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Chemical synthesis based on Group-Assisted Purification chemistry (GAP) has been
prolifically used as a powerful, greener and ecofriendly tool so far. Herein, we report
hypervalent iodine (III) mediated regio- and diastereoselective aminobromination of
electron-deficient olefins using group-assisted purification (GAP) method. By simply
mixing the GAP auxiliary-anchored substrates with TsNH2–NBS as nitrogen/bromine
sources and PhI(OAc)2 as a catalyst, a series of vicinal bromoamines with
multifunctionalities were obtained in moderate to excellent yields (53–94%). The vicinal
bromoamines were obtained without column chromatography and/or recrystallization
simply by washing the crude mixtures with cosolvents and thus avoiding wastage of silica,
solvents, time, and labor. The GAP auxiliary is recyclable and reusable.

Keywords: aziridinium, diastereoselectivity, iodobenzene diacetate, nitrogen/halogen source, protecting groups

INTRODUCTION

Aminohalogenation of olefins, an important difunctionalization reaction, allows the direct construction
to C−N and C−halogen double bonds which are versatile synthetic intermediates for pharmaceutically
and biologically important molecules (Gao et al., 2005; Yeung et al., 2006b). The intramolecular and/or
intermolecular replacement of labile halogen moieties with multifarious nucleophiles leads to
precursors like vicinal diamines, lactams, amino alcohols α,β-dehydroamino acids, amino
aldehydes and aziridines (Ling et al., 1996; Van and De Kimpe, 2000; Klepacz and Zwierzak, 2001;
Chen et al., 2005; Li et al., 2007; Ghorai et al., 2011; Schröder et al., 2017; Thakur et al., 2017).

Since the aminohalogenation reaction was discovered several decades ago, a variety of synthetic
techniques have been created to provide this capability. Various reagent systems (halogen/nitrogen
sources) such as TsNH2–NBS (Thakur et al., 2003; Chen et al., 2009a; Chen et al., 2009b; Shaikh et al.,
2009; Wei et al., 2009a; Wei et al., 2009b; Cai et al., 2011; Yu et al., 2017), cyanamide–NBS (Ponsold
and Ihn, 1970), N-bromoacetamide (Yeung et al., 2006a; Yeung et al., 2006b), N,N-
dihalosulfonamides (Kharasch and Priestley, 1939), S,S-dimethyl-N-(p-toluenesulfonyl)
sulfilimine–NBS (Raghavan et al., 2001), BocNH2/BocNBr2 (Chen et al., 2013), N,N-
dihalocarbamates (Śliwińska and Zwierzak, 2003) and N-halocarbamates (Driguez et al., 1978)
have been designed to carry out this transformation. To achieve high yields, excellent
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regioselectivities and diastereoselectivities, our group as well as
others have developed efficient catalytic systems which comprise:
metal and nonmetal powders (Chen et al., 2009b; Wei et al.,
2009a), metal oxides (Thakur et al., 2003; Shaikh et al., 2009) and
metal salts (Albone et al., 1998; Ando et al., 1998; Li et al., 1999; Li
et al., 2000; Wei et al., 2001; Yeung et al., 2006a;Wang et al., 2008;
Chen et al., 2009a; Wei et al., 2009b; Yadav et al., 2009), organic
catalysts like hypervalent iodines (Fan et al., 2007; Wang andWu,
2007; Wu et al., 2008), phosphoric acid or phosphate (Chen et al.,
2010; Huang et al., 2011; Alix et al., 2012; Xie et al., 2013),
noncatalytic routes which utilize Bronsted acids (Wu and Wang,
2007) such as H2SO4 or ionic liquid media [Bmim][BF4](Xu et al.,
2004). Though considerable progress has been made in this area,
drastic reaction conditions, procedural complexities, the use of
metal catalysts and contamination of materials by metal traces
(Chen et al., 2003a; Garrett and Prasad, 2004; Huang and
Shaughnessy, 2006) limit their application. Besides, the study
of efficient highly regio- and stereoselective methods which could
reduce the formation of side products remains challenging.

Purification techniques such as column chromatography and
recrystallization are commonly used in the above mentioned
syntheses.

The development of environmentally benign and eco-friendly
greener reaction protocol is ubiquitous both in academia and the
pharmaceutical industry (Shi et al., 2008). GAP chemistry,
recently introduced by our group, fulfills the afford-mentioned
criteria of greener chemistry by avoidance of separation, workup,
recrystallization, and column chromatography. The product is
obtained by merely washing the reaction mixture with a
combination of more polar and less polar solvents (Wang
et al., 2013; Chennapuram et al., 2014; Dommaraju and
Prajapati, 2015; Seifert et al., 2016; Patel et al., 2019; Li et al.,
2020a; Li et al., 2020b; Li et al., 2020c). Polarity difference between
the solvents plays a key role in the isolation of products, i.e., the
impurities get dissolved in washing solvents and the GAP-
coupled product remains insoluble clustered together. Keeping
in view the greener aspect of GAP chemistry, here we report for
the first time hypervalent iodine (III) mediated regio- and

TABLE 1 | Optimization of the reaction conditions.a

Entry Catalyst Br source (equiv.) Time (h) Solvent Yieldb

(%)
drc

1 NBS (1.5) 24 CH2Cl2 60 7:1
2 TBCO (1.5) 24 CH2Cl2 31 5:1
3 PhCONHBr (1.5) 24 CH2Cl2 47 4:1
4 DBDMH (1.5) 24 CH2Cl2 53 4:1
5 Pd(OAc)2 NBS (1.5) 24 CH2Cl2 69 10:1
6 Mn(OAc)2 NBS (1.5) 24 CH2Cl2 60 4:1
7 FeCl3 NBS (1.5) 24 CH2Cl2 54 4:1
8 PhI(OAc)2 NBS (1.5) 24 CH2Cl2 78 7:1
9 ZnCl2 NBS (1.5) 24 CH2Cl2 35 6:1
10 CuI NBS (1.5) 24 CH2Cl2 52 10:1
11 Cu(Otf)2 NBS (1.5) 24 CH2Cl2 63 7:1
12 Sc(Otf)3 NBS (1.5) 24 CH2Cl2 51 4:1
13e PhI(OAc)2 NBS (1.5) 24 CH2Cl2 82 7:1
14e PhI(OAc)2 NBS (2.0) 24 CH2Cl2 85 7:1
15e PhI(OAc)2 NBS (2.0) 48 CH2Cl2 90 7:1
16e PhI(OH) (4-TsOH) NBS (2.0) 48 CH2Cl2 70 8:1
17e PhI(OCOCF3)2 NBS (2.0) 48 CH2Cl2 74 8:1
18e PhI(OAc)2 NBS (2.0) 48 CH3CN 77 7:1
19e PhI(OAc)2 NBS (2.0) 48 CHCl3 94 7:1
20e PhI(OAc)2 NBS (2.0) 48 PhMe 28
21e PhI(OAc)2 NBS (2.0) 48 THF – –

22e PhI(OAc)2 NBS (2.0) 48 Et2O – –

23e PhI(OAc)2 NBS (2.0) 48 EtOAc – –

24e,f PhI(OAc)2 NBS (2.0) 48 CHCl3 61 7:1

aUnless otherwise specified, all reactions were performed with 0.15 mmol of 11a, 20 mol% of the catalyst, 4-TsNH2 and Br source (1:1), 75 mg of MS 4 Å in 1.5 ml of solvent at room
temperature under N2.
bIsolated yields with GAP washing (for entries 2, 3, 9 and 20 GAP washing was not conducted).
cThe dr values were determined by the analysis of.
dH NMR spectra.
eFor entries 13–23, the reactions were performed at reflux.
fThe reaction was carried out at 10 mol% of the catalyst.
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diastereoselective vicinal aminobromination of GAP-tailored
electron-deficient olefins via GAP protocol.

RESULTS AND DISCUSSION

Based on our prior research, we were interested in
aminobromination of α,β-unsaturated cinnamic acids, which
are challenging due to the formation of regio- and
diastereomeric products. To develop conditions for regio- and
diastereoselective transformation, we began to prepare the GAP
coupled intermediate 1a-k and 2a-k in our laboratory according
to the literature procedure (Rahman et al., 2020) given in
supporting information. To optimize the reaction conditions,

we initiated the study with the GAP anchored intermediate 1a as
the test substrate, p-toluenesulfonamide (4-TsNH2) and
N-bromosuccinimide (NBS) as the nitrogen and bromine
source respectively. To our delight, product 3a was isolated in
60% yield after 24 h with a dr value 7:1 when 1a was treated with
NBS (1.5 eq) and 4-TsNH2 (1.5 eq) in dichloromethane at room
temperature without any catalyst. Lower yields were obtained
with other bromine sources (Table 1, entries 2–4). With NBS as
the bromine source, a series of hypervalent iodine and transition
metal catalysts were subsequently employed. The yield was
significantly improved with iodobenzene diacetate
(PhI(OAc)2), and aminobromine product was isolated in a
chemical yield of 78% with diastereoselective ratio of 7:1
(Table 1, entry 8). Refluxing this reaction mixture further

TABLE 2 | Substrate scope of aminobromination of N-(4-(diphenylphosphoryl)benzyl) cinnamates 1a-k.

Unless otherwise specified, all reactions were performed with 0.3 mmol of 1a-k, 0.6 mmol of 4-TsNH2, 0.6 mmol of NBS, 150 mg of MS 4Å in 3 ml of chloroform at reflux under N2. The dr
values were determined by the analysis of 1H NMR spectra. Isolated yields with GAP washing.
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enhanced the yield up to 82% (Table 1, entry 13). An even more
increase in yield was observed when 2 eq of each NBS and 4-
TsNH2 was added to the reaction medium (Table 1, entry 14).
The yield was further improved to 90% with a longer reaction
time (48 h) (Table 1, entry 15). We then utilized the catalytic
activity of other iodine catalysts like PIFA (PhI(OCOCF3)2) and

Koser’s reagent (PhI(OH) (4-TsOH)) in this transformation; only
PhI(OAc)2 could give the terminal product in higher yield
(Table 1, entry 15). Except for CHCl3 and CH3CN, poorer
results were obtained at reflux temperature with other solvents
examined when the reaction was performed with 20 mol% of
PhI(OAc)2 as the catalyst and 2 equiv. of NBS and 4-TsNH2

TABLE 3 | Substrate scope of aminobromination of N-(4-(diphenylphosphoryl)benzyl) cinnamamides 2a-k.

Unless otherwise specified, all reactions were performed with 0.3 mmol of 2a-k, 0.6 mmol of 4-TsNH2, 0.6 mmol of NBS, 150 mg of MS 4Å in 3 ml of chloroform at reflux under N2. The dr
values were determined by the analysis of 1H NMR spectra. Isolated yields with GAP washing.

SCHEME 1 | Gram scale reactions.
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(Table 1, entries 18–23). A yield of 67% was obtained when the
catalyst loading was decreased to 10 mol%. Control experiments
showed that both NBS and the 4-TsNH2 were important for the
reaction and that using activated molecular sieves 4Å generally
increased the yield and selectivity.

After optimizing the conditions for aminobromination reaction,
the substrate scope was subsequently explored. The results are
shown in Table 2. A wide range of N-(4-(diphenylphosphoryl)
benzyl) cinnamates 1a-k bearing different aryl groups with a variety
of electron-donating (EDG) (such as methyl and methoxy) and
electron-withdrawing groups (EWG) (floro, chloro bromo, nitro)
were investigated which providedmoderate to high yields (53–94%).
As shown in Table 2, with regards to the EDG on the aromatic ring
of cinnamic substrates 1b-1f, the addition reactions were well
tolerated to produce the relevant adducts in good yields (Table 2,
2b-2f). Both the substrates 1b and 1c with an ortho-MeC6H4 and a
para-MeC6H4 group delivered the corresponding products 3b and 3c
smoothly in 85 and 89% yields respectively. Similarly, the product
3 days with ortho-OMeC6H4was isolated in a high yield of 80%. The
di-OMe and tri-OMe substituted substrates were evenmore effective
for the reaction (Table 2, 3e, 3f). On the other hand, substrates
bearing EWG on the aromatic rings generally decreased the yield
under the same conditions (Table 2, 3g-3j). Importantly, halogen (Br
or F) groups were almost consistent with the conditions, offering 3g,
3h and 3i in moderate yields. The lowest yield of 53% was obtained
for 3j, which had a Cl group at the ortho-position and an NO2 group
at para-position. The substrate with a naphthyl group reduced the

yield to 81% under the same conditions but enhanced the
diastereoselectivity (Table 2, 3k).

In addition to N-(4-(diphenylphosphoryl) benzyl) cinnamates,
N-(4-(diphenylphosphoryl) benzyl) cinnamamides 2a-k were then
exposed to aminobromination under the optimized reaction
conditions for 1a-k. The reaction was applicable in the presence
of 20mol% of PhI(OAc)2 in chloroform, substrate 2a was
successfully converted in 48 h at reflux temperature to haloamine
product 4a in 78% yield with a diastereoselective ratio of 18:1.

As shown in Table 3, this transformation can be extended to a
variety of N-(4-(diphenylphosphoryl)benzyl) cinnamamides 2a-k
to provide moderate to high yields (56–81%). The substrates with
EWG and EDG display substantial variations in reaction
reactivity and regioselectivity. Aminobromination was greatly
facilitated by the presence of a strong EDG on the benzene
ring, affording products in high yields and good to excellent
diastereoselectivity (Table 3, 4b–4e). The substrate with EWG on
the aromatic ring, as expected, resulted in a lower yield (Table 3,
4f–4j). The substrate with a naphthyl group, however, had no
significant effect on the yield under the same conditions and
lowered the diastereoselectivity (Table 3, 4k).

FromTable 2, 3, we further observed that EWG and EDG on the
benzene ring had a significant impact on the diastereoselectivity of
cinnamates and cinnamamides which is generally governed by the
GAP auxiliaries. In the case of cinnamates, EDG resulted in low
diastereoselectivity than EWG. For cinnamamides, however, EDG
had higher diastereoselectivity than EWG. This variation in

SCHEME 2 | GAP deprotection.

SCHEME 3 | A possible pathway for the synthesis of vicinal bromoamines.
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diastereoselectivity of both derivatives could be attributed to
stereoelectronic factors.

The feasibility of this procedure was studied by conducting the
reaction on a gram scale for the starting materials 1a and 2a,
which resulted in 85 and 73% yields for the products 3a and 4a,
respectively.

In the presence of Pd/C and NaBH4, the GAP-tailored vicinal
aminobromine was deprotected which afforded Bndpp in 93%
yield (Schemes 1,2). The mixture is dissolved in a small volume of
a solvent, such as ethyl acetate or DCM, and then petroleum ether
is used to purify the products. The GAP auxiliary precipitates as a
white solid that is filtered and treated with petroleum ether. To
achieve the desired β-bromoamine as a white substance, the
filtrate is evaporated under a vacuum.

Mechanism
The outcomes of various experimentation within our research team,
as well as other (Li et al., 2001;Wei et al., 2001;Wang andWu, 2007;
Wu andWang, 2008; Chen et al., 2009a), lead to the conclusion that
NBS may react with 4-TsNH2 to generate N-bromo-p-
toluenesulfonamide (4-TsNHBr) 6 (Scheme 3), which would be
oxidized by PhI(OAc)2 to generate intermediate Int-I thatmay either
follow cycle A or cycle B. In cycle A, the Int-I will form aziridinium
Int-II with a double bond of 1a or 2a, which is then stereoselectively
attacked by the dissociated bromide from the Int-I at the more
electrophilic carbon (beta to carbonyl carbon) to yield compound
Int-III. Int-III and 16 eventually provide the ultimate bromoamine
substance 3a or 4a and restore Int-I. When the fragile N–I bond of
Int-I is broken, N-acetoxy-N-halo-p-toluenesulfonamide Int-IV can
form, which could then be the active intermediate for cycle B. Int-IV
that forms an equilibriumwith nitrenium ion Int-V (Kikugawa et al.,
2003; Murata et al., 2008) could react with olefin 1a or 2a to afford
aziridinium Int-VI which would lead to Int-VII following an SN2
nucleophilic attack by the nearby bromide. Finally, the reaction of the
intermediate Int-VII with 6 gives the final product and regenerates
Int-IV.

Benefiting from the present methodology and this mechanism
analysis, the utilizations of GAP chemistry for
aminohalogenation and diamination of a broader scope of
substrates (Chen et al., 2003b; Chen et al., 2004), in search for
new chirality (Wu et al., 2019a; Wu et al., 2019b; Liu et al., 2020)
and on multi-component reactions will be further conducted in
our labs (Jiang et al., 2012a; Jiang et al., 2012b).

EXPERIMENTAL SECTION

Aminobromination of
4-(Diphenylphosphoryl) Benzyl Cinnamates
1a-k and N-(4-(Diphenylphosphoryl) Benzyl)
Cinnamamides 2a-k
Typical procedure: Into a dry vial was added 1a or 2a (1 mmol,
1 eq), NBS (356 mg, 2 mmol, 2 eq), 4-TsNH2 (342mg, 2 mmol,
2 eq), PhI(OAc)2 (64 mg, 20 mol%) and freshly activated 4 Å
molecular sieves (500 mg) and capped under nitrogen protection.
CHCl3 (3 ml) was added via a syringe and the reaction mixture was

allowed to reflux for 48 h. After completion (monitored by TLC),
the reaction was quenched with dropwise addition of saturated
aqueousNa2SO3 solution (2 ml) andDCM (3× 10ml) was added to
extract the product. The combined organic layers were washed with
brine, dried over anhydrous sodium sulfate, and concentrated under
reduced pressure. The mixture was redissolved in the minimal
amount of solvents like ethyl acetate or DCM, and then petroleum
ether was added. The GAP auxiliary precipitated in the form of a
white solid which was filtered and washed with petroleum ether.
The filtrate is evaporated under a vacuum to obtain the desired
β-aminobromine as a white product.

General Procedure for Deprotection of
Group-Assisted Purification Auxiliary
BnDpp.
To a 10ml round bottom flask was added 4a (0.2 g, 0.32mmol),
10 wt% Pd/C (20mg) 2ml MeOH and NaBH4 (15.2 mg, 2 equiv.).
To prevent the loss of produced hydrogen and overpressure in the
flask, it was sealed with a rubber septum and a deflated balloon. the
reaction mixture was drained through a Celite after 2 h and the
filtrate was concentrated under reduced pressure before being
redissolved in EtOAc. After that, KHSO4 was used to neutralize
the reaction mixture. The organic layer was separated, dried over
anhydrous Na2SO4 and evaporated to dryness to afford crude GAP
auxiliary, which was easily purified using the GAP washing method.

CONCLUSION

In conclusion, we have demonstrated a new method for the
preparation of vicinal aminobrominated products of electron-
deficient olefins coupled with GAP auxiliaries dppBnOH and
dppBnNH2. Good yields and diastereoselectivities were obtained
in a clean and eco-friendly reaction condition comprising the
catalyst PhI(OAc)2 with NBS and 4-TsNH2 as the bromine and
nitrogen sources. The Group-Assisted Purification (GAP)
chemistry was successfully applied and the compounds were
obtained as precipitates without column chromatography and
recrystallization by merely adding ethyl acetate and petroleum
ether. Besides, the GAP auxiliary can be recovered for reuse.
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