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ABSTRACT: Herein, we introduce a new strategy to estimate
binding free energies using end-state molecular dynamics simulation
trajectories. The method is adopted from linear interaction energy
(LIE) and ANI-2x neural network potentials (machine learning) for
the atomic simulation environment (ASE). It predicts the single-
point interaction energies between ligand−protein and ligand−
solvent pairs at the accuracy of the wb97x/6-31G* level for the
conformational space that is sampled by molecular dynamics (MD)
simulations. Our results on 54 protein−ligand complexes show that
the method can be accurate and have a correlation of R = 0.87−0.88
to the experimental binding free energies, outperforming current
end-state methods with reduced computational cost. The method
also allows us to compare BFEs of ligands with different scaffolds.
The code is available free of charge (documentation and test files) at https://github.com/otayfuroglu/deepQM.

■ INTRODUCTION
Developing small compounds that target medically relevant
protein is one of the main strategies in modern drug discovery
studies. There are two core questions that must be addressed
in these efforts: (a) what is the binding mode? (i.e., where does
it bind from the receptor?) and (b) what is the binding
strength? (binding free energy).1 Inhibition of an enzyme can
be involved in various mechanisms. For instance, an inhibitor
can bind to the enzyme from the active site via competitive
inhibition or it can bind from an exo/allosteric site by
uncompetitive/noncompetitive inhibition.2

Kinetic studies conducted to understand the activity loss of
the enzyme on a substrate by the inhibitor report values such
as inhibition equilibrium constant Ki or half maximal inhibitory
concentration IC50. These two experimental parameters are
proportional to each other for competitive inhibition (they are
equal in special cases).2,3 Thermodynamic equilibrium
constant Ki and thus IC50 can be approximated to the
experimental binding free energy of the system for the
competitive inhibitors by

G RT ln(IC )exp
0

50=

A more correct form is

G RT ln(IC /IC )50 lig1 50 lig2=

where ΔΔG is the relative binding free energy between two
competitive inhibitors. ΔG can also be calculated from the
thermodynamic potential. In principle, it is possible to
compare experimental binding free energies determined from

IC50 and theoretically determined from IC50 predicted by
thermodynamic potentials using computational methods for a
series of competitive inhibitors. Thus, numerous efforts have
been made to develop new strategies that can accurately
predict binding free energies. However, a trade-off between
computational accuracy and speed must be made.
Methods to calculate the potential binding free energy range

from simple end-state methods such as linear response
approximation (LRA) to linear interaction energy (LIE) and
molecular mechanics Poisson−Boltzmann/generalized Born
surface area (MM-(P/G)BSA)4−7 to more sophisticated
alchemical perturbation methods either at equilibrium such
as free-energy perturbation (FEP), thermodynamic integration
(TI),8−17 Bennett acceptance ratio (BAR),8,12,15,18−23 and
multistate BAR (MBAR)24−26 or nonequilibrium like
Jarzynski’s equality27,28 and Crooks fluctuation theorem.29

Perturbation methods require several intermediate lambda
states (λ−), in which the ligand can be decoupled, annihilated,
or pulled. Theyt use the explicit water definition, and its
prediction for relative binding free energies is quite successful.
However, they are still at the level of MM energy terms and
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visit nonphysical intermediate states. All of these methods
require a higher computational cost.
Binding free energy (BFE) calculations from single-step end-

states are quite attractive since they require only one MD
simulation for each protein−ligand (PL) complex system with
less computational cost. However, the accuracy is very low due
to over-simplifications such as implicit solvent definition in the
case of MM-P(G)BSA and molecular mechanics (MM)
definition of the Hamiltonian of the system.
Classical force fields, which do not account for electron

polarization, charge transfer, and many-body effects, are very
limited in accurately defining the protein−ligand interaction.
Thus, the system needs to be described at the quantum
mechanical (QM) level to include these essential physical
effects.30,31 There have been several attempts to replace the
MM energies with more accurate QM energies. Recently, Fox
et al.30,32 have introduced a “QM-PBSA” method for eight
ligands and improved the MMPBSA energies. One caveat to
overcome the prohibitive DFT calculations on thousands of
atoms of protein−ligand complexes is to use semiempirical
quantum mechanics (SEQM) such as AM1 and SCC−DFTB
or QMMM calculations.33−39 There are also ongoing efforts to
use fragmentation-based QM calculation methods. Most of
these studies suffer from no/low sampling from MD
simulations.32,38−52

Machine learning (ML) techniques have attracted great
interest for the past decade due to their successful algorithms
to scientific questions including but not limited to chemical
reactions,53,54 potential energy surfaces,53,55−57 forces,58−60

atomization energies,61,62 and protein−ligand complex scor-
ings.63 One of the most promising aspects of the ML
techniques is that the trained models can be applied to new
systems (transferrable).53 In particular, ML potentials with
their great capability of learning a multidimensional potential
energy surface (PES) at the QM level are promising due to
their efficiency and scalability to large systems.64−66

Recently, several ML-based neural network potentials
(NNPs) such as ANI67−69 have been developed using QM
energies and forces to predict the potential energy surfaces of
small organic compounds. ANI uses modified Behler and
Parrinello symmetry functions to construct single-atom atomic
environment vectors (AEVs) and could be considered as a
quantum accurate force field without requirement of atomic
charges. Thus, it only uses atomic symbols and 3D coordinates
as an input for the calculations to estimate pairwise atomic
interactions. The initial model (ANI-1x) used the PES of
nonequilibrium geometries belonging to a total of ∼17.2
million conformations generated from ∼58k small organic
compounds composed of C, H, O, and N atoms.70 The
extended version, ANI-2x, has been shown to predict DFT
energies of equilibrium or nonequilibrium conformations of
molecules containing C, H, O, N, S, F, and Cl atoms. It has
been shown to reproduce the energies at the accuracy of the
wb97x/6-31G* level million times faster than the actual QM
calculations.53

Herein, we introduce a new strategy to estimate the binding
free energies of small organic compounds to proteins using
end-state MD simulations. The method utilizes ANI-2x neural
network potentials and predicts the binding free energies of the
protein−ligand (PL) in the linear interaction energy (LIE)
formalism. Our results show that the “ANI_LIE” method
outperforms current methods for binding free energies. The

code is freely available at https://github.com/otayfuroglu/
deepQM.

■ THEORY
Linear Interaction Energy (LIE). In the LIE method, only

the protein−ligand aqueous complex (PLS) and free ligand in
water (LS) are simulated. Assuming that the interactions are
additive from the simulations of the protein (P) + ligand (L) +
solvent (S) complex system (PLS), it can be derived as

Thus, the interaction of the ligand with its surroundings can be
calculated using the left-hand side of eq 1, which requires
defining L as an energy group.

E E E EL surr L PS L ions L PS= +
ANI has been trained only for atoms C, O, N, H, Cl, F, and S.
Sodium ions cannot be calculated in the current version of
ANI-2x. The term ΔEL‑ions in this equation is the interaction
energy of the ligand with ions (which were added to the
simulation box to neutralize the protein), and this term can be
neglected assuming that the ions will not be nearby the ligands
since there are only a few ions in the box and the ligand is
mostly buried in the binding pocket (Supporting Information).
The ΔEL‑surr term can also be calculated from the right-hand

side of eq 1 by defining two energy groups, P and L. In that
case, the pairwise contributions from each of the separate
energy groups of P and L can be extracted and the average
interaction between each group is calculated (i.e, ΔEL−P,
ΔEL−S)

E E E E
E E

L surr L P L S L rest

L P L S
= + +

+
Similarly, from the free ligand in water simulations

Originating from the linear response approximation (LRA),
the binding free-energy change from the bound (PLS) to the
unbound state (LS) is given by

G E E( )bind el
L surr

PLS el
L S

LS= +

Here, the brackets and their subscripts, ⟨⟩, denote the
ensemble average and the components of the simulation,
respectively. ΔEelL‑S corresponds to the electrostatic interaction
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energy term between the ligand (L) and surroundings (solvent,
S) from the ligand in solvent simulations.
Thus, the binding free energy can be calculated from

G E E E( )bind el
L P

PLS el
L S

PLS el
L S

LS= +

+ (2)

Including van der Waals terms, the LIE equation becomes

G E E E

E E E

( )

( )
bind vdW

L P
PLS vdW

L S
PLS vdW

L S
LS

el
L P

PLS el
L S

PLS el
L S

LS

= +
+ +

+ (3)

Here α, β, and γ are empirical parameters determined from
linear fitting to the experimental binding energies.

ANI/D3 Linear Interaction Energy (ANI_LIE). We
explored the success of ANI’s performance on estimation of
binding energy using these LIE equations after modifications.
Here, we replaced the electrostatic terms with ANI energies
and van der Waals terms in the MM energies with Grimme’s
dispersion functions (D3) at the wb97x/6-31G* level. In
addition, since all of these equations require two simulations
(PLS and LS), we have explored either by ignoring solvent
terms or borrowing ⟨EANIL−S⟩LS term from calculations.
In linear response approximation (LRA), “preorganization

energy” (POE) is included in ligand−surrounding electrostatic
interaction energy. This term is computed from an ensemble in
which the partial charges on the ligand atoms are set to zero.
On the other hand, the POE term is ignored in a linear
interaction energy (LIE) method. With this aspect, ANI
follows LIE rather than LRA.
When the solvent is totally ignored and ANI interaction

energies are replaced with MM electrostatic energies (similarly,
D3 terms replaced with MM van der Waals terms), eqs 2 and 3
become

G Ebind ANI
L P

PLS= + (4)

G E Ebind ANI
L P

PLS D3
L P

PLS= + + (5)

Although these equations ignore the solvent effects, the source
of large noise, which stems from the high mobility of solvent
molecules, could be avoided, and thus, more precise (not
necessarily more accurate) trends in binding free energies
could still be observed.
When the solvent is not ignored, these two equations are

updated to

G E E E( )bind ANI
L P

PLS ANI
L S

PLS ANI
L S

LS= +

+ (6)

G E E E

E E E

( )

( )
bind ANI

L P
PLS ANI

L S
PLS ANI

L S
LS

D3
L P

PLS D3
L S

PLS D3
L S

LS

= +

+ +

+ (7)

Here, we generated conformational sampling of protein−ligand
(PL), protein (P), and ligand (L) in the presence of explicit
water using a single MD simulation (PLS) in the case of
solvent ignored calculations. Then, the single-point energies
(SPEs) of each MD frame have been calculated by ANI-2x and
D3 by stripping out water and ions. For each MD frame, three
different energies were calculated: the ligand is complexed with

protein, EANIPL ; the bare protein that is extracted from the MD
frame, EANIP , and the bare ligand that is extracted from the MD
frame, EANIL . Similarly, dispersion energy of each component
(ED3PL, ED3P , and ED3L ) has been calculated. When the solvent is
included, L−S interaction terms in the PLS MD simulation
along with additional simulation of the bare ligand in water
(LS) have been considered.
In this study, we used eqs 4−7 to investigate the ANI’s

performance of LIE approach (ANI_LIE) in the presence of
solvents. Strikingly, we found that the calculations using eq 4
outperform conventional approaches by producing BFEs that
strongly correlate with experimental results. The additional
terms appearing in eqs (5)-(7) bring subtle improvements to
the predictions. Here, our aim is to test the success of the ANI
on the interaction energy term; thus, we ignored conforma-
tional entropy changes of the ligand and protein upon binding.
It has been shown that a single trajectory approach is more
precise than the three-trajectory approach due to error
cancellation.30 Although continuum model definitions such
as PBSA could be used in eqs 6 and 7 rather than using explicit
solvents, we preferred not to include these terms because the
primary aim of this study is to test the success of ANI in the
ligand−protein interaction in the LIE approach with explicit
waters. It should also be noted that the conformations are
already sampled in the presence of explicit waters and ANI-
predicted energies even in eqs 4 and 5 belong to equilibrium
geometries of aqueous systems (not gas-phase calculations).
Therefore, we believe that these conformations inherently
reflect the solvent effects at some level. Here, we note that the
ANI potentials were used as a postclassical MD simulation to
recalculate the MD frames rather than performing the ANI
potentials during the MD simulation. Thus, the method is still
limited to the classical force field to generate conformational
sampling. In addition, the entropic contributions of the free
energies are reflected by the width of the energy distributions
as with the nature of the LIE approach.
Due to the power of QM-predicted potential energy

surfaces, the ANI method can also be applied to ligands that
do not have similar structures as opposed to methods such as
BAR, FEP, and MMP(G)BSA, in which calculations mostly
require ligands with similar scaffolds. We have embedded the
end-to-end script to Github for broader access.

■ COMPUTATIONAL METHODS
System Preparation. For the binding studies, the crystal

structures of noncovalent ligands complexed with 3CLpro of
SARS-CoV-1, SARS-CoV-2, and HIV-1 proteases, a total of 54
protein−ligand complexes with known IC50 values (Supporting
Information), were retrieved from the Protein Data Bank
(PDB) except for c-Jun N-terminal kinases, which were
retrieved from the work by Khalak et al.71 Using Gaussian
16 software, the model ligands were first optimized at the
B3LYP/6-31G* level and ESP charges were generated at the
HF/6-31G* level. Using an Antechamber module in
AmberTools 2021, RESP charges and GAFF force field atom
types were generated. The Amber2gmx module72 from
AmberTools 2021 was used to convert amber-type input files
to Gromacs.

MD Simulations. The molecular dynamics simulations
were carried out using a Gromacs 2018+ software package73,74

with an all-atom model of Amber ff99SB-ILDN75−77 force field
implemented in Gromacs. The protein−ligand complex
(∼6000 atoms) was placed in the center of a dodecahedron

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00601
J. Chem. Inf. Model. 2022, 62, 4095−4106

4097

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_002.xlsx
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


box. Each system was solvated in the TIP3P model type
water78 with a cell margin distance of 10 Å for each dimension.
The protein−ligand systems with ∼70,000 atoms were
neutralized in 0.15 M NaCl. Classical harmonic motions of
all bonds were constrained to their equilibrium values with the
LINCS algorithm.
Energy minimization was carried out to a maximum 100 kJ·

mol−1·nm−1 force using a Verlet cutoff scheme. For both long-
range electrostatic and van der Waals interactions, a cutoff
length of 12 Å was used with the particle mesh Ewald method
(PME) (fourth order interpolation).79 The neighbor list
update frequency was set to 20 ps−1. As with our earlier
studies,80−82 two-step energy minimization and equilibration
schemes were used. Each minimization step consisted of up to
50 000 cycles of steepest descent and a subsequent 50 000
cycles of l-bfgs integrators.
After minimization, each system was equilibrated within

three steps using Langevin dynamics. The first step consisted
of a 1 ns of NVT ensemble. The protein−ligand and the rest of
the system were defined as two temperature groups at 310 K.
The next step consisted of NPT ensembles, in which the
systems were equilibrated to 1 atm pressure by Berendsen for
200 ps and followed by Parrinello-Rahman isotropic pressure
coupling for 1 ns to a reference pressure of 1 atm. When
systems reached to equilibrium, an MD simulation of 10 ns
was carried out at the NPT ensemble.

Free Energy Calculations. Simulations for alchemical free
energy calculations were carried out using a Gromacs 2018+
software package73,74 with the all-atom model of Amber
ff99SB-ILDN75−77 force field implemented in Gromacs. For
the alchemical free energy calculations, 10 equal decoupling
steps (i.e., decoupling the ligand from the environment) of
each Coulombic and van der Waals interaction (Δλ = 0.1, total
21 λ-windows) were used. For the calculations of the protein−
ligand complex, a separate decoupling of the ligand from the
ligand+water system with the same parameters was performed
and subtracted from the decoupling of the ligand from the
protein + ligand + water complex system.80 An Alchemicala-
nalysis module from the pymbar library83 was used to print
alchemical free energies.
MM-PB(GB)SA calculations were performed using

gmx_MMPBSA script byAmberTools 2021 v4. For the
calculations of protein−ligand complexes, we used the λ = 0
trajectories of protein+ligand+water complexes from alchem-
ical free energy calculations. Only the protein + ligand complex
part from the trajectories was extracted and default parameters
of implicit water with ε = 80 and solute with ε = 2 were used.
Nonpolar solvation parts were separated into dispersion and
cavity terms, which is defined by solvent accessible surface area
from molecular volume.
ANI and D3 calculations were performed using our custom-

built python scripts deepQM as with our previous study for LS
solvation free energies (data unpublished). Since it corre-
sponds to a fully interacting state, we used a trajectory of the
first window (λcoul = 0; λvdw = 0) from the alchemical MD
simulations for QM accuracy calculations using ANI and
Gaussian 16 software (G16). For G16 calculations at the
wb97x/6-31G* level, it is computationally too expensive to
carry out the entire protein−ligand system. Therefore, we had
to truncate the residues around the ligand by 4.0 Å (nearly 900
atoms). Gromacs software was utilized to index energy groups,
remove PBC, order the nearest waters around the PL complex,
and extract structures from trajectories for ANI calculations

while PyMol was used to truncate the nearest residues around
the ligand for the QM calculations at Gaussian 16 software.

■ RESULTS AND DISCUSSION
Workflow. deepQM is written in Python 3.9 (details of the

functionality and different modules of deepQM are discussed
elsewhere) and uses ASE libraries to calculate ANI and DFT-
D3 single-point energies of the given A−B complex structure
(e.g, A = protein, P; B = ligand, L). As an end-to-end process
with the DFT accuracy, binding free energy is predicted from
the PL/LS complex, free protein, and ligand structures, all of
which are extracted from the trajectories of classical MD
simulations of the protein−ligand complex system in water.
The workflow for the prediction of protein−ligand binding

free energy from multiframes of an MD simulation is as
follows: First, the atomic indices of the protein and ligand are
read from the index groups of the index file and extracted into
three separate xyz coordinates (PL, P, L or LS, L, S) after
preprocessing the pdb files to make compatible for deepQM
(Scheme 1). Next, ANI and DFT-D3 calculators are imported
and set from the ASE platform, and then, each group is read by
both calculators to predict total single-point energy (SPE) and
D3 dispersion energy, respectively. Next, the interaction energy
between the protein and ligand is written to data files for each
frame in both methods. In the final step, binding free energy is
estimated using the equations discussed in the Computational
Methods section. In principle, it can work with any MD
simulation packages upon converting trajectories to separate
pdb files that contain the protein−ligand−solvent complex and
defining energy groups. Index file format must be Gromacs
type.

ANI Results. Can ANI Reproduce DFT Interaction
Energies? Since ANI has been trained using atomic environ-
ments, it could still be scalable to the DFT calculations for
larger systems such as protein−ligand interactions. It should be
noted that DFT single-point energies of the protein and
protein−ligand complex systems are in the order of hundreds
of thousands of eVs, whereas the binding energy is only a few
eVs. Therefore, it is important to have the total energies
converged for accurate binding free energy calculations. Table
1 shows the absolute energies of truncated protein+ligand
complex systems (HIV protease, PDB ID = 5IVS) calculated
by ANI and G16 at the wb97x/6-31G* level. There are 55
residues around the ligand in the truncated protein with 920
atoms (Figure S1). ANI’s prediction on ligand’s energy is
excellent. However, the ANI predicted absolute value of the
protein−ligand complex deviates by ∼2 eV from that of DFT
calculations. However, this energy is just a bias and canceled
out by subtracting the energy of the protein in the interaction
energy term. This bias cancellation will also occur on extended
(untruncated) systems (i.e., a full protein + ligand complex).
Therefore, the ANI-predicted interaction energies are in
reasonable agreement with G16 calculations, with a shift by
only ∼0.252 eV (5.812 kcal/mol). This value can be
minimized so as to converge by increasing the number of
frames sampled by the MD simulation and increasing
simulation time. It should also be noted that it has been
trained for atomic environments with a cutoff (5.1 Å for radial
and 4.5 Å for angular chemical environments), which limits its
calculation to short-range interactions.
To assess the convergence of the total energy, we have

extracted snapshots from the trajectories of 10 ns MD
simulations by retrieving the first frames in different time
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intervals (e.g, 10 ps for 1000 frames). Figure 1a shows the
convergence of the average interaction energy when more
snapshots are averaged, assuming 1000 frames in 10 ns MD
simulations as the fully converged energy. The data suggests
that using 100 frames in the average calculations is sufficient to
have a convergence to a maximum of 0.04 eV (1.1 kcal/mol).
This error drops to below 0.02 eV (0.46 kcal/mol) when 200
frames are used.
We have also investigated how MD simulation time affects

the interaction energy (Figure 1b). It suggests that the
simulation time does have more impact on the absolute errors
and an 8 ns of simulation time can bring a maximum error of
0.09 eV (2.5 kcal/mol). This error reduces to below 0.5 kcal/
mol in 10 ns simulations.
One of the most important features of the ANI calculations

is that they can be run on GPU or CPU and either
construction can be run in parallel. The computation time is
million times faster than DFT calculations. On a 4x NVIDIA
Tesla V100 construction, the 1000 frames of the P−L and L−S
complexes can be calculated within hours if not minutes. A
single frame in our truncated P−L structures with 55 residues
and 920 atoms could take several hours at the wb97x/6-31G*
level.
Can the Electrostatic Interaction Term Be Replaced by

ANI? The ANI and D3 energy terms are correlated and can be
replaced with Coulombic and van der Waals terms,
respectively. As both van der Waals interaction terms in MM
and Grimme’s D3 functions originate from Lennard-Jones
potentials, it would be trivial to correlate these two terms.
Thus, the original LIE equation can easily be adopted by
replacing D3 energies with MM-based van der Waals terms
and by replacing MM-based electrostatic interaction energy
terms with ANI-predicted interaction energies (Figure 2). ANI
also shows great correlation to electrostatic terms, which allows
us for the modification of the LIE equation.
Since ANI and MM energy terms are strongly correlated,

one should expect LIE calculation by both methods to follow
similar trends with respect to experimental free energies.
Surprisingly, the correlation of ANI_LIE values to exper-
imental free energies is greater by ∼15% than that of
MM_LIE.
BFE by Ignoring LS Interaction. Using the simplest

modification of the LIE formula (i.e., eq 4), we have calculated
the ANI interaction energies. The coefficients were determined
from the fit to the experimental values (Figure 3). It should be
emphasized that there are three different protein families with
a total of 54 complexes and the ligands do not necessarily have
similar scaffolds. We observed excellent agreement (R = 0.87)

Scheme 1. deepQM General Workflow for Performing End-
State Binding Free Energy Calculationsa

aThe first step consists of extracting individual groups and converting
to xyz file format. The second step is the calculator. Single or
multicalculators can be selected. Finally, the results were printed and
combined to predict binding free energy.

Table 1. Absolute Energies of Truncated Protein + Ligand Systems (HIV Protease, PDB ID = 5IVS) from MD Simulations (in
eV)a

G16 ANI

frame complex PL receptor P ligand L ΔEint complex PL receptor P ligand L ΔEint abs. err.

0 −601 409.137 −543 088.071 −58 316.912 −4.154 −601 407.549 −543 086.919 −58 316.653 −3.977 0.177
1 −611 338.434 −553 017.357 −58 317.024 −4.053 −611 337.259 −553 016.927 −58 316.904 −3.428 0.625
2 −611 343.896 −553 023.284 −58 316.737 −3.876 −611 342.856 −553 022.874 −58 316.543 −3.439 0.436
3 −611 338.693 −553 021.427 −58 316.102 −1.164 −611 337.181 −553 020.251 −58 315.918 −1.012 0.152
⋮
100 −611 340.901 −553 023.152 −58 315.756 −1.992 −611 340.670 −553 023.116 −58 315.703 −1.878 0.115
mean −611 366.228 −553 047.220 −58 316.584 −2.424 −611 368.035 −553 046.484 −58 319.368 −2.183 0.252

aFor the complete 100 frames, refer to the Supporting Information.
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between the experimental and ANI/LIE-predicted absolute
binding free energy values. The mean absolute error (MAE) is
just 1.76 kcal/mol. Similar to LIE calculations using only ANI
potentials, we also investigated the effect of the inclusion of D3
terms in the prediction using eq 5. Although the correlation
coefficient was not improved significantly, the MAE value
decreased to 0.76 kcal/mol (Figure S2).
BFE by Including LS Interaction. After showing the success

of ANI’s prediction of interaction energies and binding free
energies in the absence of solvents, we have also attempted to

calculate the binding free energies using the most extensive
LIE formalism in which the solvent effects are also included.
The solvent requires a second simulation of ligand in water
(LS) along with the contribution of L−S interactions in the
PLS simulations as explained in the Theory section.
In principle, ligand−solvent interactions can be computed

with implicit definitions as in the case of PBSA, GBSA, or any
other continuum models. For instance, a recent work by Fox et
al. introduced the so-called “ONETEP” program, in which they
coupled the DFT energies with PBSA to calculate QM-PBSA

Figure 1. Absolute deviations of the average P−L interaction energies for selected complexes calculated by ANI, considering 1000 frames and 10 ns
simulations as the converged value (a) as a function of the number of frames to average and (b) as a function of simulation time using only 100
frames in each time interval.

Figure 2. ANI-predicted average interaction energies and classical electrostatic interaction energies between the protein and ligand from PLS
simulations are correlated while the energies from Grimme’s D3 functions are correlated to van der Waals interactions.
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energies.30 However, here, we attempted the L−S interaction
energies using explicit waters in the system sticking with the
original formalism of the LIE method.
Although ANI enables us to calculate such large protein

+ligand+water (PLS) systems, due to memory limitations, we

could only perform L−S interaction energies after reducing the
PLS systems so as to include waters by only 4 Å around the PL
complex. We achieved this by ordering the water in the
trajectories and extracting the nearest solvents in the PLS
system. Figure 4 shows examples of reduced vs complete water

Figure 3. ANI interaction energies calculated from eq 4 with β = 0.10639 ± 0.0164 and γ = −4.9875 ± 0.881 using average of 100 snapshots of 10
ns MD simulations for 54 protein−ligand complexes, showing 0.87 correlation to the experimental values. The bar lines show uncertainties. The
bottom plots show the fits of individual protein families as CoV, HIV-1, and JNK-1.

Figure 4. Illustration for the representative structures in protein + ligand + complete/reduced water (PLS) systems. The LIE calculations were
performed using reduced water to ease memory cost of the computations. The results are almost identical in both cases (Table S1).
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in PLS systems for each protein family. Since the ligand is
mostly buried in the protein, there are only a limited number
of solvents around the ligand in the bound state. Thus, the
effect of the solvents that are beyond 4 Å should not affect the
calculations. Indeed, one can see the comparison of MM
energy terms (Coulombic, van der Waals) along with

MM_LIE calculations by taking only reduced water in the
system rather than the complete water (Table S1).
By applying eqs 6 and 7, we could successfully produce the

absolute binding free energies based on ANI/D3 interactions.
Figure 5 shows that the solvent included ANI and ANID3 LIE
calculations. We have summarized the correlation coefficients
for different approaches in Table S2.

Figure 5. LIE calculated by ANI and ANID3 using (a) eq 6 and (b) eq 7, in which the solvent effects around the ligand were included in the
calculations.

Figure 6. LIE calculated by MM electrostatic and van der Waals interactions using eq 3. The parameters were determined from the fit. The bottom
plots show the correlation in each individual protein family.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00601
J. Chem. Inf. Model. 2022, 62, 4095−4106

4102

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?fig=fig6&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Benchmarking with Other Methods. Binding Free
Energies from the Classical LIE Approach. In addition to
the ANI method introduced here, we also performed
calculations from several other methods for the studied
protein−ligand complexes. The very first method was the
classical LIE method, in which Coulombic and van der Waals
interactions at the level of molecular mechanics were
computed and fit to the experimental binding free energies
to determine the coefficients.
The default parameters of LIE in Gromacs software use α =

0.181, β = 0.5, and γ = 0 and yield very low correlation to the
experimental values. The β coefficient for the electrostatic
interactions was reported to have several values according to
the charged vs uncharged ligands. Studying 18 PL complexes,
Hansson et al.84 concluded that β = 0.5 is a good
approximation for charged ligands whereas lower values such
as 0.43, 0.37, and 0.33 for neutral molecules with 0, 1, or >1
hydroxyl groups, respectively.85 Since then, it has been used
with care by fitting to the new sets of protein−ligand
complexes.86−91

With the default parameters (α = 0.181, β = 0.5, and γ = 0),
we have observed very low correlation between the
experimental and MM_LIE prediction (Figure S3). On the
other hand, when new parameters are assigned from our fit, we
observe 0.70−0.73 correlation with α = 0.25, β = −0.06, and γ
= −3.09 (Figure 6). Here, all of the ligands studied are neutral
and we did not classify them according to the presence of polar
groups like hydroxyl groups. Note that MM_LIE is still quite
successful (R = 0.70−0.73), and it is clear that ANI_LIE (R =
0.85−0.87) is much better in reproducing experimental values.
In addition to the parameters calculated from all 54 data

points of the dataset for both MM_LIE and ANID3_LIE, we
have also analyzed the data by splitting training (90%, 48
points) and test sets (10%, 6 points). We have done this by
randomly selecting 100 different train and test sets. The
coefficients were produced from the training sets and applied
on test sets. The coefficients generated from random sampling
and whole dataset are in a good agreement. We have reported
the predicted values for the coefficients and their RMSE values
on training and test sets (in the Supporting Information and
Table S2).
We have also performed MMPBSA and MMGBSA

calculations as a comparison to ANI. The computational cost
of these two methods is very similar to ANI since they are also
end-state methods applied on bound-state (PLS) classical MD
simulations. We should note that these methods do not use
empirical fitting coefficients in the calculations. However, their
success of predicting absolute binding energies can become
very poor according to the system and they are mostly used to
predict the relative binding free energies. In particular, when
the ligands have similar scaffolds, they can accurately predict
relative binding free energies. Similarly, when the same ligand’s
binding to a protein and its mutations were compared, they
can be quite successful. We have tested the performance of
both MMPBSA and MMGBSA methods for the protein−
ligand complexes studied here.
Due to the fact that protein families of the ligands are very

different, we could only observe somewhat meaningful
correlations when the protein families were analyzed separately
in the case of MMPBSA. When all proteins were treated with
the same preassigned values of MMPBSA, we observed very
poor correlation to the experimental values (Figure S4).

Surprisingly, MMGBSA showed a somewhat similar
correlation (R = 0.81) with classical LIE to the experiments
even when all 54 protein−ligand complexes were analyzed
together (Figure S5). This is still less than the ANI-predicted
values of R = 0.87−0.88.
We have also explored the binding energies by means of

alchemical methods using a 10 λ decoupling window for
electrostatic interaction and 10 λ for van der Waals
interactions. During decoupling, no restraint was applied on
the ligands; 10 ns from each window brings 20-fold
computational cost to the simulations, whereas it still has a
bare correlation to the experimental binding free energies
(Figure S6). These low correlations may be due to the limited
number of windows.

■ SUMMARY AND CONCLUSIONS
Here, we applied ANI-ML potentials, trained at the wb97x/6-
31G* level, to calculate the interaction energies of protein−
ligand and ligand−solvent pairs. The results show that the
predicted interaction energies even when the solvent is totally
ignored are highly correlated with experimental values. By
modification of the LIE method, we have assigned coefficients
for the ANI_LIE method. The ANI_LIE method outperforms
conventional methods like LIE, BAR, and MMP(G)BSA in
terms of accuracy and is comparable to MMP(B)SA in terms
of computational cost. Our preassigned parameters determined
for the method can be applied on any protein−ligand complex
systems even when the protein(s)/ligand(s) have different
scaffolds.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601.

Supplementary figures of truncated protein + ligand in
the DFT calculations, ANID3_LIE results, MMP(G)-
BSA and BAR results and table of the classical LIE when
the complete/reduced solvents considered (PDF)
Raw data of all outputs (XLSX)

■ AUTHOR INFORMATION
Corresponding Author

Abdulkadir Kocak − Department of Chemistry, Gebze
Technical University, 41400 Gebze, Kocaeli, Turkey;
orcid.org/0000-0001-6891-6929;

Phone: +902626053083; Email: kocak@gtu.edu.tr

Authors
Ebru Akkus − Department of Bioengineering, Gebze Technical
University, 41400 Gebze, Kocaeli, Turkey; orcid.org/
0000-0002-3940-0955

Omer Tayfuroglu − Department of Chemistry, Gebze
Technical University, 41400 Gebze, Kocaeli, Turkey;
orcid.org/0000-0001-7834-3132

Muslum Yildiz − Department of Molecular Biology and
Genetics, Gebze Technical University, 41400 Gebze, Kocaeli,
Turkey

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.2c00601

Notes
The authors declare no competing financial interest.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c00601
J. Chem. Inf. Model. 2022, 62, 4095−4106

4103

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00601/suppl_file/ci2c00601_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abdulkadir+Kocak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6891-6929
https://orcid.org/0000-0001-6891-6929
mailto:kocak@gtu.edu.tr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ebru+Akkus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3940-0955
https://orcid.org/0000-0002-3940-0955
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Omer+Tayfuroglu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7834-3132
https://orcid.org/0000-0001-7834-3132
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muslum+Yildiz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00601?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00601?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The ANI_LIE method using deepQM along with tutorials and
descriptions can be accessed via [https://github.com/
otayfuroglu/deepMOF.git]. Input and output files from
simulations can be accessed via: https://doi.org/10.5281/
zenodo.6538001.
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