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Abstract: This paper describes the effects of α-Al2O3 nanosheets on the direct current
voltage breakdown strength and space charge accumulation in crosslinked polyethylene/α-Al2O3

nanocomposites. The α-Al2O3 nanosheets with a uniform size and high aspect ratio were synthesized,
surface-modified, and characterized. The α-Al2O3 nanosheets were uniformly distributed into a
crosslinked polyethylene matrix by mechanical blending and hot-press crosslinking. Direct current
breakdown testing, electrical conductivity tests, and measurements of space charge indicated that the
addition of α-Al2O3 nanosheets introduced a large number of deep traps, blocked the charge injection,
and decreased the charge carrier mobility, thereby significantly reducing the conductivity (from
3.25 × 10−13 S/m to 1.04 × 10−13 S/m), improving the direct current breakdown strength (from 220 to
320 kV/mm) and suppressing the space charge accumulation in the crosslinked polyethylene matrix.
Besides, the results of direct current breakdown testing and electrical conductivity tests also showed
that the surface modification ofα-Al2O3 nanosheets effectively improved the direct current breakdown
strength and reduced the conductivity of crosslinked polyethylene/α-Al2O3 nanocomposites.

Keywords: XLPE/α-Al2O3 nanocomposites; electrical properties; breakdown strength; electrical
conductivity; space charge; pulsed electro-acoustic method

1. Introduction

Polymer nanocomposites have attracted increasing attention in recent years owing to their
improved direct current (DC) dielectric properties and applications as high-voltage DC (HVDC) cable
insulation materials. The space charge injected by the electrode and ionized by impurities in the
insulation material is liable to accumulate, which leads to partial discharge near the conductor or
inside the insulation material, resulting in faster degradation and premature failure of the material.
A number of methods have been used to suppress the accumulation of space charge inside the insulation
material, including the use of inorganic additives, the melting and blending of polymers, and the graft
copolymerization of matrices [1–4].

Various inorganic nanoparticles, including ZnO, SiO2, SiC, TiO2, MgO, LSMO, and zeolite, have
been used to inhibit space charge accumulation in nanocomposites. The addition of these inorganic
nanoparticles suppresses the accumulation of space charge, reduces the electrical conductivity,
and increases the breakdown strength of insulating materials to various degrees [5–15]. This has
been attributed to the introduction of deep trapping states resulted from the generated interface
regions by nanoparticles, which can largely reduce charge carrier mobility. In addition, they may
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increase the dielectric breakdown strength by changing the carrier trap distribution, and thus the space
charge distribution.

To more effectively increase the breakdown strength and suppress the space charge accumulation
of crosslinked polyethylene (XLPE), the use of intrinsic insulating Al2O3 fillers can be considered.
Several studies of alumina nanopolymer matrix composites have shown that the addition of Al2O3

or sandwich-structured Al2O3/low-density polyethylene nanocomposites significantly increases the
number of deep trapping sites in the nanocomposite, markedly impedes charge transport, reduces
the DC conductivity, and suppresses the accumulation of space charge [16–18]. Compared to other
crystalline forms of Al2O3, α-Al2O3 possesses many excellent properties, such as high hardness, high
dimensional stability, excellent electrical insulation, high dielectric constant, and low dielectric loss [19].
In addition, when α-Al2O3 has a shape similar to a sheet, it has a blocking effect on the transport
of injected charge along the thickness direction and improves the breakdown strength. So, α-Al2O3

nanosheets were chosen in this work.
However, the compatibility of the nanoparticles and polymer matrix is an essential problem.

The surface should be modified by a coupling agent and higher fatty acids or by a grafting polymerization
process to reduce the surface energy of the nanoparticles, improve the compatibility of the nanoparticles
and matrix, and promote the dispersion of the nanoparticles in the polymer matrix [20,21]. A silane
coupling agent can effectively enhance the compatibility of the nanoparticle and polymer matrix; it can
react with hydroxyl groups on the surface of nanoparticles, thus coating the surface of nanoparticles
with a silane layer, which can prevent the agglomeration of nanoparticles and improve the dispersion
of nanoparticles in the polymer matrix (as shown in Figure 1).
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Figure 1. Schematic diagram of dispersion of nanoparticles in matrix.

Many insulating materials are used in high-voltage direct cables, such as polyvinyl chloride (PVC),
polyethylene (PE), crosslinked polyethylene (XLPE), and silicone rubber (SR). Compared with other
insulating materials, XLPE insulating materials have the advantages of large transmission power,
high voltage level, long life, and low cost. XLPE is a product after the crosslinking of PE, which is a
crosslinking process that changes the molecular structure of PE from linear to 3D mesh and converts
thermoplastic PE into thermosetting XLPE, thus improving the heat resistance, mechanical properties,
and electrical properties of PE. The crosslinking degree of the crosslinked polyethylene by the peroxide
crosslinking method is more uniform. So, XLPE was used as the matrix material, and a dicumyl
peroxide (DCP) crosslinking agent was used for crosslinking in this work.

In this work, α-Al2O3 nanosheets were synthesized by a molten salt method, surface-modified by
silane coupling agent KH550, and subjected to a variety of characterization tests. The XLPE/α-Al2O3

nanocomposites were prepared by the thorough mixing of coated α-Al2O3, low-density polyethylene
(LDPE), and a crosslinking agent (dicumyl peroxide; DCP) [22–24]. The resulting nanocomposites
were press molded at 356 K under a pressure of 16 MPa, yielding two different films with thicknesses
of about 150 µm and 300 µm, respectively, which were used for the subsequent DC voltage breakdown
testing and measurements of space charge.
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2. Materials and Methods

2.1. Materials

Al2(SO4)3·18H2O, NaCl, and KCl were obtained from Tianjin Damao Chemical Reagent Factory.
Na2CO3 was provided by Shanghai Hushi Laboratory Equipment Co. Ltd. Na3PO4 was purchased
from Tianjin Hengxing Chemical Reagent Manufacturing Co. Ltd. TiOSO4 was supplied by Shandong
Xiya Reagent Co. Ltd. Ethanol was obtained from Tianjin Fuyu Fine Chemical Co. Ltd. The silane
coupling agent (KH550) was obtained from Aladdin Industrial Corporation.

2.2. Synthesis of α-Al2O3

The synthesis was performed using the molten salt method [25–27]. Solution A and solution B
were prepared as follows. First, 33.322 g of Al2(SO4)3·18H2O, molten chloride salts (NaCl and KCl in a
6:4 molar ratio), and a very small amount of TiOSO4 were dissolved in 90 mL of deionized water under
magnetic stirring. Then, the above solution was heated at 353 K for 1 hour. The obtained clear mixed
solution was named solution A. Solution B consisted of 50 mL of distilled water, in which Na2CO3

and Na3PO4 were dissolved. Solution B was added slowly to solution A under heating and stirring
to allow the generated CO2 to escape. After 6 h, the synthesized precursor was obtained as a gel
comprising Al(OH)3 and the molten salt system. The wet gel was dried at 193 K for 3 h. The dried gel
was ball-milled in ethanol for 10 h and dried at 353 K. Finally, α-Al2O3 was obtained by burning in a
muffle stove; after which it was dissolved in hot water, filtered, washed, and dried.

The coated α-Al2O3 was prepared by suspending nanoscale α-Al2O3 solid powder in an ethanol
solution containing a specific amount of C9H23NO3Si (KH550; the amount of KH550 was 3% α-Al2O3

by weight), followed by heating and stirring at 348 K for 4 h. The resulting mixed solution was
collected, filtered, and dried at 373 K for 4 h [28–30]. The final product was coated α-Al2O3.

2.3. Characterization of α-Al2O3

The crystalline phases of coated α-Al2O3 and uncoated α-Al2O3 were identified using X-ray
diffractometry (XRD; D-MAX 2500/PC, Rigaku, Tokyo, Japan) at 18 kW, 40 kV, and 40 mA with Cu
Kα radiation at room temperature. The appearance and distribution of the powder were observed by
scanning electron microscopy (SEM; FEI·Nova·Nano·SEM450, Hillsborough, OR, USA). High-resolution
photographs and the corresponding electron diffraction patterns of α-Al2O3 were obtained by
high-resolution transmission electron microscopy (HRTEM; FEI·Tecnai·G2·F30, Hillsborough, OR,
USA). Fourier transform infrared (FTIR; VERTEX70v, Bruke, London, England) spectra of the resulting
nanoparticles were measured from 4000 to 400 cm−1.

2.4. Preparation of XLPE/α-Al2O3 Nanocomposites

LDPE (DH0016-2017) was provided by the China National Petroleum Corporation, Daqing,
Heilongjiang. The LDPE/α-Al2O3 composites were prepared by fully blending the coated α-Al2O3

with 60.00 g of the LDPE insulating material and 1.50 g of DCP in an internal mixer with a torque
rheometer (RM-200C, HaPro Electric Co. Ltd., Harbin). The mixing temperature was 393 K, the mixing
time was 15 min, and the rotation speed was 60 r/min. The coated α-Al2O3 mass concentrations in the
LDPE/α-Al2O3 insulating nanocomposites were set to 0.00 wt % (pure insulating layer without coated
α-Al2O3), 0.20 wt %, 0.50 wt %, 1.00 wt %, and 2.00 wt %. Then, the LDPE/α-Al2O3 composites were
melted with a curing press at 393 K, and the LDPE was converted to crosslinked polyethylene (XLPE)
by DCP at 16 MPa and 453 K with 15 min. The α-Al2O3/XLPE specimens were obtained after cooling
at 16 MPa and room temperature. The square specimens with a thickness of 0.15 mm and a side length
of 11.5 cm were prepared for the high-voltage breakdown testings, and the round specimens with a
thickness of 0.3 mm and a diameter of 8 cm were prepared for the DC electric conductivity tests and
measurements of space charge.
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2.5. Electrical Properties Testing of XLPE/α-Al2O3 Nanocomposites

2.5.1. Voltage Breakdown Testing

A commercial voltage breakdown tester (DDJ-100 kV, Guance Precision Electric Instrument
Equipment Co. Ltd., Beijing, China) was used to measure the dielectric breakdown strength of
XLPE/α-Al2O3 [31]. As shown in Figure 2, two spherical copper electrodes with diameters of 200 mm
were used as the high-voltage electrode and grounding electrode, with silicone oil as the medium.
The function of silicone oil as a medium is to prevent the formation of bubbles so that the final
breakdown field strength measured is the breakdown field strength of air. The voltage was boosted at a
linear rate of 1 kV/s until electric breakdown occurred, at which time the voltage data were recorded to
give the breakdown voltage of the XLPE/α-Al2O3 composite. This breakdown experiment was carried
out at least 10 times for each specimen, and the experimental data were processed and analyzed by the
Weibull statistical distribution [32,33].
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Figure 2. Schematic diagram of the breakdown strength test system.

2.5.2. Pulsed Electro-Acoustic Method

The pulsed electro-acoustic (PEA) method for measuring the space charge in the sample involves
applying a high-voltage electric pulse to both ends of the sample through a coupling capacitor so
that the distributed space charge in the sample produces tiny vibrations under the action of the
electro-acoustic pulse, which are transmitted in the sample in the form of mechanical waves. Finally,
the output of the piezoelectric sensor is converted into an electrical signal to obtain the space charge
behavior in the insulating material (Figure 3) [34–36]. A commercial testing device (HEYI-PEA-PT1,
Shanghai HeYi Electric Co. Ltd., Shanghai, China) was used to measure the space charge density of the
XLPE/α-Al2O3 nanocomposites. The applied electric field strengths were 10 kV/mm and 20 kV/mm,
and each test lasted for 30 min.
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Figure 3. Schematic diagram of pulsed electro-acoustic method.

In addition, the DC electrical conductivity of XLPE/α-Al2O3 nanocomposites was tested.
A commercial insulation resistance tester (ZC-90G, Shanghai Taiou Electronic Co. Ltd., Shanghai,
China) was used to measure the insulation resistance. The diameter of the electrode used in this test
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was 50 mm. The data measured by insulation resistanced tester was resistance (Rv). The resistance of
each specimen was measured five times and averaged. The resistivity (ρv) can be expressed as

ρv = Rv
S
h

where S is the area of the electrode and h is the thickness of the specimen. The DC electrical conductivity
was the reciprocal of resistivity.

3. Results and Discussion

3.1. Characterization Results of α-Al2O3 Nanosheets

The XRD patterns of α-Al2O3 obtained by the molten salt method and surface-modified α-Al2O3

were shown in Figure 4. The characteristic shape and high-resolution peaks at 2θ = 35.15◦, 43.355◦,
and 57.496◦ indicated the high crystalline of α-Al2O3. Moreover, the whole diffraction peaks were
consistent with those of α-Al2O3 (JCPDS No.46–1212), with a hexagonal structure. The three strong
diffraction peaks were at 35.152◦, 43.355◦, and 57.496◦, corresponding to the three crystal surfaces of
α-Al2O3, (104), (113), and (116). Thus, it was verified that the prepared product was α-Al2O3 with
a hexagonal structure and high crystalline. However, except for a slight difference in the intensity
of the peaks, there is no significant difference between the coated α-Al2O3 and uncoated α-Al2O3 in
XRD patterns.
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Figure 4. X-ray diffractometry (XRD) patterns of coated and uncoated α-Al2O3.

According to the SEM micrograph of α-Al2O3 nanosheets shown in Figure 5a, the α-Al2O3

prepared with this method had good uniformity and high aspect ratio. As shown in Figure 5b, the size
of the α-Al2O3 was about 2 to 5 µm, with thickness ranging from 200 to 400 nm. Figure 5c,d show SEM
micrographs of the cross-section of XLPE/coated α-Al2O3 nanocomposites and XLPE/uncoated α-Al2O3

nanocomposites containing 2.0 wt % α-Al2O3, which visually indicated that the α-Al2O3 nanosheets
were dispersed evenly in the XLPE/coated α-Al2O3 nanocomposites, while the α-Al2O3 nanosheets
aggregated in the XLPE/uncoated α-Al2O3 nanocomposites. Figure 5e,f show the cross-sections of the
nanocomposite specimens containing 1 wt % and 2 wt % of coated α-Al2O3 nanosheets after the liquid
nitrogen quenching section. Figure 5e,f can prove that the most of the α-Al2O3 wafers were laid in
the matrix along the thickness direction of the pressed specimen, which perhaps had a blocking effect
on the transport of the injected charge along the thickness direction and improved the breakdown
strength of crosslinked polyethylene.
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Figure 5. SEM images of (a,b) uncoated α-Al2O3 nanosheets, (c,d) the cross-section of crosslinked
polyethylene (XLPE)/coated α-Al2O3 nanocomposites and XLPE/uncoated α-Al2O3 nanocomposites
containing 2.0 wt % α-Al2O3 nanosheets and (e,f) the cross-sections of the nanocomposite specimens
containing 1.0 wt % and 2.0 wt% α-Al2O3 nanosheets after the liquid nitrogen quenching section.

TEM images of the α-Al2O3 prepared by the melting salt method are shown in Figure 6. As shown
in Figure 6a, a piece of flaky alumina was tiled on the copper net with a size of about 2 µm. The lower
right side of Figure 6a shows the selected area electron diffraction pattern. Through the calculation
of crystalline interplanar spacing, the calibration of crystal plane indices, and the determination of
the zone axis, it can be concluded that alumina crystal grew along the (300) crystal surface in the
direction of thickness and along the (110) crystal surface in the direction of length. Figure 6b shows
the edge portion of the flake alumina (above the red dashed line), which had no clear lattice fringe
compared with the interior (below the red dashed line). This indicates that the edge portion had an
amorphous structure, which was in contrast to the alumina crystal. Figure 6c shows the surface of the
α-Al2O3, which was rough and had many tiny folds that could potentially improve its compatibility
with the polymer matrix. HRTEM measurements were conducted to examine the detailed structure
of the samples. The clear lattice fringe of the sample indicated its good crystallinity, and the lattice
distance was about 0.209 nm, corresponding to the (113) plane with the sharpest peak at 43.355◦ in the
XRD pattern.Materials 2020, 13, x FOR PEER REVIEW 7 of 14 
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Figure 6. (a,b) TEM images of uncoated α-Al2O3. (c,d) HRTEM images of α-Al2O3.
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Figure 7 shows the FTIR spectra of the coated and uncoated α-Al2O3 nanopowders. Both samples
showed a strong and wide absorption band in the range of 1000–400cm−1, which is characteristic of
Al-O bonds in alumina. The characteristic absorption peak at 1061.80 cm−1 was indicative of Si-O-Si
bonds. Notably, a weak peak appeared at 1625.99 cm−1 in the IR spectrum of the coated but not
the uncoated α-Al2O3. This weak peak corresponds to the deformation vibration absorption peak
of amidogen. The absorption band at 3435.20 cm−1 was attributed to surface hydroxyl groups and
the stretching vibration of amino groups on the surface of the alumina nanosheets. Compared with
uncoated α-Al2O3, the coated α-Al2O3 showed a more intense absorption peak at this wavenumber
position on account of the surface modification by KH550. In addition, symmetric stretching vibration
peaks of C-H bonds appeared at 2854.63 cm−1 and 2923.11 cm−1, indicating that the silane coupling
agent molecules had successfully adsorbed and bonded on the surface of the alumina.
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3.2. Electrical Properties Testing Results of XLPE/α-Al2O3 Nanocomposites

Figure 8a shows a comparison of the DC breakdown strengths of pure XLPE and XLPE/α-Al2O3

nanocomposites containing 0.2 wt %, 0.5 wt %, 1.0 wt %, and 2.0 wt % coated α-Al2O3. The addition
of α-Al2O3 improved the DC breakdown field strength of the nanocomposites to various degrees.
The DC breakdown field strength of pure XLPE was only about 220 kV/mm. In the XLPE/α-Al2O3

nanocomposites, the DC breakdown field strength increased with increasing α-Al2O3 content; even
an α-Al2O3 content as low as 0.2 wt % led to a significant increase (to 260 kV/mm). When the
content of α-Al2O3 increased to 1.0 wt %, the DC breakdown field strength underwent a dramatic
increase to 320 kV/mm. However, when the α-Al2O3 content continued to increase to 2.0 wt %,
the DC breakdown field strength of the nanocomposite was reduced to 280 kV/mm (lower than
for 0.5 wt % and 1.0 wt %, but higher than for 0.2 wt %). Compared with other working results,
the breakdown field strength (320 kV/mm) of the XLPE/coated α-Al2O3 nanocomposites containing
1.0 wt % coated α-Al2O3 in this work was much higher than the breakdown field strength (200 kV/mm)
of sandwich-structured Al2O3-LDPE/LDPE/Al2O3-LDPE nanocomposites in ref 16. Furthermore, it was
lower than the breakdown strength (450 kV/mm) of the polyethylene/alumina nanocomposites in ref
17. However, the breakdown strength of the neat LDPE in ref 17 had already reached 450 kV/mm and
the breakdown strength of the pure XLPE in this study was only 220 kV/mm. Therefore, the effect of
adding coated α-Al2O3 nanosheets in this work was more significant.
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Figure 8. (a) Weibull plots comparing the direct current (DC) breakdown strength of pure XLPE
and XLPE/α-Al2O3 nanocomposites containing 0.2 wt %, 0.5 wt %, 1.0 wt %, and 2.0 wt % coated
α-Al2O3 and (b) Weibull plots comparing the DC breakdown strength of pure XLPE and XLPE/α-Al2O3

nanocomposites containing 0.2 wt %, 0.5 wt %, 1.0 wt %, and 2.0 wt % uncoated α-Al2O3.

The DC breakdown strengths of nanocomposites containing uncoated α-Al2O3 nanosheets were
also measured. Figure 8b shows a comparision of DC breakdown strengths of the pure XLPE and
XLPE/uncoated α-Al2O3 nanocomposites containing 0.2 wt %, 0.5 wt %, 1.0 wt %, and 2.0 wt %
uncoated α-Al2O3. It can be found by comparing with Figure 8a that the addition of uncoated α-Al2O3

also improved the DC breakdown strength of XLPE. The changing rules of the uncoated α-Al2O3 and
the coated α-Al2O3 are basically the same. However, the DC breakdown strengths of XLPE/uncoated
α-Al2O3 are lower in value than the coated α-Al2O3. When the content of α-Al2O3 was 1 wt %, the DC
breakdown strength of XLPE/coated α-Al2O3 nanocomposites reached 320 kV/mm, while the DC
breakdown strength of XLPE/uncoated α-Al2O3 nanocomposites was only 280 kV/mm. This illustrated
that the surface modification of α-Al2O3 can improve the DC breakdown strengths of XLPE/α-Al2O3

nanocomposites, because the surface modification of α-Al2O3 can effectively prevent the agglomeration
of nanosheets and improve the dispersion of nanosheets in the XLPE matrix, thus improving the
electrical properties of the nanocomposites.

Why can coated α-Al2O3 nanosheets greatly increase the DC breakdown strength of
nanocomposites? This may have been because the insulating coated α-Al2O3 nanosheets were
intrinsic electrical insulating nanopaticles [37]. Secondly, the redistribution of space charge in the
insulation material causes electric field homogenization and decreases the free volume of XLPE [38].
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More importantly, flaky Al2O3 has a blocking effect on the transport of injected charge along the
thickness direction just as shown in Figure 9; the charge transport through the flakes becomes inhibited
with a detour effect. Therefore, the effect of α-Al2O3 on the breakdown performance of XLPE is
related to the addition of modified α-Al2O3 nanosheets; up to a certain amount of α-Al2O3 (1 wt %),
the breakdown field increases with the increasing α-Al2O3 content. When the amount of α-Al2O3

reaches a certain level (2 wt %), the breakdown field strength of the XLPE decreases rapidly. When the
concentration is high, such as at 2 wt %, it is difficult to make the nanoparticles disperse well in the
polymer matrix, thus affecting the breakdown performance.
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Figure 9. Schematic diagram of the barrier of α-Al2O3 to injected charge in the XLPE matrix.

The hypothesis can be confirmed by the DC electrical conductivity of XLPE/α-Al2O3

nanocomposites. Figure 10 shows the relationship between the content of uncoated and coated
α-Al2O3 and DC electrical conductivity.
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Figure 10. The relationship of the coatedα-Al2O3 content and DC electrical conductivity of XLPE/coated
α-Al2O3 nanocomposites and XLPE/uncoated α-Al2O3 nanocomposites.

As is shown in Figure 10, the DC electrical conductivity decreased with increasing α-Al2O3

content. When the content of coated α-Al2O3 reached 1 wt %, the electrical conductivity reached
the minimum value (1.043 × 10−13 S/m), but when the content continued to increase to 2 wt %,
the conductivity increased to 1.312 × 10−13 S/m. The same was true for XLPE/uncoated α-Al2O3

nanocomposites. However, it can be seen that the coated α-Al2O3 reduced the electrical conductivity
of the nanocomposites more than uncoated α-Al2O3. This can illstrate that the surface modification of
α-Al2O3 can reduce the electrical conductivity of XLPE/α-Al2O3 nanocomposites. The results of this
testing corresponding to the results of the voltage breakdown testing, proving that the XLPE/α-Al2O3

nanocomposites have the lowest DC electrical conductivity and the highest DC breakdown strength
when the content of α-Al2O3 is 1 wt %.

Under the high voltage, the XLPE will break down and change from an insulator to a conductor,
but before the breakdown, the XLPE is not an absolutely non-conductive insulator, and a weak current
will appear in the material. Since there are usually only a few free electrons in the insulating material,
the charges mainly come from the intrinsic ions and impurity particles. The addition of α-Al2O3
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nanosheets introduces a large number of traps; the number of traps in the nanocomposites is much
larger than that in the pure XLPE, which reduces the mobility of carriers in the nanocomposites and
prevents the injection of charges, thus reducing the conductivity of the nanocomposites.

The space charges of pure XLPE and the XLPE/α-Al2O3 nanocomposites containing 0.2 wt %,
0.5 wt %, and 1.0 wt % of α-Al2O3 varied over time under the application of a DC voltage of 20 kV/mm
(Figure 11).
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Figure 11. (a) The space charge density of pure XLPE varies with the application time of DC voltage
(20 kV/mm), (b–d) The space charge density of the XLPE/α-Al2O3 nanocomposites containing 0.2 wt %,
0.5 wt %, and 1.0 wt % α-Al2O3 varies with the application time of DC voltage (25 kV/mm).

As shown in Figure 11a, immediately after the voltage was applied, both electrons and holes
are injected from the cathode and anode separately. After 120 s, the heterocharges and homocharges
accumulated rapidly near the cathode in XLPE and reach a maximum, which was about 6 C/m3 in
contrast to 3 C/m3 around the anode. The amount of space charge near the both electric poles increased
with time and rapidly reached a maximum. At the same time, a small amount of space charge packets
developed within the specimen, and the same was true for the XLPE/α-Al2O3 nanocomposites.
However, compared with pure XLPE, the space charge densities near the anode and cathode
of XLPE/α-Al2O3 nanocomposites were markedly reduced. This was particularly notable in the
XLPE/α-Al2O3 nanocomposites containing 0.2 wt % of α-Al2O3, in which the space charge density
near the cathode was only about 3 C/m3, which was half that observed for pure XLPE.

Figure 12 shows a comparison of the quantity of space charge of pure XLPE and XLPE/α-Al2O3

nanocomposites containing 0.2 wt % of α-Al2O3. As shown in Figure 12, the space charge quantity
of nanocomposites is significantly lower than that of XLPE. Based on the space charge data for all
samples, it appears that the certain addition of α-Al2O3 can suppress the accumulation of space charge
effectively, especially in the case of the XLPE/α-Al2O3 nanocomposites containing 0.2 wt % of α-Al2O3.
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Figure 12. Quantity of space charge of pure XLPE and 0.2 wt % XLPE/α–Al2O3 nanocomposites.

The space charge densities of pure XLPE and XLPE/α-Al2O3 nanocomposites containing 0.2
wt % and 0.5 wt % of α-Al2O3, and their variation with field intensity, are shown in the inset of
Figure 13. As shown in Figure 13a, as the intensity of the electric field increased from 10 to 20 kV/mm,
the heterocharges ionized by impurities inside the pure sample accumulated near the anode, and a mass
of homocharges accumulated near the cathode. When the electric field intensity reached 30 kV/mm,
a mass of heterocharges accumulated near the anode of the sample; more importantly, a large quantity
of space charges accumulated inside the specimen, with a density of about 3–5 C/mm. Compared
with the pure XLPE, the accumulation of space charge in XLPE/α-Al2O3 nanocomposites showed little
variation with field intensity, especially in the case of the XLPE/α-Al2O3 nanocomposites containing
0.2 wt % and 0.5 wt % of α-Al2O3. As shown in Figure 13b,c, the addition of α-Al2O3 effectively
inhibited the accumulation of heterocharges and homocharges near the cathode, and space charge
accumulation inside the specimen.Materials 2020, 13, x FOR PEER REVIEW 12 of 14 
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Figure 13. (a) The space charge density of pure XLPE varies with field intensity. (b,c) The space charge
density of the XLPE/α-Al2O3 nanocomposites containing 0.2 wt % and 0.5 wt % of α-Al2O3 varies with
field intensity.
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These space charge data obtained by the pulsed electro-acoustic method indicate that the addition
of α-Al2O3 suppresses the space charge accumulation in the XLPE. The reason is that the α-Al2O3

nanosheets introduce a certain number of deep traps in the interface between the XLPE matrix and the
nanopaticles. Under the action of an electric field, these deep traps capture the electrons (or holes)
injected from the anode (or cathide) and reduce the movable charge inside the insulation material,
thus inhibiting the injection of space charge and effectively inhibiting its accumulation in the material.

4. Conclusions

The above characterization of α-Al2O3 nanosheets and the experimental voltage breakdown
testing, DC electrical conductivity tests, and space charge measurements demonstrate that α-Al2O3

synthesized by the molten salt method and surface-modified by KH550 can be evenly dispersed into an
XLPE matrix, significantly improving the DC breakdown strength, reducing the electrical conductivity
of the polyethylene matrix, and suppressing the accumulation of space charge. In all the samples,
XLPE/α-Al2O3 nanocomposites with a concentration of 1 wt % showed the maximum breakdown
field strength and minimum electrical conductivity, and those with a concentration of 0.2 wt % of
α-Al2O3 most effectively inhibited the accumulation of space charge. This was because the interface
region generated by the addition of α-Al2O3 nanosheets successfully introduces a large number of
deep traps, which greatly decrease the charge carrier mobility. These results may have implications for
the development of materials for HVDC cable insulation.
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