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Abstract: 1-Acylglycerol-3-phosphate O-acyltransferase (1-AGPAT) is an enzyme family
composed of 11 isoforms. Notably, 1-AGPAT 2, the most studied isoform since its discovery,
is a critical enzyme in the triglyceride synthesis pathway, converting lysophosphatidic acid
to phosphatidic acid. In addition, AGPAT2 gene expression is shown to be essential for
adipocyte development and maturation. Defects in AGPAT2 are responsible for significant
pathophysiological alterations related to adipose tissue (AT). Pathogenic variants in this
gene are the molecular etiology of Congenital Generalized Lipodystrophy type 1 (CGL1),
in which fatty tissue is absent from birth. Metabolically, these individuals have several
metabolic complications, including hypoleptinemia, hypoadiponectinemia, hyperglycemia,
and hypertriglyceridemia. Furthermore, numerous AGPAT2 pathogenic variants that
enormously affect the amino acid sequence, the tertiary structure of 1-AGPAT 2, and their
transmembrane and functional domains were found in CGL1 patients. However, studies
investigating the genotype–phenotype relationship in this disease are scarce. Here, we
used bioinformatics tools to verify the effect of the main pathogenic variants reported in the
AGPAT2 gene: c.366-588del, c.589-2A>G, c.646A>T, c.570C>A, c.369-372delGCTC, c.202C>T,
c.514G>A, and c.144C>A in the 1-AGPAT 2 membrane topology. We also correlated
the phenotype of CGL1 subjects harboring these variants to understand the genotype–
phenotype relationship. We provided an integrative view of clinical, genetic, and metabolic
features from CGL1 individuals, helping to understand the role of 1-AGPAT 2 in the
pathogenesis of this rare disease. Data reviewed here highlight the importance of new
molecular studies to improve our knowledge concerning clinical and genetic heterogeneity
in CGL1.

Keywords: white adipose tissue; adipogenesis; genetic lipodystrophy; lipid metabolism

1. Introduction
The 1-AGPATs are a family of enzymes consisting of 11 isoforms, each encoded by a

different gene [1–9], which present a similar function: they act as intermediate enzymes in
the triacylglycerol (TAG) and glycerophospholipid (GPL) biosynthesis pathways [10,11].
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These enzymes acylate 1-acylglycerol-3-phosphate (lysophosphatidic acid; LPA) at carbon-2
(sn-2) to produce 1,2-diacylglycerol-3-phosphate (phosphatidic acid; PA) [12–14]. Despite
this general feature, several AGPATs can also esterify lysophospholipids with polar heads,
such as choline, serine, inositol, ethanolamine, and glycerol [15].

Among the enzymes of this family, 1-AGPAT 2 has been the most extensively studied
since its discovery. This enzyme is highlighted by its remarkable and essential role in
providing PA for the synthesis of TAG or GPL. It is abundant in AT but presents lower
expression in the liver and pancreas [16–19]. According to the Human Protein Atlas,
AGPAT2 mRNA has high levels in the liver, AT, breast, and pancreas, while the 1-AGPAT 2
protein is abundant in the small intestine, bone marrow, breast, cerebral cortex, liver, AT,
and other tissues [20], highlighting the functionality of the protein in homeostasis.

Moreover, due to its indispensable functions in adipocytes, genetic defects in this en-
zyme result in Congenital Generalized Lipodystrophy type 1 (CGL1—OMIM #608594) [21].
Thus, adipogenesis regulation becomes a predisposing factor for disorders related to dys-
functional AT formation and maintenance [22]. For the good functioning and structuring
of this tissue, the pathway for TAG and GLP biosynthesis becomes essential.

The AGPAT2 gene contains six exons and encodes the 1-AGPAT 2 protein. Homozy-
gous or compound heterozygous pathogenic variants in this gene result in CGL1, a rare
autosomal recessive disease. The scarcity of body AT since birth in CGL1 individuals
results in the progression of severe metabolic disorders, usually before puberty. These
metabolic derangements include hyperinsulinemia, insulin resistance, type 2 diabetes melli-
tus, and the early onset of hepatic steatosis [23]. Nevertheless, these metabolic disturbances
resemble those observed in patients with generalized or central obesity [24]. Furthermore,
a recent study reported the occurrence of pathogenic variants in heterozygosity in the AG-
PAT2 gene. However, the patient’s clinical phenotype was related to partial lipodystrophy,
characterized by a significant loss of AT in the extremities and low leptin levels, which in
turn resulted in a remarkable preservation of functional AT [25,26]. The worldwide CGL
prevalence ranges from 0.2 to 1 case per 1 million inhabitants [27]. The estimated CGL
prevalence in Brazil is 3.23 per 100 thousand inhabitants [28]. Lima et al. identified the
main causes of death and found that the mean age of death of CGL individuals in Brazil
was 27.1 ± 12.4 years [29]. The current treatment for CGL is metreleptin, an analog of
leptin, which is an adipokine produced by AT [30].

It is worth noting that associations of the AGPAT2 gene with the development of
cancers have been described [31]. It is first known that the 1-AGPAT 2 enzyme participates
in the formation of TAG and GPL, which are essential in several aspects, such as integrating
the formation of lipid droplets (LDs) in adipocytes and participating in cell signaling [13].
From this perspective, cancer cells require numerous resources to proliferate, including
nucleic acids, proteins, and lipids, which prompts them to alter the conformation of their
metabolism to store more precursors of these resources [32]. Thus, fatty acid sets originate
from either exogenous sources or de novo fatty acid synthesis; the latter route is preferred
by tumors, whereas normally functioning human cells utilize more exogenous sources [33].
Given these factors, it has been possible to correlate the participation of the AGPAT2 gene
in malignancies since 1-AGPAT 2 is an indispensable enzyme for lipid metabolism, which
is necessary for cancer development. However, the role of AGPAT2 in cancer is out of the
scope of this review. A timeline concerning the main discoveries related to the AGPAT2
gene and AT biology is provided in Figure 1.
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Figure 1. This timeline highlights the discovery, characterization, mechanisms of action, and role of
the AGPAT2 gene in adipogenesis and CGL1 development.

We have gathered the current literature on the AGPAT2 gene to provide an overview
of its diverse roles. The data presented in this article were obtained from a literature search
conducted in the PubMed database of the National Center for Biotechnology Information
(NCBI). The articles included in this review were dated until the end of June 2024. “AGPAT2”
was used as a search word, resulting in 171 articles at the time of writing this article. From
there, papers were screened based on the importance of AGPAT2 to that study. Fifty-seven
articles were excluded after reviewing the title and abstract, as they addressed subjects
unrelated to this paper. Another 18 articles were excluded because they focused on a
different lipodystrophy, in general. Finally, 15 articles that only cited AGPAT2, without an
association with adipogenesis, were also excluded. Thus, 81 articles were included in this
review. A flowchart of this review is included in Figure 2.

To better understand the genotype–phenotype correlation associated with the AGPAT2
gene and CGL1 and enlarge this review with new data, we performed the membrane
topology predictions for the most frequent AGPAT2 pathogenic variants: c.517-588del,
c.589-2A>G, c.646A>T, c.570C>A, c.369-372delGCTC, c.202C>T, c.514G>A, and c.144C>A
(Table 1). Further, we collected clinical, phenotypic, and genetic data from CGL1 sub-
jects harboring these AGPAT2 pathogenic variants. The AGPAT2 genotype–phenotype
relationship is provided in Table 2. The genomic sequence of the AGPAT2 gene (GRCh38
from Genome Reference Consortium Human) was obtained from the NCBI database using
the Genome Browser. The sequences for all the aforementioned variants were manually
obtained according to the variant being analyzed. Next, these sequences were analyzed
using the following software: PSIPRED—MEMSAT-SVM (Membrane Helix Prediction,
available at http://globin.bio.warwick.ac.uk/psipred/; accessed on 3 March 2024), SOSUI
(available at http://www.tuat.ac.jp/mitaku/sosui/; accessed on 3 March 2024), TMHMM
(available at http://www.cbs.dtu.dk/services/TMHMM/; accessed on 4 March 2024),
and T-COFFEE (available at http://tcoffee.crg.cat; accessed on 4 March 2024) [34–37]. All
software predictions are based on the secondary structure of wild-type 1-AGPAT 2 and
mutated 1-AGPAT 2 proteins. Since some AGPAT2 pathogenic variants were named be-
fore the establishment of Human Genome Variation Society (HGVS) recommendations,
all included variants reviewed here were classified according to HGVS guidelines, and
the pathogenicity was confirmed according to the American College of Medical Genetics
and Genomics (ACMG) criteria [38,39]. The Mutalyzer tool version 3.1.1 (available at:
https://mutalyzer.nl accessed on 6 April 2024) was used to confirm the HGVS nomencla-
ture [40].

http://globin.bio.warwick.ac.uk/psipred/
http://www.tuat.ac.jp/mitaku/sosui/
http://www.cbs.dtu.dk/services/TMHMM/
http://tcoffee.crg.cat
https://mutalyzer.nl
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Figure 2. A representative flowchart of the studies targeted in this review. The screening of the
studies was performed based on three exclusion criteria: 57 articles were excluded after reading the
title and abstract for not having the focus of the survey on AGPAT2-related diseases and not having
AGPAT2 as an essential target in the research, only citing it (18 articles excluded), and 15 articles were
excluded for dealing with another type of lipodystrophy or citing the disease only in a general way.
Thus, 81 articles directly related to the AGPAT2 gene were included in this review.

Throughout this review, we have highlighted the recent studies that shed light on
the functions and regulatory mechanisms of AGPAT2. It is notorious from the available
evidence that AGPAT2 plays a critical role in various physiological processes, including
lipid metabolism, adipogenesis, and cell signaling. Additionally, emerging research has
also linked AGPAT2 to different pathological conditions, such as obesity, insulin resistance,
and cancer. The comprehensive understanding of AGPAT’s involvement in these processes
provides a foundation for future investigations that could unveil novel therapeutic targets.
Overall, this review contributes to the current knowledge of AGPAT2 and emphasizes the
need for further research to comprehend its multifaceted functions and implications in
human health and disease.

2. The 1-AGPAT 2 Protein and Its Motifs
AGPATs correspond to an enzyme family comprising 11 isoforms [4,8,21,41–43]. AG-

PATs act by converting LPA to PA, a precursor for synthesizing phospholipids (PLs) and
diacylglycerol (DAG), molecules with essential roles in signal transduction and lipid biosyn-
thesis [14,44]. The family of AGPATs exhibits significant identity among its proteins and
shares extensive sequence similarities with microbial, plant, and animal AGPATs [14]. In
this family, two major motifs are highly conserved among the proteins: in the amino-
terminal region and EGTR in the middle part of the protein, which are responsible for
its catalytic activity [13,22]. EGTR is also a domain related to substrate recognition and
binding [45]. The NHX4D motif is conserved in all AGPATs of the family, which is not the
case for the EGTR domain [4,7,8]. Two other motifs have also been described for 1-AGPAT
2: FINR, between amino acid residues 143 and 149, and IVPV from amino acid (aa) residues
205 to 208 of the protein [46,47]. 1-AGPAT 2 is the best-studied protein of this family at the
physiological level. It is encoded by the AGPAT2 gene, which is located on chromosome 9
(9q34.3). The 1-AGPAT 2 protein has a molecular weight of 31 kDa and presents two main
isoforms: the shortest has 246 aa, and the longest has 278 aa [21]. The longest 1-AGPAT 2
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protein is highlighted in Figure 3. 1-AGPAT 2 is localized on the endoplasmic reticulum
(ER) and has four transmembrane domains. Its mRNA exhibits higher expression levels
in the AT, heart, and liver [14], and its genomic sequence comprises six exons within a
genomic region spanning 11.4 kb [45]. An analysis of murine 1-AGPAT 2 demonstrated
that the polypeptide contains a putative signal sequence in its N-terminal region with
a predicted cleavage site between residues 45 and 46 [20]. Studies conducted with the
longest 1-AGPAT 2 isoform indicated the presence of four potential hydrophobic regions.
Among them, three regions were identified as potential transmembrane helices: two at the
N-terminal, between positions 4 and 50, and one between residues 122 and 143 [45]. In
addition to the well-conserved motifs, the C-terminal residues are essential determinants of
1-AGPAT 2 enzymatic activity [48]. A study demonstrated a novel conserved KX2LX6GX12R
motif/pattern found in murine AGPATs between the catalytic and substrate-binding motifs.
However, this was the only study to describe this motif [45]. More studies are crucial to
scrutinize the impact of each domain on protein–protein interactions between 1-AGPAT 2
and other enzymes related to adipogenesis.

Figure 3. The main AGPAT2 pathogenic variants related to CGL1. 1-AGPAT 2 is encoded from the
AGPAT2 gene located on the short arm of chromosome 9 at position 34.2. This gene has six exons and
five introns; most of the main pathogenic variants already reported are located in coding regions,
although some intronic variants also exist. Wild-type 1-AGPAT 2 has four major domains: NHQSILD,
FINR, EGTR, and IVPV. The nomenclature of all AGPAT2 pathogenic variants was based on the
transcript NM_006412.4; ENST00000371696.7. The wild-type 1-AGPAT 2 protein has 278 amino acids
(NP_006403.2).

3. The Role of 1-AGPAT 2 in the Biosynthesis of Triacylglycerols
Most fatty acids that are synthesized or ingested have two main destinations: the

formation of TAGs in the AT for energy storage or the generation of membrane PL. Both
pathways start from the formation of glycerol acyl fatty esters. Glycerol-3-phosphate is
converted into LPA, which will subsequently be converted to PA by AGPATs. 1-AGPAT
2, the most studied isoform of AGPATs, esterifies the sn-2 carbon of LPA [15,24]. The PA
resulting from this reaction could be used to form DAGs and, subsequently, TAGs [49]
(Figure 4).
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Figure 4. The role of 1-AGPAT 2 in the biosynthesis of triacylglycerols. In adipose tissue (AT),
glycerol-3-phosphate is converted into LPA. LPA then becomes a substrate for 1-AGPAT2, which is
located in the ER lumen. 1-AGPAT 2 esterifies the sn-2 carbon of phosphorylated 1-acylglycerol on the
sn-3 carbon, forming PA. The PA resulting from this reaction will be used to form DAGs and TAGs.
TAGs can be stored in AT or participate in the formation of membrane PLs. LPA: lysophosphatidic
acid; PA: phosphatidic acid (1,2-diacylglycerol-3-phosphate).

In this sense, LPAs are signal transduction molecules that interact with G protein-
coupled receptors, induce adipocyte proliferation and fibronectin matrix assembly in
fibroblasts, and protect T cells from apoptosis [50,51]. PAs are lipid second messen-
gers participating in various intracellular signaling events and regulating a growing
list of signaling proteins, including protein kinases and phosphatases [52]. PAs and
DAGs also serve as intermediates for the biosynthesis of GPLs, such as phosphatidyl-
choline (PtdCho), phosphatidylserine (PS), phosphatidyl inositol (PtdIns), cardiolipin,
and phosphatidylethanolamine (PtdEtn). These PLs are integral components of all cell
membranes [53]. In this way, 1-AGPAT 2 is a crucial enzyme involved in the biosynthesis
of TAGs and PLs. Therefore, the discovery of pathogenic variants in the AGPAT2 gene
has increased interest in these biochemical pathways and their implications in human
physiology [54].

Defects in the AGPAT2 gene are responsible for significant pathophysiological alter-
ations related to AT formation and function [55–60]. The decrease or loss of 1-AGPAT 2
catalytic activity alters the conversion of LPA to PA and, consequently, the synthesis of
several classes of lipids. In this way, it was initially believed that the almost complete
absence of 1-AGPAT 2 activity would decrease the bioavailability of PA in adipocytes and
cause an increase in LPA, raising suspicions about the activity of other isoforms in the
conversion of this molecule [13]. Similarly, studies on C2C12 myoblast cells showed that
the overexpression of 1- AGPAT 1, an enzyme in the same family as 1-AGPAT 2, was not
associated with increased PA levels [61]. A study in wild-type mice overexpressing the
human AGPAT2 revealed increased subcutaneous white adipose tissue (sWAT), gonadal
white adipose tissue (gWAT), and brown adipose tissue (BAT). However, no changes were
observed in PL and TAG concentrations [62]. This last finding differs from that observed
in 3T3-L1 preadipocytes, which presented increased TAG synthesis after Agpat2 overex-
pression [63]. Subsequent studies in male Agpat2−/− mice compared with wild-type mice
demonstrated that hepatic levels of LPA and PA increased approximately 2-fold and 5-fold,
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respectively [64]. Furthermore, high levels of diacylglycerol kinase and phospholipase D
were detected, showing an alternative route for synthesizing PAs in the liver [64]. New
findings observed in mouse embryonic fibroblasts (MEFs) also corroborated the finding of
increased PAs [65]. A recent study demonstrated decreased Agpat2 levels in white adipose
tissue (WAT) of adult mice, resulting in lipodystrophy and inflammation in both WAT and
the liver. Furthermore, LPA is a crucial mediator of inflammation in the WAT and liver of
rat models of CGL1 and overnutrition [66].

1-AGPAT 2 has a higher affinity for arachidonic acid as a substrate [13]. This raised the
hypothesis that other AGPAT isoforms could synthesize these GPLs other than 1-AGPAT 2,
and their fatty acid composition could be altered, affecting membrane organization, protein
symmetry, functions, and orientation [53]. In this regard, later studies demonstrated PA
as a critical intermediate in the biosynthesis of TAG and several specific PLs, such as
PtdIns, PtdCho, PtdEtn, and cardiolipin, corroborating the hypothesis raised two years
earlier [48]. However, unexpectedly, another research group reported that levels of several
phospholipid species, including PA, are elevated in Agpat2−/− adipocytes with TAG
depletion, demonstrating that mutant 1-AGPAT 2 impairs PA availability for TAG synthesis
but not for overall PA synthesis, nor its use in the synthesis of other PLs [67]. Furthermore,
a recent study in a Chinese crab animal model (Eriocheir sinensis) demonstrated that the
expression pattern of AGPAT isoforms indicates different functions during TAG synthesis,
reflecting the importance of other isoforms in the AGPAT family [68]. Together, these data
highlight the role of 1-AGPAT 2 in lipid metabolism and underscore the importance of
investigating its enzymatic activity in the context of CGL1.

4. The Role of 1-AGPAT 2 in Adipogenesis
AT is widely recognized for its role in triglyceride storage and as a protective mech-

anism against mechanical impacts. Furthermore, this tissue also has an essential role in
endocrine function. Adipogenesis is the process by which fully mature adipocytes develop
from mesenchymal stem cells. The two main ATs include WAT and BAT, which have
different structures and biological functions [69]. White adipocytes have a single large
LD occupying most of the cell volume, with few mitochondria, displacing the nucleus
peripherally [70]. Brown adipocytes are polygonal cells containing numerous small LDs
(referred to as multilocular AT), with a central nucleus surrounded by a clear cytoplasm
and numerous mitochondria [71,72]. The WAT accounts for most of the AT in adult humans
and presents high plasticity. It is a critical site for energy homeostasis, insulin signaling, and
endocrine action, secreting adipokines such as leptin and adiponectin, which are essential
for body homeostasis [73]. BAT is predominantly responsible for thermogenesis and is
mainly found in newborns and hibernating mammals [74]. Brown adipocytes have the
potential to be metabolically beneficial, especially for obese individuals, as they have the
potential to increase energy expenditure upon proper stimulation [75]. BAT has even been
reported to prevent glucose intolerance and cardiac remodeling in mice on a high-lipid diet
after a mild myocardial infarction [76]. Another AT type contains beige adipocytes, which
are present within WAT and, when stimulated, acquire a brown fat phenotype, leading to
increased thermogenesis [77]. This phenomenon is known as browning and is most likely
to occur in subcutaneous fat deposits. The dynamism of this process is being studied for its
potential use in combating various diseases. A recent study using Agpat2-null mice demon-
strated that AT-specific re-expression of Agpat2 resulted in partial regeneration of WAT
and BAT (approximately 30–50% compared to wild-type mice), whereas silencing Agpat2
expression caused a total loss of these AT tissues [78]. WAT and BAT adipocytes originate
from distinct precursor cells. Adipoblast cells are generated from multipotent stem cells
and are committed to differentiation into adipocytes. After forming preadipocytes, they un-
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dergo clonal expansion and, in response to specific stimuli, become mature adipocytes [70].
Mesenchymal stem cells from certain stimuli differentiate into WAT and beige AT cells,
while Myf5 mesenchymal cells are responsible for the adipogenesis of BAT adipocytes [79].
Adipogenesis is a complex sequential process regulated in several ways. Initially, in WAT
adipocytes, the activator protein-1 (AP-1) transcription factor complex (AP-1/C-FOS and
AP-1/Fra-2) is activated at the early and late stages of adipogenesis, respectively [80]. This
activation subsequently activates the central adipogenesis regulator, PPARγ (peroxisome
proliferator-activated receptor gamma) [81,82]. Other factors such as STATs [83–85], sterol
response element-binding protein-1 (SREBP-1) and C/EBP family members, insulin, IGF-1
(insulin-like growth factor), and BMPs also act as positive effectors and stimulators of this
process [86]. In addition, certain factors that inhibit adipogenesis include proteins from the
WNT signaling pathway and transforming growth factor beta (TGFβ) [87,88].

Several studies have sought to elucidate the role of the AGPAT2 gene in the adipogenic
process, as pathogenic variants in this gene are associated with a rare genetic disorder
characterized by an extreme AT deficiency from birth. Gale et al. (2006) revealed that
Agpat2 knockdown in murine preadipocytes (OP9 cells) prevented the induction of tran-
scriptional activators of adipogenesis, such as C/EBPβ and PPARγ, demonstrating the role
of 1-AGPAT 2 in mediating the adipogenic pathway. Furthermore, this same study demon-
strated the induction of Agpat2 expression in OP9 cells differentiated into adipocytes [67].
These findings corroborate data from another study that demonstrated a novel interaction
between the CEBPA and AGPAT2 genes, specifically in the context of C/EBPα-dependent
transcription of AGPAT2 in human adipocytes [89].

Subauste et al. used two different models to verify the role of 1-AGPAT 2 in adi-
pogenesis. They found that muscle-derived multipotent cells (MDMCs) isolated from
vastus lateralis biopsies of CGL1 individuals displayed compromised adipogenesis. Similar
results were found in 3T3-L1 preadipocytes after Agpat2 knockdown. The lack of 1-AGPAT
2 activity reduced Akt protein activation, while constitutive overexpression of Akt par-
tially restored lipogenesis. In other words, 1-AGPAT 2 regulates adipogenesis earlier by
modulating the phosphatidylinositol-3kinase (PI3K)/Akt pathways [90].

Another study showed an interaction between 1-AGPAT 2 and seipin during adipo-
genesis, leading to the nuclear accumulation of PPARγ. Furthermore, the ER-localized 1
AGPAT-2 and lipin 1 proteins can directly interact with the ER-localized seipin protein,
which is related to Congenital Generalized Lipodystrophy type 2 (CGL2) [91]. Further-
more, another study from the same research group demonstrated that seipin can interact
with GPAT3 and simultaneously bind to GPAT3 and 1-AGPAT 2 to promote adipogenesis.
Furthermore, the expression inhibition of these three proteins can impair the induction of
early markers of adipogenesis in cultured adipocytes [92]. As reviewed by Qi et al. [93],
PA formed from 1-AGPAT 2 activity is critical for LD growth and adipocyte development,
highlighting the distinct roles of AGPAT2 in AT biology.

Fernández-Galilea et al. found that interscapular BAT preadipocytes isolated from
Agpat2−/− newborn mice and cultured/differentiated preadipocytes required 1-AGPAT 2
for adipogenesis. Adipocytes lacking 1-AGPAT 2 showed fewer lipids and lower levels of
adipocytic markers compared to cells expressing the Agpat2 gene [94]. Furthermore, no evi-
dence of increased caspase activation, autophagy, or apoptosis was found in Agpat2-lacking
cells, indicating that these pathways are unrelated to the role of Agpat2 in adipogenesis [94].

Cautivo et al. [65] found that adipocytes differentiated from Agpat2−/− MEFs had im-
paired adipogenesis and ultrastructural abnormalities in LD, mitochondria, and the plasma
membrane. However, PPARγ overexpression increased the differentiation of Agpat2−/−

MEFs into adipocytes; however, it did not prevent morphological abnormalities and cell
death. Furthermore, they found that newborn Agpat2−/− mice were deficient in caveolae
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and displayed abnormal LDs and mitochondria. Further, increased lipid accumulation in
Agpat2−/− mice liver coincided with AT degeneration.

Tapia et al. found that differentiated Agpat2−/− brown adipocytes from mice had
fewer lipid-laden cells, abnormal LDs, and reduced abundance of Pparγ, Pparα (peroxisome
proliferator-activated receptor alpha), C/ebpα (CCAAT enhancer-binding protein alpha),
and Pgc1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), both
at the mRNA and protein levels when compared with wild-type cells [95]. They also
found that 1-AGPAT 2 is required for normal BAT differentiation. Differentiated Agpat2−/−

brown adipocytes presented a lower proportion of lipid-laden cells, increased interferon-
stimulated gene expression, changes in mitochondrial morphology and mass, and fewer
mitochondria–LD contact points. Another study corroborating these findings revealed
that Agpat2-deficient adipocytes had impaired adipogenesis and fewer caveolae while
maintaining insulin signaling [96]. Taken together, these data highlight the role of the
Agpat2 gene in WAT and BAT adipogenesis.

5. AGPAT2 and Lipodystrophy
Since the initial studies about the role of the AGPAT2 gene, a striking fact was its

high expression in AT. Therefore, the effect of decreasing its expression in AT began to be
analyzed, and it was found that defects in 1-AGPAT 2 can lead to a significant abnormality in
adipocyte differentiation and proliferation [65]. Moreover, the interruption of its expression
can result in the development of a markedly reduced number of adipocytes. In Rio de
Janeiro, Brazil, in 1954, Waldemar Berardinelli was the first to report Congenital Generalized
Lipodystrophy (CGL), a condition caused by a disturbance in the biosynthetic pathway
of TAGs [13,97]. Seip was the second researcher to report patients with Berardinelli–Seip
syndrome [98]. However, the molecular mechanism leading to this pathophysiology
remained uncertain. Initially, it was believed that the reduction in 1-AGPAT 2 enzyme
activity underlies the loss of AT in individuals with CGL [48], without ruling out the
possibility that the lack of AT could result from the inability to synthesize TAGs, PL, or
PA, or even from the excessive accumulation of LPA. To elucidate this question, Agpat2
knockdown in preadipocytes demonstrated that its activity is required for TAG mass
accumulation in mature adipocytes. Furthermore, the same study found that Agpat2
mRNA expression increased by approximately 30-fold during adipocyte differentiation [67].
Subsequently, it was demonstrated that fat transplantation in lipoatrophic mice with
clinical symptomatology of CGL allowed for the reversal of diabetes [99–101], and the
metabolic disturbances found in lipodystrophic mice and humans could be attenuated
by administering leptin [102–105]. Assays in Agpat2 knockout mice demonstrated the
development of severe lipodystrophy affecting both white and brown AT and a metabolic
condition characteristic of CGL. Further, in the same study, the mRNA and protein levels
of 1-AGPAT 1 were markedly increased in the liver of Agpat2−/− mice, suggesting that
the alternative monoacylglycerol pathway for triglyceride biosynthesis is activated in the
absence of Agpat2 [106]. A recent study in Agpat2−/− mice confirmed the severe loss of
sWAT and ectopic fat deposition in the liver due to the loss of Agpat2. Furthermore, they
also found an aggravation of hyperlipidemia, liver fibrosis, and atherosclerosis using a
double knockout mouse model for the gene encoding the LDL cholesterol receptor (Ldlr)
(Agpat2−/−/Ldlr−/− mice) [107]. In the Nile tilapia (Oreochromis niloticus) animal model,
transcriptional inhibition of Agpat2 resulted in abnormal lipid metabolism and oxidative
stress in the liver, characterized by vacuolized hepatocytes and increased expression of
antioxidant enzymes [108].

CGL is an autosomal recessive disease that causes widespread loss of AT from birth.
The affected individuals exhibit accelerated growth, voracious appetite, increased basal
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energy expenditure, and advanced bone age [24]. Early infantile cardiomyopathy is a
specific phenotype for CGL [109]. Diabetes mellitus is also an essential finding of the
disease, and it develops mainly during puberty, as it is ketosis resistant and associated
with severe islet amyloidosis and beta cell atrophy [110]. Metabolically, about 70% of
individuals have hypertriglyceridemia [111,112], and low HDL cholesterol levels are also
a critical finding [113,114]. Hyperinsulinemia and increased total cholesterol and LDL-c
fraction are metabolic findings of these patients [115–118]. They also exhibit skeletal muscle
hypertrophy, hepatomegaly, and acanthosis nigricans [119–123]. Due to the absence of
functional adipocytes, triglycerides are deposited in ectopic tissues such as muscle and
the liver [119]. Hepatic steatosis is also common [124]. In Agpat2 knockout mice, it has
been shown that the biosynthesis of diet-derived fat and hepatic triglycerides via a novel
monoacylglycerol pathway may contribute to hepatic steatosis [106]. In addition, this
same study shows that hepatic fat deposition is not enhanced by Agpat2 overexpression,
suggesting that the role of AGPAT2 in hepatic lipogenesis is minimal, and fat accumulation
in this organ is mainly a consequence of insulin resistance and AT loss. Another study
demonstrated that liver fat accumulation in Agpat2 knockout mice resulted from AT loss
and insulin resistance [21,120,125–128]. Further, Sankella et al. found elevated levels of
sphingolipids, such as ceramide C16:0, in the steatotic livers of Agpat2−/− mice. These
mice also had increased expression levels of enzymes associated with the sphingolipid
pathway. These results suggest that ceramide C16:0 could be applied as a biomarker for
both insulin resistance and type 2 diabetes mellitus for CGL1 [129].

Female reproductive disorders, such as mild hirsutism, clitoromegaly, oligo-amenorrhea,
and polycystic ovaries, were observed in CGL1 women. Most of them are unable to
conceive. Reproductive disorders are not observed in men, who usually have normal
reproductive capacity [24]. Our research group found that infections and liver diseases are
the two leading causes of death in patients with CGL, whose life expectancy for the study
population was 27.1 ± 12.4 years [29].

Pathogenic variants in the AGPAT2 gene are associated with type 1 CGL, which
explains the increased focus on studies linked to this gene. In this type, lower serum
adiponectin levels are found compared to CGL2. However, leptin levels are higher in CGL2
patients compared to CGL1 [120,130–132]. In mice, a deficiency of Agpat2 impairs insulin
signaling and enables unrestricted PA-induced gluconeogenesis, thereby contributing
significantly to the development of hyperglycemia [64,133]. In this type, mechanical AT is
preserved, which can be explained by increased expression of other AGPAT isoforms or the
expression of other genes in these AT depots [134–137]. In 2009, a case of a patient with CGL
who had peripheral hypertonia and reflex excitability was reported. Moreover, magnetic
resonance images revealed brain white matter abnormalities, which have been reported in
the literature only in this case [138]. Bone cysts and a history of seizures were observed
in CGL1 patients [139]. In general, this clinical condition in long bones is more likely in
CGL1 individuals compared to CGL2 [140]. Imaging findings demonstrated three types
of specific radiographic changes: diffuse osteosclerosis, well-defined osteolytic lesions
sparing the axial skeleton, and pseudo-osteopoikilosis in CGL patients, primarily type
1 [141,142]. Another study suggests that in some genetic contexts, AGPAT2 pathogenic
variants can also produce phenotypes with primary polyneuropathy [143]. Specifically,
pseudo-osteopoikilosis in the hands and feet has also been reported in a 25-year-old
CGL2 woman [144]. Multiple subcutaneous nodules were observed in a 66-day-old CGL1
patient [145]. Regarding bone mineral density (BMD), CGL1 patients have a lower score
than CGL2 [146]. In addition, CGL type 1 women have a higher risk of developing diabetes
mellitus and acanthosis nigricans than men, the opposite of what occurs for CGL2 [140]. In
2018, a 58-year-old patient of Southeast Asian descent with clinical and metabolic features
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of familial partial lipodystrophy (FPLD) was diagnosed genetically by whole genome
sequencing and had no variants in the FPLD-related gene. However, she presented two
heterozygous genetic variants in exons 2 and 4 of the AGPAT2 gene that had not yet been
reported in the databases. In this case, the pathogenic variant in AGPAT2 seems responsible
for an FPLD phenotype rather than CGL. These data suggest the possibility of a polygenic
origin for this subtype of FPLD [26].

Along with AGPAT2, another gene involved in the etiology of CGL is BSCL2, which
codes for the protein seipin [127]. Pathogenic variants in this gene are responsible for
CGL2 [147]. In this type, a more pronounced fat loss affects both metabolically active and
mechanically active AT [134]. Compared to CGL1, CGL2 patients have lower leptin levels,
an earlier onset of diabetes, mild cognitive impairment (which may be related to increased
seipin expression in the brain [120]), higher insulin levels, and thus insulin resistance [130].
Regarding oxidative stress, our research group identified higher oxidative DNA damage,
increased mitochondrial DNA damage, and increased expression of repair enzymes in
leukocytes from CGL2 patients compared to heterozygous patients and controls without
any pathogenic variant in the BSCL2 gene [148]. Our group conducted a systematic review
of the muscular aspect of lipodystrophic patients [149]. It raised the presence of muscle
impairment in individuals with CGL2, which was not observed in CGL1 patients [150].
However, we have demonstrated that when it comes to maximum respiratory pressure,
both CGL1 and 2 individuals had a decrease in this parameter [151].

For a long time, researchers have raised several hypotheses about the molecular
pathophysiology of the main types of CGL. The main causes of CGL are impaired lipo-
genesis (synthesis and storage of triglycerides), blocked adipogenesis (differentiation of
preadipocytes into adipocytes), or the apoptosis/necrosis of adipocytes [152]. A study
about the pathology of CGL found that Agpat2 knockout mice died mostly during the first
2 weeks of life. The surviving mice developed severe insulin resistance, hepatic steatosis,
and lipoatrophic diabetes [65]. These data corroborate another study that showed Agpat2
as essential for the postnatal development and maintenance of WAT and BAT. This study
showed that the loss of fat depots occurs in the first week of life, precisely the week of
high mortality mentioned in the first study. Adipocyte death is caused by autophagy and
inflammation [152]. On the contrary, in the same study, massive adipocyte necrosis was
found in BAT, demonstrating that the lack of Agpat2 occurs differently between the two
major types of AT. Further studies in Agpat2−/− mice showed that the loss of both AT stores
occurs during the first week of postnatal life due to adipocyte death and inflammatory
infiltration of AT. Furthermore, adipocytes from mice lacking Agpat2 show fewer caveolae,
exhibit abnormal mitochondria and LDs, and have abundant autophagic structures [65].

Seipin’s function, in turn, remained unknown for a long time [153]. Initially, it was
observed that BSCL2 expression was strongly induced during adipocyte differentiation
and was also essential for adipogenesis to occur [154]. Further studies in lymphoblastoid
cell lines from CGL type 2 patients demonstrated changes in the pattern of LDs that
decreased in size and increased in number compared to control cells [155]. It was later
found that seipin is a support protein for 1-AGPAT 2 and promotes adipogenesis through
the direct inhibition of GPAT3 [92]. Seipin can even directly associate with 1-AGPAT 2 and
GPAT3 simultaneously. A study with hepatocarcinoma, osteosarcoma, and lung carcinoma
cell lines demonstrated that the knockdown of seipin increases nuclear LDs and PA in
the nucleus, while its overexpression decreases these molecules. Thus, it is not directly
involved in nuclear LD formation but in its regulation [156]. Molecular studies about the
impact of 1-AGPAT 2 protein–protein interactions in AT biology will help us understand
how this protein regulates adipogenesis in WAT, BAT, and beige adipocytes in humans.
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6. Pathogenic Variants in the AGPAT2 Gene
There is enormous heterogeneity in the pattern of variants found in patients with CGL

type 1. A review by Patni et al. [135] showed that more than 90% of CGL1 patients have
null pathogenic variants and no detectable enzyme activity in vitro [48]. However, 4% of
patients with CGL1 are compound heterozygotes with a null and missense pathogenic
variant (with some residual enzyme activity), and only 2% of patients have been reported
to have homozygous missense pathogenic variants [21,120,125–127]. Although there is
a significant difference at the molecular level, this does not seem to affect the expressed
clinical symptomatology or the severity of fat loss [135]. We raised the most frequent
pathogenic variants in the AGPAT2 gene. These were c.589-2A>G (11.5%) [21], c.317-588del
(7.3%) [21,157], c.202C>T (4.5%) [132,139], c.646A>T (1.2%) [132], c.514G>A (1.2%) [158],
and c.144C>A (0.9%) [132], which were relative to the frequency of variants in all four genes
causing CGL [159]. The membrane topology predictions for these AGPAT2 pathogenic
variants are provided in Table 1. The software used was PSIPRED (MEMSAT), SOSUI,
TMHMM, and T-COFFEE. We observed that there is no consensus among the predictions.
For this reason, we chose to demonstrate the predictions of four software programs and
their differences and similarities (Table 1). Even in the WT protein, there are distinctions
regarding the number of transmembrane domains found. In addition, the N-terminal and
C-terminal regions are very distinct among all predictions. The WT protein generally has
four transmembrane domains. The T-COFFEE prediction, in turn, showed three domains
for 1-AGPAT2. The c.144C>A (p.Cys48*) variant presents only one transmembrane domain
according to PSIPRED and SOSUI predictions. In contrast, this variant presents two trans-
membrane domains, as predicted by TMHMM and T-COFFEE. The c.202 C>T (p.Arg68*)
presented a more homogeneous analysis among the software used, showing two domains
in all of them, and with most predictions pointing to the N-terminal and C-terminal
regions in the cytoplasm. The c.366-588del (p.Leu123Cysfs*56) deletion presented three do-
mains only in the SOSUI analysis. In the other bioinformatics predictions, this variant
presents two transmembrane domains, with most predictions pointing the N-terminal and
C-terminal regions to the ER lumen. The c.369_372delGCTC (p.Leu124Serfs*26) deletion
is generally shown with three transmembrane domains (only TMHMM predicts two do-
mains). The c.514G>A (p.Glu172Lys) variant closely resembles the four transmembrane
domains of WT protein that were predicted by PSIPRED, SOSUI, and TMHMM. Only
T-COFFEE predicted three transmembrane domains in both WT and p.Glu172Lys. The vari-
ants c.570C>A (p.Tyr190*) and c.589-2A>G (p.Val197Alafs*19) present three transmembrane
domains according to PSIPRED, TMHMM, and T-COFFEE analyses. However, applying
SOSUI analysis, four domains are observed. In the c.646A>T (p.Lys216*) variant, only
PSIPED differs from the other software, predicting three transmembrane domains. The
N-terminal and C-terminal regions for c.646A>T are mainly expected to be in the ER lumen.
The c.369_372delGCTC, c.514G>A, c.570C>A, and c.589-2A>G variants present a significant
heterogeneity regarding the prediction of their N- and C-terminal regions.

Table 1. Bioinformatics prediction analysis of the protein sequence of 1-AGPAT 2 and its main
mutated proteins.

1-AGPAT 2
(NP_006403.2) Software TM1 TM2 TM3 TM4 N-Terminal C-Terminal

WT

PSIPRED 14–29 33–51 123–138 190–205 Cytoplasmic ER Lumen
SOSUI 2–24 30–52 58–80 122–142 ER Lumen ER Lumen

TMHMM 7–24 28–50 123–141 188–210 ER Lumen ER Lumen
T-COFFEE 31–50 59–76 123–141 - ER Lumen Cytoplasmic
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Table 1. Cont.

1-AGPAT 2
(NP_006403.2) Software TM1 TM2 TM3 TM4 N-Terminal C-Terminal

c.144C>A

PSIPRED 15–30 - - - Cytoplasmic ER Lumen
SOSUI 14–36 - - - ER Lumen ER Lumen

TMHMM 4–21 26–45 - - Cytoplasmic Cytoplasmic
T-COFFEE 5–21 30–46 - - Cytoplasmic Cytoplasmic

c.202C>T

PSIPRED 15–30 36–51 - - Cytoplasmic Cytoplasmic
SOSUI 2–24 30–52 - - ER Lumen ER Lumen

TMHMM 7–24 28–50 - - ER Lumen ER Lumen
T-COFFEE 4–21 30–50 - - Cytoplasmic Cytoplasmic

c.366-588del

PSIPRED 12–27 31–50 - - Cytoplasmic Cytoplasmic
SOSUI 2–24 30–52 58–80 - ER Lumen ER Lumen

TMHMM 7–24 28–50 - - ER Lumen ER Lumen
T-COFFEE 31–50 59–76 - - ER Lumen ER Lumen

c.369_372delGCTC

PSIPRED 13–28 32–52 61–76 - Cytoplasmic ER Lumen
SOSUI 2–24 30–52 58–80 - ER Lumen ER Lumen

TMHMM 7–24 28–50 - - ER Lumen ER Lumen
T-COFFEE 4–21 30–50 59–76 - Cytoplasmic ER Lumen

c.514G>A

PSIPRED 13–28 32–51 123–138 190–205 Cytoplasmic Cytoplasmic
SOSUI 2–24 30–52 58–80 122–142 ER Lumen ER Lumen

TMHMM 7–24 28–50 123–141 188–210 ER Lumen ER Lumen
T-COFFEE 32–50 59–76 123–141 - ER Lumen Cytoplasmic

c.570C>A

PSIPRED 13–28 50–32 123–138 - Cytoplasmic ER Lumen
SOSUI 2–24 30–52 58–80 122–142 ER Lumen ER Lumen

TMHMM 7–24 28–50 123–141 - ER Lumen Cytoplasmic
T-COFFEE 32–50 59–76 123–141 - ER Lumen Cytoplasmic

c.589-2A>G

PSIPRED 13–28 32–50 123–138 - Cytoplasmic ER Lumen
SOSUI 2–24 30–52 58–80 122–142 ER Lumen ER Lumen

TMHMM 7–24 28–50 123–141 - ER Lumen Cytoplasmic
T-COFFEE 32–50 59–76 123–141 - ER Lumen Cytoplasmic

c.646A>T

PSIPRED 13–28 58–32 123–138 - Cytoplasmic ER Lumen
SOSUI 2–24 30–52 58–80 122–142 ER Lumen ER Lumen

TMHMM 7–24 28–50 123–141 188–210 ER Lumen ER Lumen
T-COFFEE 31–50 59–76 123–141 187–207 ER Lumen ER Lumen

It is important to note that to obtain the variant sequence for the 1037-base-pair
deletion, we used the gene sequence from the sequence available in NCBI (GRCh38).
We manually performed the deletion from the 50th nucleotide of exon 3 to nucleotide
+534 in intron 4, according to what was evidenced in the literature, resulting in a protein
with 177 amino acids. The commonly used nomenclature for this c.317-588del variant
(p.Gly106fs*188) takes into account the deletion from nucleotide +1 of exon 3 to nucleotide
+534 of intron 4, resulting in a protein with 188 amino acids, as indicated in the literature in
2002 [21]. Thus, we use the nomenclature c.366-588del (p.Leu123Cysfs*56) for this variant
since this nomenclature corresponds to the deletion from the 50th nucleotide of exon 3
to nucleotide +534 in intron 4. The other nucleotide and protein sequences concerning
missense variants and the deletion of four base pairs were obtained through the Mutation
Taster software (available at https://www.genecascade.org/MutationTaster2021/, accessed
on 6 April 2024 [160]. The c.589-2A>G intronic variant has the protein nomenclature

https://www.genecascade.org/MutationTaster2021/


Int. J. Mol. Sci. 2025, 26, 5416 14 of 26

described by p.Gln196fs*228, but here, we propose the nomenclature p.Val197Alafs*19,
according to HGVS guidelines. Our bioinformatics analyses showed that at position 197,
the valine amino acid exchange for an alanine generates a frameshift 17 amino acids later.
The glycine shown at position 196 is unchanged in this variant, so we reconsidered its
nomenclature (Figure 5).

The c.144C>A pathogenic variant, the fifth most frequent variant in the AGPAT2 gene,
is a cytosine to adenine substitution at position 144. This change generates a premature stop
codon and a protein with 47 amino acids. In the c.202C>T variant, the change from thymine
to cytosine at position 202 also generates a stop codon, and thus, much of the protein
sequence is lost, forming a 67 amino acid product. Deleting 1037 base pairs (c.366-588del)
causes the loss of the 50th nucleotide from exon 3 to nucleotide +534 in intron 4. The
resulting truncated protein has 177 amino acids. The product of the c.369-372delGCTC
deletion has only 148 amino acids [161] (Figure 5).

It is interesting to note that the two analyzed deletions in question occur in very close
regions, and although the c.366-588del variant has a deletion of many base pairs, much of
what is lost corresponds to introns 3 and 4, leading to an even larger protein than that of
the c.369-372delGCTC variant. At the protein level, in c.366-588del, there is a leucine to
cysteine change at position 123, which results in a frameshift 56 positions later. While at
the following position 124, for the pathogenic variant c.369-372delGCTC, there is a change
in the amino acid from leucine to serine, which results in a frameshift of 26 amino acids
later (Figure 5). The clinical phenotype of patients with both pathogenic variants is similar,
as shown in Table 2.

The substitution of guanine to adenine at position 514 (c.514G>A) [161] does not
generate such a significant change in the number of amino acids present in the final
protein (278 amino acids). However, in the EGTR domain, which is responsible for the
acyltransferase activity of the enzyme, glutamate (E) is exchanged for lysine (K). Glutamate,
an amino acid with a negatively charged R group, may be responsible for the incorrect
folding of the protein and its impaired catalytic activity when replaced by one with a
positively charged R. At position 570, the cytosine to adenine exchange (c.570C>A) results
in a protein with 189 amino acids (Figure 5). The most frequent pathogenic variant, c.589-
2A>G, is of African origin [120]. This variant affects the splicing acceptor site at position
−2 of intron 4, resulting in a mutated protein with 214 amino acids. The c.646A>T variant
generates a protein with 215 amino acids.

The variants c.144C>A (p.Cys48*) and c.202C>T (p.Arg68*) give rise to the two smallest
proteins analyzed here. The proteins are damaged so early that they lose all four protein mo-
tifs in these variants. All other variants analyzed have the NHQSILD domain (NHX4D) pre-
served. The FINR motif, in turn, remains conserved in the variants c.514G>A (p.Glu172Lys),
c.570C>A (p.Tyr190*), 589-2A>G (p.Val197Alafs*19), and c.646A>T (p.Lys216*). Both dele-
tions c.366-588del (p.Leu123Cysfs*56) and c.369_372delGCTC (p.Leu124Serfs*26) lack this
protein motif. For the EGTR domain, the variants c.570C>A, 589-2A>G, and c.646A>T
present this conserved domain, while in c.514G>A, there is a change from glutamate to
lysine in the first amino acid of this domain. The other variants do not present this domain
(Figure 5). The fourth and last protein motif described for AGPAT2 (IVPV) is present only
in the c.514G>A and c.646A>T variants (Figure 5). Interestingly, the c.646A>T variant
conserved all four 1-AGPAT 2 motifs (Figure 5). However, it is a pathogenic variant. There-
fore, the decrease in the number of amino acids combined with changes in their polarity is
responsible for altering protein folding and, consequently, its correct activity.
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Table 2. Genotype–phenotype characteristics of the most frequent pathogenic variants in the AGPAT2 gene.

Pathogenic Variant
(NM_006412.4) c.144C>A c.202C>T c.366_588del c.369_372delGCTC c.514G>A c.570C>A c.589-2A>G c.646A>T

References [132] [132,139] [157] [162] [158] [126] [21] [132]

Resulting 1-AGPAT 2 protein
(NP_006403.2) p.Cys48* p.Arg68* p.Leu123Cysfs*56 p.Leu124Serfs*26 p.Glu172Lys p.Tyr190* p.Val197Alafs*19 p.Lys216*

Protein consequence
Smaller and

truncated
protein with

47 aa

Smaller and
truncated protein

with 67 aa

Smaller and
truncated protein

with 177 aa

Smaller and
truncated protein

with 148 aa

Poorly
functional

protein with
278 aa

Smaller and
truncated

protein with
189 aa

Smaller and
truncated

protein with
214 aa

Smaller and
truncated

protein with
215 aa

Protein domains affected All domains
absent

All domains
absent

EGTR, FINR and
IVPV domains

absent

EGTR, FINR and
IVPV domains

absent

EGTR domain
affected: change

from E
(glutamate) to K

(lysine) aa

IVPV domain
absent

IVPV domain
absent

All domains
preserved

Number of patients (n) 3 2 [132]; 2 [139] 10 2 2 1 5 1

Age (average in years) 28 13 [132]; 63 [139] 40 8 0,3 20 19 25

Generalized lack of
subcutaneous WAT (sWAT) + + [132]; + [139] + + + + + +

Hypertriglyceridemia + + [132]; - [139] + + + + + +

Diabetes mellitus 2 + - [132]; + [139] + + + + + +++

Acanthosis nigricans + - [132]; + [139] + + - + - +

Insulin resistance - +++ [132]; - [139] +++ - + - +++ -

Retinopathy + - [132]; + [139] - - - - - +

Diabetic neuropathy + - [132]; - [139] - - - - - +

Recurrent acute pancreatitis + - [132]; - [139] - - - - - -

Splenic artery aneurysm + - [132]; - [139] - - - - - -

Hepatomegaly - - [132]; - [139] + + + - - -

Bone cysts + - [132]; + [139] - - + - - -

Polycystic ovary + - [132]; - [139] - - + - - -

Hypertension + - [132]; + [139] - - + - - -

Renal failure + - [132]; - [139] - - - - - -
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Table 2. Cont.

Pathogenic Variant
(NM_006412.4) c.144C>A c.202C>T c.366_588del c.369_372delGCTC c.514G>A c.570C>A c.589-2A>G c.646A>T

Muscular hypertrophy - - [132]; - [139] + + + + - -

Inguinal hernia - + [132]; - [139] - - - - - -

Umbilical hernia - - [132]; - [139] - + - - - -

Increased abdominal volume - - [132]; - [139] - + - - - -

Hepatic steatosis - - [132]; - [139] - - - - - -

Large ears - - [132]; - [139] - - + - - -

Genital dysmorphism - + [132]; - [139] - - + - - -

Acromegaloid dysmorphism + + [132]; - [139] ++ - + - - -

Hirsutism - - [132]; - [139] + - - - - -

The pathogenic variants that generated more severe phenotypic characteristics are related to alterations or the absence of the EGTR domain, which is responsible for the acyltransferase
activity of 1-AGPAT 2. The aggressiveness of the phenotype was demonstrated as +: present; ++: median; +++: severe. Unreported phenotypes are indicated by -.
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Figure 5. Amino acids sequence alignments of WT and mutated 1-AGPAT 2 proteins. Amino acids
highlighted in pink indicate an excellent alignment between the 1-AGPAT 2 amino acid sequences. The
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yellow color indicates an average alignment, and the green color indicates a poor alignment. ∗ cor-
responds to an equal match. Cons: consensus sequence. The position of the stop codon in the
variants c.144C>A (highlighted in blue), c.202C>T (highlighted in green), c.570C>A (highlighted in
purple), and c.646A>T (highlighted in cyan) is shown by blue, green, purple and cyan color boxes,
respectively. The functional domains are in bold, and it is possible to observe the lack of all domains
in the c.144C>A and c.202C>T variants. The NHQSILD domain is present in all other variants. The
FINR motif is present only in variants c.514G>A (highlighted in red), c.570C>A (highlighted in
purple), 589-2A>G (highlighted in magenta), and c.646A>T (highlighted in cyan). EGTR is present
and unchanged in c.570C>A, 589-2A>G, and c.646A>T, and there is a change from glutamate to lysine
in the first amino acid of this domain in the c.514G>A variant (surrounded in a red box). IVPV is
present only in the WT and c.514G>A and c.646A>T variants. The position of the mutated amino
acid in the variants c.366_588del (highlighted in yellow), c.369_372delGCTC (highlighted in orange),
and c.589-2A>G (highlighted in magenta) is shown by yellow, orange, and magenta colors boxes,
respectively. The 1-AGPAT 2 sequence used was NP_006403.2.

The genotype–phenotype heterogeneity observed in CGL individuals is clinically
important. However, there is a limited correlation between the most prevalent AGPAT2
pathogenic variants described in the literature, their possible effect on the protein level,
and their main metabolic commitments [162]. This review also contributes to unraveling
these questions. Table 1 highlights that CGL1 patients harboring pathogenic variants that
did not affect the EGTR and IVPV 1-AGPAT 2 domains presented more CGL1 clinical signs
and symptoms than those with pathogenic variants affecting at least one of the domains.
In addition, we observed that the absence of the EGTR domain per se is related to a more
aggressive disease phenotype. Finally, the pathogenic variants analyzed that exclude the
EGTR and IVPV 1-AGPAT 2 domains are related to a worse clinical CGL1 presentation.
Thus, depicting the AGPAT2 molecular heterogeneity can help the diagnosis and clinical
management of CGL1.

7. Concluding Remarks and Future Directions
This review highlighted several findings concerning the role of the AGPAT2 gene on

adipogenesis and its relationship with CGL1 development. We also provided a genotype–
phenotype correlation to better understand the CGL1 phenotypic heterogeneity. Multiple
sequence alignments of human wild-type and mutated 1-AGPAT 2 performed here showed
that different AGPAT2 pathogenic variants can result in different protein changes, affecting
different domains of 1-AGPAT 2. Genotype–phenotype correlation data can also help
clinicians understand the degree of metabolic commitments of CGL1. However, many
questions remain to be investigated to improve our knowledge in this field. It is crucial to
scrutinize the role of the AGPAT2 gene in WAT, BAT, and beige adipogenesis, which could
give us new insights into its functions in health and disease.
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