such as sorghum and soybean seedlings. There are still
some improvements that can be made in this method, which is also our future study plan.
For example, designing a height-changeable mechanical structure to suit different seedling
heights could provide a big enough object (enough features) for the network to learn. A
side-view of corn will be adopted to count the V4 stage and later stages, to overcome the
overlapping problem.
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