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Abstract: SnO2 is one of the most studied materials in gas sensing and is often used as a benchmark
for other metal oxide-based gas sensors. To optimize its structural and functional features, the fine
tuning of the morphology in nanoparticles, nanowires, nanosheets and their eventual hierarchical
organization has become an active field of research. In this paper, the different SnO2 morphologies
reported in literature in the last five years are systematically compared in terms of response amplitude
through a statistical approach. To have a dataset as homogeneous as possible, which is necessary
for a reliable comparison, the analysis is carried out on sensors based on pure SnO2, focusing on
ethanol detection in a dry air background as case study. Concerning the central performances of
each morphology, results indicate that none clearly outperform the others, while a few individual
materials emerge as remarkable outliers with respect to the whole dataset. The observed central
performances and outliers may represent a suitable reference for future research activities in the field.

Keywords: chemiresistors; SnO2; ethanol; nanoparticles; nanorods; nanosheets; hierarchical
nanostructures

1. Introduction

Metal oxides (MOXs) are among the widest investigated materials in the gas sensing
field. This is thanks to their capability to exhibit large electrical resistance variations
upon exposure to low concentrations of different chemicals, and to the availability of
cheap synthesis methods compatible with production at large scale [1,2]. Moreover, their
reduced size, weight and power consumption, merged with their compatibility with silicon
technology, makes MOX-based chemiresistors ideal candidates for the development of
portable devices [3–5].

Their effectiveness has been proven in many applicative fields, including medicine [6,7],
environmental monitoring [8,9], food processing and quality control [10,11], safety and
security [12,13].

Several MOX materials were successfully exploited as gas sensors, including for
example WO3, ZnO, In2O3, TiO2, but the largest amount of work has been done using
SnO2. In particular, the first commercial MOX chemiresistor was based on a SnO2 thick
film, i.e., a disordered network composed of crystallites with spherical shape, [2] and, along
years, several milestones in the understanding of the MOX sensing mechanism have been
achieved working with SnO2 thick films, which is hence considered the reference material
in the field [14,15].

In addition to the choice of the base MOX material, different strategies have been
employed to tune and optimize the sensing capability of MOX thick films toward specific
applications. These strategies include the use of dopants inside the MOX lattice [16,17], the
dispersion of inorganic catalysts or organic layers over the MOX surface [1,18], the use of
mixed oxides [19,20], the fine tuning of the film morphology [21,22]. Concerning the latter,
a variety of methods have been developed in the last years to control the morphology at
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different levels, from the shape of elementary building blocks till their eventual assembly
in hierarchical structures. Materials such as nanowires, nanorods, nanosheets, as well as
hierarchical structures including, for example, hollow spheres, fibers, flowers, have become
the focus of intense research [23–25].

In this context, the present paper aims to review the different morphologies developed
in the last years and compare them through a systematic analysis of the reported papers,
extrapolating the mean performance of each morphology, where ‘mean’ is not necessarily
the arithmetic mean, but it stands for the most appropriate parameter that expresses the
central behavior of the considered class. Once established such an appropriate parameter,
emphasis is given to those materials that emerges as outperforming the mean. In order to
have a dataset as homogeneous as possible, which is necessary for a comparative analysis,
the review is focused on pure SnO2 as target material and ethanol as target molecule, tested
in a dry air background. The choice of SnO2 is because it is the widest investigated metal
oxide material, hence it offers the largest statistics, and because, in line with the tradition of
gas sensing, SnO2 is often adopted as benchmark material for other MOX [14,26]. Getting
its central performance and identifying outliers may hence provide a useful reference
for future works on MOX-based gas sensors in general, not only limited to SnO2 itself.
The choice of ethanol is because its importance as basic chemical in many applicative
fields [27–29], which make it a widely investigated molecule to test sensor materials and
morphologies [30].

The rest of the manuscript is organized in four sections (numbered from 2 to 5): the
former (Section 2) provides a resume of the working mechanism of MOX chemiresistors,
with emphasis on morphological effects. Details about the procedure adopted to perform
the statistical analysis are reported in Section 3, results of the statistical analysis are pre-
sented in Section 4, these are compared with findings reported in individual papers in
Section 5, finally conclusions are in Section 6.

2. Sensing Mechanism and Morphology Effects
2.1. Interaction between Ethanol and SnO2

The working mechanism of MOX chemiresistors is based on the modulation of their
electrical conductance as a consequence of interaction with gases. At molecular level, the
interaction mainly occurs with active ions such as OH−, O2

−, O−, O2− that cover the MOX
surface [14].

Ethanol detection is typically optimized at temperatures between 250 and 400 ◦C. In
this range, O− is the dominating active ion and its chemisorption from the atmosphere is
described by the following reaction [31]:

O2 + 2e− � 2O− (1)

The further reaction of O− with ethanol is often reported in gas-sensing literature as
follows [32,33]:

CH3CH2OH + 6O− → 2CO2 + 3H2O + 6e− (2)

A deeper analysis of ethanol oxidation over metal oxide surfaces shows that Equation (2)
may take place according to two main routes, namely dehydrogenation into acetalde-
hyde or dehydration into ethylene, whose intermediates are finally oxidized to H2O and
CO2 [34,35].

From the semiconductor viewpoint, the oxygen chemisorption process creates acceptor
surface states that withdrawn electrons from the SnO2 conduction band. By combining
the electrical charge neutrality in the semiconductor with the chemical equilibrium at the
surface, the chemisorption process results in the establishment of a surface layer that, in the
abrupt approximation, is fully depleted of electrons. This redistribution of charges induces
an electric field that bands the band structure of the semiconductor raising a Schottky
barrier at the surface as schematically shown in Figure 1 [14,31,36]. Reducing gases, such as
ethanol, modulate the electrical properties of MOX materials by reducing the population of



Sensors 2021, 21, 29 3 of 23

chemisorbed oxygen ions according to Equation (2) and, in turn, the depth of the depletion
layer and the Schottky barrier height [14,37].
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Figure 1. Schematic representation of the energy band diagram of an n-type semiconductor, such as
SnO2, upon chemisorption. Ef, Ec, Ev represent the Fermi energy, the edge of the valence band of
the semiconductor and of the edge of its conduction band, respectively. qVS is the Schottky barrier
developed at the surface and Qsc the charge trapped at the acceptor surface states created by oxygen
chemisorption. W is the depletion layer. Reprinted from [38], Copyright (2008), with permission
from Elsevier.

The width W of the depletion layer and the surface potential VS are related one another
through Equation (3):

W =

√
2εVS

qnb
(3)

where q is the electron charge, ε and nb are the permittivity and the charge carrier density
of the bulk semiconductor [14].

This model is suitable to understand the behavior of many experimental results
reported in literature about MOX-based gas sensors. For example, the empirical power law
describing the calibration curve, Equation (4), may be retrieved in this framework [38]:

Ggas

Gair
= 1 + ACZ (4)

where C is the ethanol concentration (in ppm), A and Z are fitting parameters retrieved
case by case. In particular, the model shows that A depends on the reaction rates of
Equations (1) and (2) promoted by the MOX material, while Z depends mainly from the
dominant oxy-ion. Compounds undergoing complex reactions, involving for example
different pathways or intermediate by-products, may exhibit slight variations in Z [38].
Additional effects explained in the framework of this model are size and shape effects,
which are reported in Sections 2.2 and 2.3, respectively.

2.2. Crystallite Size Effects

The model described in the previous sections works until the width of the depletion
layer, W, does not extend through the whole volume of the crystallite. Considering crystal-
lites with spherical shape and diameter t, the model works for t > 2W. In these conditions,
which are typically referred as ‘the regional depletion regime’, the interaction with gases
modulates the electrical properties of the MOX crystallites only in the surface region and
the Schottky barrier controls both the electrical transport across grains and the response to
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gases. The electrical resistance R is thermally activated with the activation energy given by
qVS and the response intensity to gases is almost independent from the grain size [15,37]:

R ∝ exp
(

qVS
kBT

)
(5)

where T denotes the sensor temperature in Kelvin degrees and kB the Boltzmann constant.
On the other hand, if grains are small or the gas concentration is such that t would

be smaller than the resulting 2W, crystallites will be (almost) fully depleted of electrons,
and the band diagram profile will lie above the energy of the bulk conduction band, Ec, all
over the entire grain. In this regime, called ‘the volume depletion regime’, the electrical
resistance is still thermally activated but its activation energy EA is no more the Schottky
barrier, which is much lower than in the previous case, but the energy to promote charge
carriers in the raised conduction band, which is nearly constant thorough the whole volume
of the grain, [31,39]:

R ∝ exp
(

EA

kBT

)
(6)

In this regime, the response intensity to gases will increase with decreasing t, [15,37].
This provides the theoretical framework to explain the benefit arising from the use of
nanostructured materials, which is widely observed in experiments since several years and
has become a leading concept in the design of sensitive layers.

The band diagram in the two regimes is schematically reported in Figure 2.
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the regional depletion regime (a), in which the grain diameter is larger than two times the depletion
layer W (t > 2W), and in the volume depletion regime (b), in which 2W > t. Adapted with permission
from [40]. Copyright (2018) American Chemical Society.

Considering the typical parameters of SnO2, ε≈ 10−10 F/m and nb≈ 5× 1018 cm−3 [41,42],
according to Equation (3), the depletion layer results W ≈ 1.6× 10−8√VS, which means
W ≈ 12 nm for a typical value of VS ≈ 0.65 V measured in air at a sensor temperature
around 350 ◦C [43].

2.3. Crystallite Shape Effects

Films traditionally employed in gas sensing were composed by disordered assemblies
of spherical (or nearly spherical) crystallites, hence most of models about MOX gas sensors
have been developed referring to this kind of film [14,15,38,39]. With the advent of new
morphologies such as nanowires and nanosheets and the increasing number of papers
reporting the experimental investigation of their sensing properties, attention has been
dedicated to these new nanostructures also from a theoretical point of view [31,37,44]. For
example, the dependence of the band bending profile in Equation (6) has been solved for
the spherical, cylindrical and slab-like shape of crystallites [31,37,44].

Using the term crystallite thickness, t, to refer to the smallest dimension of each
crystallite, namely the diameter for spherical and cylindrical crystallites and the thickness
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itself for slab-shaped crystals and comparing crystallites with the same thickness, these
models provide the following information [31,44]:

(1) Under the same gas exposure conditions, the width of depletion layer is shape depen-
dent and decreases with the following order: nanoparticles—nanorods—nanosheets;

(2) Increasing the concentration of an oxidizing specie such as oxygen, which means
increasing qVS, crystallites enters in the full-depletion regime in the following order:
nanoparticles—nanorods—nanosheets;

(3) The crystallite shape weakly affect the exponent Z of the power law expressed by
Equation (4), which is hence mainly determined by the dominant oxy-ion involved in
the reaction and eventually by the complexity of the reaction itself (see Section 2.1).

Based on points (1) and (2), spherical crystallites appears as more efficient transducers
with respect to their sheet- and wire-shaped counterparts.

2.4. Gas Diffusion through the Sensing Film

Models summarized in previous sections describes the gas-sensing mechanism at the
level of microscopic crystallites.

In order to have a macroscopic film suitable to properly exploit a network of finely
tuned microscopic elements, it is necessary that gas molecules have easy access to as many
crystals as possible through the whole thickness of the sensing layer.

To achieve this result, two important morphological features should be realized:
(i) contacts between neighboring crystallites should be as small as possible, avoiding the
formation of compact aggregates, in which gas hardly diffuses hence leaving crystallites
located at the center of the agglomerate almost unreached by gas molecules; (ii) the spatial
arrangement of crystallites should leave pores large enough to allow an ease diffusion
of gas molecules through the whole volume of the film. This latter feature is even more
important considering that the target gas is consumed by the interaction with the MOX
surface. As a consequence, the gas concentration will decrease with moving to deeper
layers of the sensing film. If an efficient reaction with the gas is not accompanied by a
structure offering the necessary diffusion, the interaction with the target gas may be limited
to the upper portion of the sensing material, the lower layers remaining unreached by the
target gas.

The concentration profile of the target gas inside the sensing film and the response
intensity dependence from the film thickness L were calculated by Sakai and coworkers [45]
under the hypothesis of a linear calibration curve, Z = 1 in Equation (4), and are reported
in Equations (7) and (8) respectively:

Cx = C
cos h(1− x/L)

cos h(m)
; m = L

√
k

Dk
(7)

Ggas

Gair
= 1 + A

tan h(m)

m
C; m = L

√
k

Dk
(8)

Here x is the distance from the surface through the film thickness, C is the gas con-
centration in the environment, k is the rate constant of the reaction that consumes the
target gas, such as the reaction reported in Equation (2), A has the same meaning as in
Equation (4), Dk is the Knudsen diffusion coefficient, Dk =

4rp
3

√
2RT/(πM), where rp

is the average pore radius, R is the gas constant, M the molecular mass of the target gas
molecule and T the sensor temperature in degrees Kelvin.

A detailed discussion of the meaning of these equations is provided in [45]. For the
purpose of the present paper, it is worth mentioning the dependence from the k/Dk ratio,
i.e., the importance of large pores, especially in the case of efficient reactions (large k).

In view of these arguments, it is worth mentioning that though nanoparticles appear
more efficient than nanowires and nanosheets at the level of elementary building blocks, as
discussed in Section 2.3, very thin nanoparticles often leave small voids, which, in turn,
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hinder an efficient diffusion of molecules. Moreover, thin nanoparticles are widely reported
to suffer coalescence effects, especially at the high working temperatures of MOX chemire-
sistors. This may lead to the formation of large aggregates, which loose the efficiency of
the original nanoparticles. In this sense, nanowires and nanosheets are more effective in
the realization of macroscopic layers featuring an open structure with large pores [46].

3. Materials and Methods

The analysis has been performed on chemiresistors based on pure SnO2, i.e., SnO2
materials that are neither intentionally doped nor intentionally functionalized with any
catalyst, choosing ethanol as target chemical. Given the well-known effect of humidity on
sensing performance [16,47], in order to compare the devices in conditions as much similar
as possible, only sensors tested in a dry air background were considered.

Qualitative and quantitative descriptors adopted to characterize the morphological
features of the reviewed materials are described in Section 3.1, while functional parameters
used to evaluate the sensor performance are in Section 3.2.

3.1. Morphological Classes and Descriptors

To investigate morphological effects on the sensor performance, literature materials
have been grouped based on the shape of their elementary building blocks (crystallites)
and their eventual hierarchical assembly.

• Elementary building blocks (shape of): the first classification is done in terms of shape
of elementary crystallites composing the material, classifying it according to three
common types as listed below and shown in Figure 3:

◦ Nanoparticles: crystallites with spherical shape, these are the typical elementary
units of traditional thick films, which are also widely studied nowadays. With
respect to other crystallites, nanoparticles, due to their rounded shape, do not
feature a clear surface termination in terms of crystalline planes;

◦ Nanorods: crystallites featuring an elongated shape, with surfaces usually iden-
tified by well-defined crystalline planes. This class comprises also crystallites
identified in literature as nanowires or nanobelts. Crystals with cubic, octahedral
or elongated octahedral shape are also included in the nanorods class due to the
common feature of faceted surface;

◦ Nanosheets: single crystalline, thin nanostructures extending in two dimensions.
Nanostructures named in literature nanoplates, nanoplatelets, nanolamellae,
nanodiscs are also included in this class.

• Assembly (of elementary building blocks): the macroscopic sensing layer is formed
by a disordered network. Crystallites may be the components of this network or, in
some cases, they are organized to form larger assemblies, which in turn, compose the
disordered network. The different assemblies investigated in literature are grouped in
the following five classes, for which Figure 4 reports examples based on nanoparticles
as elementary crystallites:

◦ Disordered networks with no hierarchical assembly: this is the simplest network,
in which elementary nanostructures form a disordered network with no hierar-
chical organization. The traditional thick film studied in gas sensor belong to
this class;

◦ Network of fibers: elementary nanostructures are organized to form elongated
agglomerates with a compact character, which, in turn, form a disordered network;

◦ Network of porous fibers: elementary nanostructures are organized to form
elongated agglomerates with a clear porous structure, such as, for example,
hollow fibers;

◦ Network of spheres: elementary nanostructures form hierarchical structures with
compact, spherical shape. Flower like assemblies are included in this group;
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◦ Network of porous spheres: elementary nanostructures form hierarchical struc-
tures with open, porous spherical shape. Hollow spheres are a particular example
of this hierarchical morphology.
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assemblies, zoom over a single fiber; (e) networks of nanoparticles organized in porous-fiber assemblies. (a) is reprinted
from [50] Copyright (2016), with permission from Elsevier; (b) is reprinted from [51] Copyright (2013), with permission from
Elsevier; (c) is reprinted from [52]; (d) fiber is reprinted from [53] Copyright (2017), with permission from Elsevier; (e) is
reprinted from [54] Copyright (2015), with permission from Elsevier.

Overall, the statistical results reported in Section 4 are retrieved based on 121 pure
SnO2 materials reported in 85 literature articles, whose distribution between the considered
morphological classes is summarized in Table 1, together with the lists of the respective
references. The statistics is highly inhomogeneous with respect to crystallites’ shape and
hierarchical assembly. Though the mentioned inhomogeneity may be undesired from a



Sensors 2021, 21, 29 8 of 23

statistical point of view, it is anyway a matter of fact reflecting the larger amount of studies
that have been dedicated in the considered period of time to a given morphology with
respect to another.

Table 1. Number of different materials (elementary building blocks and their eventual hierarchical organization) whose experimental
responses to ethanol have been used for the statistical analysis reported in Section 4. For each morphological type, in addition to the
number of materials, the related references are also listed.

Type of
Assembly\Building

Blocks
Nanoparticles Nanorods Nanosheets Tot.

No hierarchical
assembly

Number of materials:
50

References:
[16,32,40,50,55–91]

Number of materials:
18

References:
[33,48,87,92–99]

Number of materials:
4

References:
[85,87,96,100]

72

Spheres

Number of materials:
4

References:
[51,52,85,101]

Number of materials:
11

References:
[51,96,102–108]

Number of materials:
7

References:
[49,51,106,109–111]

22

Porous spheres

Number of materials:
11

References:
[52,83,108,112–118]

Number of materials:
0

Number of materials:
1

References:
[25]

12

Fibers

Number of materials:
7

References:
[24,53,91,119–122]

Number of materials:
0

Number of materials:
0 7

Porous fibers

Number of materials:
8

References:
[53,54,121,123–126]

Number of materials:
0

Number of materials:
0 8

Total Number of materials:
80

Number of materials:
29

Number of materials:
12 121

Morphological characteristics were also evaluated considering the following quantita-
tive descriptors (wherever reported in the respective papers):

• Crystallite thickness, t, which represent the minimum length of crystallites, i.e., the
diameter for grains with spherical or wire-like shape and the thickness itself for
nanosheets, as determined from X-ray diffraction (XRD) or transmission electron
microscopy (TEM) measurements;

• Specific Surface Area, SSA, as determined from Brunauer–Emmett–Teller (BET) analy-
sis of N2 adsorption measurements;

• Pore diameter, rp, is the mode of the pore distribution as determined through the
Barrett–Joyner–Halenda (BJH) analysis of N2 desorption measurements.

3.2. Parameters Adopted to Quantify the Sensors Performances

The sensing performances of the considered materials were evaluated using the
following response parameters:

• Response amplitude, calculated as Ggas/Gair, where Ggas and Gair stands for the
steady state conductance measured during gas exposure and in the dry air back-
ground, respectively. Concerning those papers reporting the response amplitude
as the normalized conductance variation, i.e., (Ggas − Gair)/Gair, their values were
converted in Ggas/Gair using the relationship: (Ggas − Gair)/Gair + 1 = Ggas/Gair.
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• Calibration curve, given by the power-law described by Equation (4), Ggas/Gair = 1 + ACZ,
from which the parameters A and Z are extrapolated by applying a linear fit based on
Least Squares algorithm to ‘Log(Ggas/Gair − 1) vs Log(C)’ data.

4. Statistical Analysis
4.1. Response Amplitude and Calibration Curve

The whole dataset of response amplitude vs gas concentration analyzed is shown in
Figure 5, using different colors and symbols to identify the morphologies of crystallites,
Figure 5a, and hierarchical assemblies, Figure 5b.
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building blocks (a) and from the assembly of elementary building blocks (b). For some particular data-points, the related
references are also identified to support the discussion (see text for details).

Most of responses, whichever the crystallite shape and their eventual hierarchical
organization, lies below the visual line traced extending the responses (calibration curve)
recorded by Li et al. with the nanoparticle-shaped crystallites organized in fiber-like
assemblies [120]. Above this line, a few materials outperforming others clearly emerge.

Among these latter materials, the first mention is for the nanorod networks prepared
by Kida and co-workers, which feature the largest responses at all [99]. Specifically, four
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different networks were prepared, which featured responses of about 6000, 11,000, 14,000
and 100,000 to 100 ppm of ethanol. Responses were observed to increase with increasing
the average pore diameter of the sensing layer and ascribed to a more efficient diffusion
promoted by the larger pores [99].

Other remarkable responses have been reported for different nanoparticle networks
with no hierarchical organization [16,40,55,86]. Visually extrapolating the calibration curves
of the reported materials allows to compare layers tested in different concentration ranges.
In this sense, the performances recorded for the mentioned nanoparticle networks may be
considered comparable with those reported by Lee and coworkers for nanoparticles assem-
bled in porous spheres with multimodal porosity [52] and by Khodadadi and coworkers
for spherical assemblies of nanorods [96].

To better get the central performance of each morphological class and appreciate
the deviation of outliers with respect to such mean behavior, boxplots are reported in
Figure 6 for crystallite (a) and assembly (b) shapes. 100 ppm is here chosen as the reference
concentration owing to its larger statistics with respect to other concentrations. Boxplots
are tools commonly employed in explorative data analysis [47,127,128]. They report the
2nd quartile, Q2, i.e., the median, as the central red line, 1st and 3rd quartiles, Q1 and Q3,
as bottom and top box edges and the two extreme data not considered outliers as whiskers
ends. Values being at least 1.5 times the interquartile range beyond the corresponding
hinge are considered outliers and are individually reported as red crosses. Non-outliers
data-points are reported as blue circles. Statistical parameters describing the distributions
of each morphology are reported in Appendix A (Tables 2 and A1). Several morphologies
are characterized by an appreciable number of outliers and, in some cases, only a reduced
amount of data is available. Moreover, most of morphologies are characterized by an
asymmetric distribution, as indicated, for example, by the skewness and by the difference
between the median and the arithmetic mean values. In several cases, the Smirnov-
Kolmogorov test return a p-value that is lower than the widely adopted threshold of 0.05,
supporting the evidence to reject the hypothesis of data following a normal distribution.
Given these arguments and considering the need for a uniform approach to describe and
compare the central performances of these distributions, the median is considered a more
robust indicator than the arithmetic mean [129].
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Figure 6. Boxplots showing the statistics of the response amplitude to 100 ppm of ethanol with respect to crystallite
morphologies (a) and their eventual hierarchical assembly (b). Boxplots shows the following parameters: median (central
red-mark), 1st and 3rd quartiles (bottom and top box-edges), extreme data not considered outliers (whiskers ends), outliers
are individually reported as red crosses, other data-points are visualized as blue circles.

In terms of central behavior, no morphological class clearly emerges with respect to
others. This is further supported by the median tests, which return p > 0.05 for most of
comparative tests between couples of morphologies (Appendix A), suggesting the lack of
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evidence to reject the hypothesis of distribution having comparable medians. The only
exception, is the median test between nanoparticles and nanosheets, which returns p ≈ 0.02.
Though this would suggest to reject the null hypothesis, i.e., to consider the difference
between the two distributions large enough to support the existence of a true difference
between the two medians, to properly evaluate this conclusion it’s worth considering the
effect of outliers. If we re-apply the test after removing the outliers observed in Figure 6,
we get p > 0.05 for all the tests, with the nanoparticle-nanosheet comparison still returning
anyway the smallest p-value, specifically p ≈ 0.07. Besides the specific values of p, the
general situation depicted by Figure 6 and related tables is about the evidence of a few
outliers that clearly outperform other materials and much weaker differences among the
central performances of different morphologies.

The largest group of outliers is observed for materials sharing the lack of any hierar-
chical assembly [16,40,55,86,99]. Responses measured in these papers are much larger than
those observed in all other papers. Within this outstanding group, the most performing
materials have rod-shaped crystallites (with no hierarchical organization), [99], the rest
is composed by nanoparticles [16,40,55,86]. Concerning other outliers not in this group,
the two types of nanosheets with spherical hierarchical organization developed in [110]
are outliers within both the respective crystallite and assembly classes. The difference
between these two nanosheet-based layers relies in the sheet width, which are around 400
and 800 nm respectively, while the thickness is similar for both samples, t ≈ 50 nm. Similar
responses (Ggas/Gair ≈ 100 to 100 ppm of ethanol) were also recorded with hierarchical
fibers composed by nanoparticles [120] and with rod-like nanostructures organized in
spherical assemblies [105].

To look for other outperforming materials that were not tested at this ethanol concen-
tration, a similar analysis was carried out for other concentrations, namely 10, 50 and 200
ppm, which also feature an appreciable statistics of samples. The 100 ppm outliers, emerges
as remarkable outliers also for all other concentrations at which they were measured. As
for other materials, a few additional are identified as outliers with responses larger or
comparable (depending the considered concentration) than the response recorded in [120].
These are the disordered nanoparticle networks reported in [60,74].

Besides the useful information retrieved from boxplots, they consider one concen-
tration per time, hence the comparison of layers tested at different concentration is not
easy, especially for those papers whose concentration ranges do not overlap. In this view,
it is worth exploring sensor data set through their calibration curves, which offer the
opportunity of a lesser concentration-constrained comparison.

The calibration curve is a fundamental feature for any given device and it is also the ba-
sis for determining additional fundamental parameters such as the limit of detection (LOD)
and the sensitivity. The latter, according to the definition provided by the International
Union of Pure and Applied Chemistry (IUPAC), is the derivative of the calibration curve.

According to Equation (4), the calibration curve of MOX chemiresistors is expressed by
means of two parameters, A and Z. A large value of A is beneficial for LOD and sensitivity,
while these parameters feature different dependences from Z. Indeed, a larger Z means
larger sensitivity but also a worse LOD due to the faster decrease of the sensor response
with decreasing gas concentration.

The A vs Z plots are reported in Figure 7a,b, highlighting the crystallite and assembly
morphology of the related materials, respectively.

These plots show that Z typically lies between 0.5 and 0.8 (Q1 and Q3 respectively),
with a median value of about 0.7. The spread is reasonably due to the different optimal
temperatures identified in different papers and to the manifold reaction path that ethanol
may undergo with SnO2, which may induce slight modifications in Z (Section 2.1).

Outliers identified in Figure 6 and in the related boxplot discussion ([40,55,60,86,110,120])
are all characterized by large A values (A > 10), while Z varies within the aforementioned
interquartile range. The porous spheres with multimodal porosity developed by Lee and
coworkers [52], lie in this range of outperforming materials also in terms of the A parameter,
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in agreement with the discussion about Figure 5. Unfortunately, other remarkable materials
discussed in Figure 5, namely those reported in [16,74,96,99], were tested against a single
concentration of ethanol and it is not possible to retrieve the related calibration curves.
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Based on this analysis it is anyway possible to identify other remarkable materials
that were tested against a single ethanol concentration different from 100 ppm. This is the
case of the hollow spheres assemblies of nanoparticles reported in [113] and [118], which
feature response of about 93 and 33 to 5 ppm of ethanol, which competes well with the
responses of about 38 reported in [120], identified as outlier. Remarkable results were also
achieved in [69] by using a disordered network of nanoparticle response. The response
reported by these authors (≈2000 to 300 ppm) is comparable with the response exhibited
by the outliers developed in [96], (Figure 5).

4.2. Crystallite Thickness, Specific Surface Area and Pore Radius

The performance of a sensitive layer depends on many physical and chemical pa-
rameters and models resumed in Section 2 aims at rationalizing the dependence of the
sensor response from a set of these material properties. The crystallite thickness (t) and
the Specific Surface Area (SSA) are among the most considered properties to explain the
sensing capability of a given layer. Their importance is so marked that they often shadow
the effects of other properties, with materials optimized in various ways, for example by
addition of dopants or surface catalysts, exhibiting a strict correlation between the response
intensity and the larger SSA or the lower t [78,130].

Figure 8 resumes the statistical distributions of SSA and of t within the crystallite
shape and their eventual hierarchical assembly.

It is interesting to observe that, though some of the outperforming sensors identified
in the previous section features small crystallite thickness, there is no a general and clear
correlation between smaller thickness and larger responses (outstanding devices), confirm-
ing that the crystallite thickness is an important parameter for gas sensing but it may not
account for all observations. For example, the nanorods prepared by Kida and cowork-
ers [99] are among the thinnest nanorods but, between the four materials discussed in [99],
the most performing one is the thickest. If considered within the category of networks
with no hierarchical assembly, all these four nanorod networks feature crystallite diameters
within the interquartile range. Other materials, such as those studied in [16,96,110,120]
have crystallite sizes close to the median values of their respective classes, though their
responses clearly emerge with respect to the median (Figures 5–7).
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Comparing the median values, nanoparticles are characterized by a median diameter
(t ≈ 13 nm) that is appreciably lower than the ones of nanorods (t ≈ 50 nm) and nanosheets
(t ≈ 23 nm). This may be reasonably due to the longer experience gained with nanoparticle-
based materials. Indeed, nanostructures with rod-like and sheet-like morphologies have
been developed only in recent years and, considering the additional synthesis constrains
necessary to achieve such an anisotropic growth, the optimization of the diameter may be
not yet optimized as is for nanoparticles.

Concerning SSA, Figure 8c,d show the presence of several SSA outliers, but none of
these coincides with outliers of sensor performance. Interestingly, the most responsive
layer synthesized in [99] is characterized by an SSA of about 10 m2/g, which is close to the
lower whisker for both the nanorods and the disordered (no hierarchical assembly) classes.

Another important set of parameters affecting the sensing properties are the size
and distribution of pores. As summarized by Equations (7) and (8), large pores ease
the diffusion of gas molecules through the sensitive layer hence allowing an optimal
exploitation of the whole volume. Indeed, several authors propose these parameters as
the key elements underlying the performances of their materials. This is the case of the
outstanding nanorod networks developed by Kida and coworkers, whose response to
ethanol correlates well with the pore size increase [99]. The porous spheres prepared by
Yoon et al. feature a multimodal pore structure, with the three modal material being more
performing than the two and single modal counterparts [52].

Unfortunately, the pore distribution is not systematically investigated in literature,
hence its statistical analysis is harder than it is for crystallite thickness and SSA. Due
to the reduced number of papers reporting the pore diameter of analysis, the related
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boxplot is reported in Figure 9a for the whole set of samples, with no distinction between
morphological classes. To compare it with the other main parameters discussed above (t and
the SSA), the statistics of these two parameters are also reported in Figure 9b,c respectively.
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SSA (c), for the whole set of considered articles.

5. Discussion

In this section, the morphological features identified in individual papers as the key
properties underlying the observed sensing performances are further discussed with re-
spect to the statistical results outlined in Section 4. The goal is attempting to compare
the points of view proposed in individual papers with the point of view that emerges
from the statistical analysis. This comparison is organized by subjects in four sub-Sections:
5.1 Crystallite shape effects; 5.2 Surface termination effects; 5.3 Hierarchical organization
effects and optimization of gas diffusion; 5.4 SnO2 as base material for doped and com-
posite nanostructures. The first three addresses specific morphological features and their
effects, the latter focuses on benefits reported for more complex materials, such as those
obtained doping of functionalizing SnO2, from the morphological features of the base
SnO2 nanostructures.

5.1. Crystallite Shape Effects

According to models summarized in Section 2, nanorods and nanosheets favors the
diffusion process with respect to nanoparticles, while spherical crystallites are indicated as
the most efficient transducers, followed, in order, by nanowires and finally nanosheets.

At statistical level, the most performing layer is composed by a random network
of nanorods [99], on the other hand, most of outliers are composed by nanoparti-
cles [16,40,55,69,86,113,118], confirming the competitive effects intrinsic in the shape of
crystallites, but also that all the morphologies offer ample opportunities to achieve out-
standing performances.

At the level of individual research papers, some specifically addressed the comparison
between different crystallites [51,85,87,96,106]. Interestingly, four out of these five articles,
namely [51,85,87,106], reported the response intensity increasing in the following order:
nanosheets—nanorods—nanoparticles, which is exactly the opposite trend of the crystallite-
shape efficiency predicted in Section 2.3. In this regard, it is worth noting the parallel effects
induced by crystallite thickness. Indeed, all four of these papers report t increasing accord-
ing to the nanosheets—nanorods—nanoparticles order, hence remarking one more time
the difficulties in decoupling the effects arising from different structural/morphological
features (shape and size in these cases). The only exception with respect to such a response
intensity order is provided by Firooz et al. [96]. These authors reported random networks
of thin nanosheets (t ≈ 26 nm) being less performing than thicker nanocubes (t ≈ 60 nm
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and t ≈ 39 nm) organized in random networks and in hierarchical spherical assemblies re-
spectively, with the latter being the most performing. Looking at Figure 5, all three of these
layers emerge as competitive with outliers materials [40,120] identified in Figures 6 and 7.

The comparison of these five articles hence confirms what emerged from the statistical
analysis about the difficulties in decoupling the different morphological effects but, at the
same time, the large potentialities intrinsic in all the morphologies.

It is further worth noting that in all these five papers in which different crystallite mor-
phologies are compared, nanoparticles are characterized by larger values of t with respect
to their 1D and 2D counterparts, which contrast with the medians extrapolated from the
whole dataset (Figure 8a). Reasonably, this difference may arise from the different targets
of different authors. In papers addressing the comparison between different morphologies,
parameters of the synthesis techniques have been tuned to control the crystallite shape.
On papers focused only on nanoparticles, the respective authors better addressed the
optimization of t, benefitting from the long-time experience gained with such a traditional
morphology, as also observed from a statistical point of view (Figure 8).

5.2. Surface Termination Effects

An additional interesting morphological feature is the surface termination. This is
a traditional subject in the field of surface science, in which the reactivity of large, single
crystals against specific chemicals was studied by means of spectroscopic techniques [131].
Though quite close to gas sensing, a direct application of these findings in this latter field
was hindered by the so called pressure-gap and materials-gap. The former accounts for the
very different working conditions between gas sensors (room pressure) and spectroscopic
techniques (high vacuum or ultra-high vacuum), the latter for the different materials and
surfaces used in experiments. Indeed, the large single crystals exposing well defined
crystalline surfaces typically employed in surface science feature low performance as gas
sensors, on the other hand, the traditional polycrystalline layers composed by rounded
nanoparticles used in gas sensing do not feature a clear crystalline termination [131]. In this
sense, the advent of single-crystalline nanowires/nanorods/nanocubes and the possibility
to develop efficient gas sensors based on these nanostructures offered an important oppor-
tunity to reduce such a material gap. Indeed, some recent papers targeted the preparation
of faceted, single-crystalline nanostructures with controlled surface termination and their
use as gas sensors, showing that high-energy facets such as the (221) plane in SnO2 improve
the sensing capability [89,92]. Interestingly, the nanorods with this surface termination
are the most performing though their diameter, t ≈ 300 nm, which is the largest between
the different facet-terminations considered in [92], indicating the effective role played by
the surface termination. The response to 100 ppm of ethanol is around 55, compared with
responses of about 35, 10 and 10 measured with nanorods exposing (111), (101) and (110)
facets and featuring diameters of about 165 nm, 50 nm, and 40 nm respectively. Compared
with the statistics of nanorods-based layers (Figure 6 and Appendix A), the four responses
reported in [92] are classified in the top 25% (i.e., above Q3), between the top 25% and
50% (i.e., between Q3 and Q2), below Q1 and below Q1 respectively. Unfortunately, the
surface termination is still weakly investigated, with several nanorods/nanosheets papers
missing this information, and a systematic comparison is not possible. It remains anyway
an interesting topic for future studies, especially considering the similar observations
about the beneficial effects of high-energy planes reported for other MOX such a ZnO and
TiO2 [132].

5.3. Hierarchical Organization Effects and Optimization of Gas Diffusion

The use of hierarchical assemblies is another method to optimize the diffusion pro-
cesses. It combines the fine tuning of elementary crystallites at the nanoscale with their
hierarchical organization at the µm scale, hence benefitting from the effective transduction
enabled by thin elementary nanostructures and the porous structure provided by the hi-
erarchical organization. This method has been exploited with both nanorods, nanosheets
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and nanoparticles as elementary building blocks. About the latter nanostructures, the
hierarchical organization ensures the preservation of an open, porous structure, even in
case of close packaging that may occur at the level of adjacent nanoparticles, which is often
indicated as a drawback affecting traditional thick films [46].

Considering nanoparticle assemblies, it is worth discussing those comparing different
hierarchical architectures. For example, a nearly three times improvement (from about 7
to about 20 to 100 ppm of ethanol) is reported for fibers against porous fibers, despite the
increase of the nanoparticle thickness from 15 nm to 23 nm, [121]. Wei et al. [83] compared
nanoparticles featuring the same dimeter (13 nm) organized in disordered networks and
porous spheres, finding an improvement of about 1.5–2 times. The most remarkable
example is probably the work published by Yoon et al. [52] who introduced a multimodal
porous structure in hierarchical spheres to enhance the capability to detect ethanol. More
in detail, the response to 5 ppm increased by about one order of magnitude, from 34 to
118 and 316, by changing the hierarchical structure from dense spheres to porous spheres
with bimodal porosity (3 nm and 100 nm) and finally to porous spheres with a trimodal
porosity (3, 20 and 100 nm). In this work, crystallites composing the dense spheres were
the smallest (t ≈ 6 nm), while nanoparticles of porous spheres were slightly larger (t ≈ 9
nm for both modal distributions). The trimodal pore distribution, spanning over the scales
of the micro-, meso- and macro-porosity was proposed as the key feature for the most
performing material [52], which emerge as a remarkable outlier from a statistical point of
view in Figure 7.

Methods to optimize the gas-diffusion process have also been developed with disor-
dered networks of nanoparticles. For example, Tan et al. used the target molecule itself
to imprint a target-tuned pore size [59]. Comparing 4 samples, the improvement is by a
factor of about 4, with the response to 50 ppm of ethanol increasing from 4 to 15, with
optimal pore size around 4.5 nm. The fine tuning of mesopores was also studied in [63],
observing the response increasing from 3 to 15 with increasing the pore size from 3 to 5.3
nm. An alternative approach was adopted by Tricoli and Pratsinis [60], who achieved
remarkable properties, emerging as outliers in Figure 7, by means of a disordered network
of thin nanoparticles (t ≈ 10 nm), in which the optimal exposure to the gas molecules
through the whole volume of the film is obtained by strongly reducing the film thickness
(≈100 nm). Though this configuration do not matches the structure of the traditional thick
film, which usually feature a thickness of exceeding the µm, it share with the thick film the
granular and porous morphology, with electrical transport occurring through the random
network of well-defined elementary units [14].

5.4. SnO2 as Base Material for Doped and Composite Nanostructures

Before to conclude, it is worth highlighting how the development of an efficient SnO2
layer is often used as the starting point to further tune the sensing properties of the base
SnO2 material through addition of dopants or the surface functionalization with suitable
nanostructures. The beneficial morphological features of the base SnO2 material are often
indicated among the key features underlying the remarkable performance observed also
with the doped and composite materials.

For example, this is the case of the Al-doped SnO2 layers studied by Suematsu et al. [16],
in which Al-doping was used to promote a lower cross-sensitivity to humidity, though
payed with a decreased response intensity with respect to the pristine SnO2 material.
Thanks to the outstanding sensitivity of the base material, which emerges as an outlier in
Figure 6, the doped material exhibited anyway a remarkable response intensity to ethanol.
Similarly, highly performing hollow spheres were further functionalized with Pt and Rh
nanoparticles to optimize the sensitivity of the final material to ethanol [113] and formalde-
hyde [118] respectively. In both cases, the sensing performances were ascribed to both the
positive effects of the metallic nanoclusters and the finely controlled structure of the base
SnO2 hollow spheres. From a statistical point of view, they both emerges as competing well
with outliers, as detailed in Section 4.1. Spherical assemblies of nanosheets were used as
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the base material to develop a SnO2 layer functionalized with Au nanoparticles that would
benefit from the catalytic Au activity and from the suitable structure achieved by combining
sheet-shaped crystallites and their hierarchical spherical assembly [109]. The response of
the base material (≈43 to 100 ppm) is quite close to the Q3 value of both the nanosheet and
the hierarchical spheres statistics. The reduced grain size (≈10 nm) of the SnO2 nanoparti-
cles was also indicated as a key feature, in combination with Ga2O3 functionalization, for
the enhanced sensitivity of the proposed composite material to ethanol [69]. In particular,
the response of the base SnO2 (≈2000 to 300 ppm) is comparable with the values reported
by the outlier-materials developed by Firooz et al. [96]. Hollow fibers were used as well.
This is the case, for example, of nanoparticles featuring such a hierarchical organization
that were further functionalized with graphene oxide [125] or doped with Yb [54]. In both
case, the response intensities (≈69 and ≈71 to 100 ppm of ethanol) of the base hollow
fibers lies in the top 25% of both nanoparticles and porous fiber statistics (Figure 6 and
Appendix A).

6. Conclusions

This paper reviews the results obtained in the last five years with chemiresistors based
on pure SnO2 against ethanol vapors in a dry air background. The aim is to identify the
central performance of these gas sensors and the presence of any remarkable outlier.

The statistical analysis is carried out grouping the materials according to their mor-
phology, both at the level of elementary building blocks and at the level of their eventual
hierarchical assembly.

What most emerges from the analysis are a few, individual materials outperforming
the rest of the dataset, while, in terms of central performance, there is no clear evidence
for any morphology working better than others. Overall, the general impression is that
disordered assemblies of nanoparticles (the traditional thick film), though in principle less
effective than other morphologies, offers anyway the possibility to tune the film features in
such a way to compete well with other morphologies. Indeed, even if the most sensitive
materials are based on disordered networks of nanorods [99], several outliers are based
on the thick film configuration [16,40,55,60,69,74,86,120]. Comparable sensing capabilities
have also been reported for a few other materials, namely the nanoparticles organized in
porous spheres assemblies with multimodal pore structure reported by Yoon et al. [52], the
spherical assemblies of nanorods prepared by Firooz et al. [96], the spherical assemblies of
nanosheets developed by Zhou et al. [110], the nanoparticles assembled in hollow spheres
reported in [46] and in [118].

The retrieved statistical results (outliers and medians) may represent a suitable refer-
ence for future work in ethanol sensing, concerning both SnO2 and other metal oxides, for
which SnO2 is often used a benchmarking material.

In this prospective, a comparison between the point of view obtained from these
statistical results and those reported in individual papers has been attempted, discussing
in particular the effects arising from the crystallite shape, their surface termination and
their hierarchical assembly. Wherever a sufficient statistics was available, both points of
view converged in highlighting the complex interplay between the different morphological
features and effects, in some cases in competition one another, and the evidence for the
broad range of potentialities offered by each morphology, including the traditional thick
film, to pursue optimal sensing capabilities. This is further confirmed by a survey on the
different SnO2 morphologies that have been used as the starting material to develop more
complex nanostructures (by doping of SnO2 or the use of heterostructures), whose perfor-
mances were ascribed to both the effective functionalization and the fine characteristics of
the base SnO2 material.
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Appendix A

The results of statistical analysis carried out on data shown in the Figure 6a,b boxplots
are reported respectively in Tables 2 and A1.

Table A1. Statistical analysis of responses Ggas/Gair to 100 ppm of ethanol grouped by crystallite
morphologies, shown in Figure 6a.

Nanorods Nanoparticles Nanosheets

Number of samples 24 51 11

Number of outliers 4 4 2

Ggas/Gair, Q1 10.1 11.0 23.0

Ggas/Gair, Q2 (median) 25.5 15.8 40.0

Ggas/Gair, Q3 51.5 40.8 43.8

Ggas/Gair, Whisker low 1.01 1.25 9.2

Ggas/Gair, Whisker up 94.0 75.0 44.0

Ggas/Gair, arithmetic mean 5479 182 45

Ggas/Gair, std 20,465 571 34

Ggas/Gair, skewness 4.4 3.6 1.4

p-value Kolmogorov-Smirnov test 0.0001 8 × 10−11 0.13

p-value median test, nanorods NaN 0.12 0.05

p-value median test, nanoparticles 0.12 NaN 0.02

p-value median test, nanosheets 0.05 0.02 NaN

Table 2. Statistical analysis of responses Ggas/Gair to 100 ppm of ethanol grouped by crystallite assembly shown in Figure 6b.

No Hierarchical
Assembly

Porous
Spheres Fibers Porous

Fibers Spheres

Number of samples 48 7 4 7 20

Number of outliers 7 0 0 1 3

Ggas/Gair, Q1 10.0 7.5 9.8 15.0 14.5

Ggas/Gair, Q2 (median) 18.8 14.0 12.8 20.4 26.0

Ggas/Gair, Q3 47.0 53.2 61.7 61.0 43.2

Ggas/Gair, Whisker low 1.0 1.9 7.6 6.5 2.3

Ggas/Gair, Whisker up 75.0 65.0 109.9 71.0 48.0

Ggas/Gair, arithmetic mean 2916 26 36 34 36

Ggas/Gair, std 14,559 27 50 27 32

Ggas/Gair, skewness 6.4 0.8 1.2 0.6 1.6

p-value Kolmogorov-Smirnov test 4 × 10−8 0.67 0.37 0.64 0.27

p-value median test, no hierarchical assembly NaN 0.72 0.30 0.65 0.29

p-value median test, porous spheres 0.72 NaN 0.30 0.59 0.23

p-value median test, fibers 0.30 0.30 NaN 0.30 0.27

p-value median test, porous fibers 0.65 0.59 0.30 NaN 0.92

p-value mediantest, spheres 0.29 0.23 0.27 0.92 NaN
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