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Abstract

Osteoporosis is characterized by increased bone loss and deterioration of bone microarchi-

tecture, which will lead to reduced bone strength and increased risk of fragility fractures. Pre-

vious studies have identified many genetic loci associated with osteoporosis, but functional

mechanisms underlying the associations have rarely been explored. In order to explore the

potential molecular functional mechanisms underlying the associations for osteoporosis, we

performed integrative analyses by using the publically available datasets and resources.

We searched 128 identified osteoporosis associated SNPs (P<10−6), and 8 SNPs exert cis-

regulation effects on 11 eQTL target genes. Among the 8 SNPs, 2 SNPs (RPL31 rs2278729

and LRP5 rs3736228) were confirmed to impact the expression of 3 genes (RPL31, CPT1A

and MTL5) that were differentially expressed between human subjects of high BMD group

and low BMD group. All of the functional evidence suggested the important functional mech-

anisms underlying the associations of the 2 SNPs (rs2278729 and rs3736228) and 3 genes

(RPL31, CPT1A and MTL5) with osteoporosis. This study may provide novel insights into

the functional mechanisms underlying the osteoporosis associated genetic variants, which

will help us to comprehend the potential mechanisms underlying the genetic association for

osteoporosis.

Introduction

Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and micro-

architectural deterioration of bone tissue, leading to decreased bone strength and increased the

risk of fracture[1]. Osteoporosis not only endangers the health and life quality of patients, but

also brings huge economic burden to the global health. More than 2 million Americans suffered

osteoporotic fractures in 2005 with treatment costs more than $17 billion [2]. Due to the aging

of the population in the United States, it is expected that osteoporotic fractures rates will reach

more than 3 million patients and $25.3 billion treatment costs over the next 25 years [3]. More

and more developing countries will experience the rapid increase in the elderly population,
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which will lead to a greater number of individuals suffering from osteoporosis and fractures. It

is expected that by 2050, up to half of the hip fracture patients will appear in Asia [4].

Genome-wide association studies (GWAS) have been successful at identifying a number of

promising genetic variants that are associated with osteoporosis and related traits. However,

the statistical association between OP and genetic variants were only established in the DNA

level at the present stage, functional relevance has rarely been explored. Such established asso-

ciations do not provide direct understanding into functions of significant candidate genes or

regulation of genes expressions that functionally establish a connection between OP phenotype

and gene code information.

Transcriptional regulation plays an important role in functional mechanisms underlying

genetic association. The change of binding affinity between variants and regulatory factors

altered by genetic variants may influence the transcription and/or translation of target pro-

teins. Numerous public gene expression datasets are available, which are invaluable and may

provide the functional data support for a better understanding of the association between vari-

ants and phenotype.

We combined the integrative analyses[5–8] (gene relationships among implicated loci,

expression quantitative trait loci (eQTL) analysis, differential gene expression analysis and

functional prediction analysis) results to research functional mechanisms for OP-associated

genetic variants by utilizing the available data sources and analyzing available GWAS results.

Performing the integrative analyses by using public data resources may strengthen our under-

standings in the molecular genetic mechanisms underlying complex diseases.

Materials and methods

Selection of OP-associated SNPs

Phenotype-Genotype Integrator (PheGenI) (www.ncbi.nlm.nih.gov/gap/PheGenI/) is a bioin-

formatics online tool that can provide robust view and download analystic data (including

SNPs, genes and association results) for published studies[9]. Using phenotype “BMD” and

“osteoporosis”, we identified 128 interesting SNPs (S1 Table) with P value<10−6 by searching

PheGenI[10–15].

Gene Relationship Across Implicated Loci (GRAIL)

Under normal circumstances, one disease-associated SNP has one or more predisposing genes

or locus in the region near this SNP. In order to carry out the further functional studies, select-

ing genes located at the two sides of the associated SNP as potential candidate genes is a con-

ventional method to identify the candidate genes[5]. With the purpose of discover more

candidate genes, we performed GRAIL analysis (http://www.broadinstitute.org/mpg/grail/),

which is an online statistical method that examining relationships automatically between seed

regions and candidate genes were selected through PubMed abstracts to prioritizes the best

candidate gene[16]. The seed regions are SNPs by searching PheGenI (250~500 kb flanking

regions of the SNP). GRAIL analysis can select new potential candidate genes near OP-associ-

ated SNPs automatically[6].

eQTL analysis

Variation occurs at the level of DNA may lead to the changes of genes expression, which subse-

quently account for a significant proportion of the phenotypic variance[6] (e.g. BMD) and sus-

ceptibility to OP. Therefore, eQTL analysis in specific tissues or cells is a favorable tool to

identify candidate SNPs[17,18] and it is very important to study the functional molecular
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mechanism of the association by detecting whether the OP-associated SNP affects the levels of

candidate gene expression. Some previous studies have found quite a lot of eQTLs in a variety

of cells and tissues[19–23], we can search those databases quickly by eQTL Browser (http://

eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/). We used this database to detect the eQTL effects of

the identified OP-associated SNPs in monocytes and lymphoblastoid cell lines (LCLs). In

humans vivo, the favorable working cell model for studying gene/protein expression patterns

and their regulation mechanisms with reference to osteoporosis risk is monocyte[24,25].

Monocytes as the precursors of osteoclasts[26], related to osteoclast differentiation, activation,

and apoptosis[27]. The expression level of genes are very similar in both human osteoblasts

and LCLs and are enriched in pathways that are important in cellular growth and survival[28–

31].

Differential expression analysis

Three previous in vivo genome wide gene expression studies in our group using Human

Genome U133 Plus 2.0 or U133A Arrays were performed to identify genes differentially

expressed in monocytes or B cells between low and high BMD women., and we uploaded

those data to GEO (gene expression omnibus) Datasets. The experimental procedures and

data analysis were detailed in the original studies, and the GSE numbers are: GSE7158,

GSE13850, GSE2208 [32–34]. The differential expression analysis (P<0.05) of for the identi-

fied eQTL genes between low and high BMD were detected by using t-tests.

Functional prediction

For the identified eQTL SNPs, we used two online tools to predict the potential functions.

F-SNP is a database to provide the latest information about already confirmed and presumed

potential functional effect of SNPs at the multiple level, such as splicing, transcriptional, trans-

lational, and post-translational(http://compbio.cs.queensu.ca/F-SNP/). RegulomeDB[35] is an

online public data resource, by integrating multiple data resources (such as high-throughput

and experimental data) to perform predictions and annotations and then to identify potential

functional variants (http://regulome.stanford.edu/). Different regulomeDB score (1–6) is rep-

resent the different degree for functional variant as transcription factor binding site. Score 1

indicates the strongest evidence for a SNP being located in a functional region.

Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) is an online tool to

predict and analyze the secondary and tertiary structure and function of proteins[36]. Users

can submit a number of sequences of amino acid, Phyre2 will predict the secondary and ter-

tiary structure of their models automatically.

Results

We found 128 OP-associated SNPs (S1 Table) and 157 associated genes by searching the Phe-

GenI. We detected 88 genes for the 128 SNPs by GRAIL analysis: 31 genes can also be detected

by PheGenI and 57 newly detected genes were. As shown in S1 Table, the columns “Gene 1”

and “Gene 2” listed 157 unique genes, which were physically located at two sides of the corre-

sponding 128 SNPs, and the “implicated genes” listed 88 unique genes from GRAIL analysis.

eQTL analysis[37–39] is an effective method to detect the functional mechanism underlying

association by detecting the association between the genetic variants at DNA level and the vari-

ations in mRNA expression of genes near SNPs. Among the 128 unique SNPs, we found that 8

SNPs have potential eQTL effects on a total of eleven eQTL target genes (Table 1) in LCLS or

monocytes[28–30] which are two type of cells closely related with bone metabolism and all of

them act as cis-effect regulators.

Functional mechanisms for associations
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Then, the differential expression analyses for the 11 identified eQTL target genes from the

above 8 SNPs with potential eQTL effects in monocytes and B Lymphocytes was performed

(Table 2). B cells are known regulators of bone metabolism, particularly for osteoclastogenesis

[40,41]. We used the t-tests to compare the mRNA expression levels of the 11 eQTL target

genes between high-BMD subjects and low-BMD subjects. The gene ribosomal protein L31

(RPL31) showed significantly differential expressions in GSE7158 and GSE13850 cell samples,

with p value<0.05(GSE7158: P = 4.73E-02, GSE13850: P = 5.42E-03). The genes carnitine pal-

mitoyltransferase 1A (CPT1A) and metallothionein-like 5 (MTL5) showed significantly differ-

ential expressions in GSE13850 cell sample(CPT1A:P = 1.56E-02, MTL5: P = 4.83E-02)

(Table 2). The three genes were upregulated in the high bone mass group.

We used the Regulome DB to investigate whether the 8 eQTL SNPs are functional variants

with putative regulation effects. As shown in Table 1, three SNPs (RPL31 rs2278729, CREB3L1
rs1007738 and LRP5 rs3736228), scored 1f, were annotated as the most credible functional var-

iants with potential regulation effects and likely accounted for allelic-specific expressions of

the 5 eQTL target genes (RPL31, CPT1A,MTL5, MTCH2, PHF21A).

Using the F-SNP program, we found that SNP rs3736228 located in nonsynonymous region

and alteration of allele C to T caused a missense mutation of LRP5 protein with amino acid res-

idue alteration from Alanine (A) to Valine (V).We used 101 amino acids (50 amino acids

before and 50 after the missense mutation of rs3736228) to predict the secondary structure of

protein. We found that the amino acid residue alteration from Alanine (A) to Valine (V)

caused loss of alpha helix and gain of beta strand before the missense mutation (Fig 1). We

speculate that this SNP may influence osteoporosis risk through changing the amino acid

sequence and secondary structure of the LRP5 protein.

Discussion

In this study, we performed integrative analyses to explore functional mechanisms underlying

the associations for OP by using publically available datasets. A total of 8 SNPs (rs2278729,

rs13182402, rs227584, rs228769, rs1007738, rs3736228, rs1038304, rs884205) acting as cis-

effect regulators on the 11 corresponding eQTL genes (RPL31, ALDH7A1, C17orf53,TMUB2,

Table 2. Differential expression analysis for eQTL target genes in OP-related cells groups.

Sample S1 S2 S3

GSE NO.1 GSE7158 GSE2208 GSE13850

Disease osteoporosis osteoporosis osteoporosis

Target Cell Circulating Monocytes Circulating Monocytes Circulating B Lymphocytes

Sample size2 12:14 9:10 10:10

Platform Affymetrix Human Genome

U133 Plus 2.0

Affymetrix Human Genome

U133A Array

Affymetrix Human Genome

U133A Array

Gene Sample Probe ID4(S1) P-value Probe ID4(S2) P-value Probe ID4(S3) P-value

RPL31 241017_at 4.73E-02 200962_at 1.18E-01 200962_at 5.42E-03

CPT1A 203633_at 1.31E-01 203633_at 4.55E-01 210688_s_at 1.56E-02

MTL5 238246_at 1.21E-01 N/A3 N/A3 219786_at 4.83E-02

Note
1GSE NO: Gene Expression Omnibus Number (GSE7158[26], GSE2208[27], GSE13850[28]).
2Sample size: Low BMD:High BMD.
3N/A: Not available.
4We only listed the most significant expression results of probes if one gene has multiple detected probes.

https://doi.org/10.1371/journal.pone.0174808.t002
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C17orf65,MTCH2,PHF21A, CPT1A,MTL5, C6orf97,ENSG0000014)were identified. Among

these SNPs, two eQTL SNPs (RPL31 rs2278729 and LRP5 rs3736228) likely accounted for alle-

lic-specific expressions of the 3 eQTL target genes (CPT1A,MTL5 and RPL31) which showed

significantly differential expression in monocytes and LCLs.

Integrative analyses by utilizing the public data resources can provide new understandings

into the molecular genetic mechanisms of human diseases. In genetics, the genetic information

carried on DNA is transferred to RNA through transcription and then translated into protein

molecules[5]. The functional mechanisms for OP-associated genetic variants at the DNA level

may be that genetic variants lead to variation of gene expression, and then cause the variation

of susceptibility to OP[5]. Thus, integrating abundant evidences from multiple levels can help

us to understand potential functional mechanism of genes and their contribution to variation

in susceptibility to OP. We draw out the robust genetic associations between 2 SNPs of the cor-

responding genes (CPT1A,MTL5, CREB3L1 and RPL31) and OP.

The previous study showed that rs3736228 in the LRP5 gene was strongly associated with

the BMD[42]. Through the eQTL analysis, the SNP rs3736228 may serve as a cis-effect regula-

tor of genes CPT1A and MTL5[19]. CPT1A is a key regulator to facilitate the transfer of long-

chain fatty acids across the mitochondrial membrane for β-oxidation in mammals[43]. MTL5

Fig 1. Predicted secondary structure of protein carrying either (A) rs3736228-C allele or (B) rs3736228-T

allele. A:before missense mutation; B: after missense mutation. NOTE: The arrows point the position of the

missense mutation. The 50 amino acids before and after missense mutations, which are: cdgfpecddqsdeeg
cpvcsaaqfpcargqcvdlrlrcdgeadcqdrsdeadcdaiclpnqfrcasgqcvlikqqcdsfpdcidgsdelmceitkpp
sdds and cdgfpecddqsdeegcpvcsaaqfpcargqcvdlrlrcdgeadcqdrsdevdcdaiclpnqfrcasgqcvlikq
qcdsfpdcidgsdelmceitkppsdds, respectively.

https://doi.org/10.1371/journal.pone.0174808.g001
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may play a central role in the regulation of cell growth and differentiation[44]. Previous studies

showed CPT1A and MTL5[45]genes were associated with lumbar spine BMD and CPT1A
located in BIOCARTA_LEPTIN_PATHWAY which is important in the biology and etiology

of osteoporosis[12]. In this study, we found the gene CPT1A and MTL5 in B cells were signifi-

cantly differential expressed between high and low BMD group (P<0.05). SNP rs3736228 acts

as potential eQTL cis-effect on CPT1A and and MTL5. Therefore, we speculate that rs3736228

plays important roles in the pathological mechanism of osteoporosis by regulating differential

mRNA transcriptions of CPT1A and MTL5. On the other hand, since rs3736228 caused a mis-

sense mutation for LRP5 protein, LRP5 rs3736228 may influence and even induce osteoporosis

through changing the amino acid sequence and secondary structure of LRP5 protein. Our

finding strongly suggested that rs3736228 was a causal variant functioning either by regulating

expression of CPT1A and MTL5 and/or by influencing function of LRP5 protein. Further func-

tional study on the molecular mechanism of CPT1A,MTL5 gene and LRP5 rs3736228 may

help us comprehend the association between osteoporosis and candidate gene, understand the

pathogenesis of osteoporosis and the genetic mechanism.

RPL31, belongs to the L31E family of ribosomal proteins. The encoded protein is one of the

members of the ribosomal 60S subunit. Ribosomal proteins have a lot of functions, such as

participation in regulation of gene transcription and translation, involved in DNA repair, reg-

ulation of cell proliferation, differentiation, apoptosis and so on. In addition, ribosomal pro-

teins may play an important role in tumor occurrence, development, metastasis and tumor

suppression[46,47]. Allele A of rs2278729 was previously reported to be associated with

smaller femoral neck-shaft angle in men and lower RPL31 expression in lymphoc-ytes and

osteoblasts. In this integrative study, we confirmed that SNP rs2278729 acts as cis-effect regu-

lators for RPL31. We speculate that rs2278729 can regulate differential expression of protein

by regulating differential mRNA transcriptions of gene RPL31, therefore, rs2278729 plays

important roles in the variation of susceptibility to OP.

We identified two SNPs having combined OP-associated functional evidence among the

searched 128 OP-associated SNPs. Failure to find functional evidence for some promising

functional SNPs in BMD hot loci, like RANKL-OPG, ESR and LRP5 in this study does not

exclude the importance of the associations of the BMD hot loci with OP. Instead, those associ-

ated SNPs may be involved in pathogenesis of OP by other mechanisms (such as epigenetic

regulation or protein translation) instead of directly regulating target gene expression. Small

effect size of the SNPs and small sample size will lead to limited statistical power, which is a

reason for the lack of association between OP-associated SNPs and mRNA expression. Further

functional studies are required to understand the functional association between genetic vari-

ants and OP, which may provide new insights into mechanisms underlying the association

detected at DNA level.

There are two limitations to this study. First, although we identified some functional evi-

dence for the associations between 2 SNPs and OP, it is still needed to further study the causal

variants with potential functional effects. Second, although we used two methods to select the

candidate genes, there is still another possibilities that other genes near the associated-SNPs

are also directly or indirectly involved in the association around the SNPs[5]. In short, this is

not a perfect method by public data sources to research the functional mechanisms of diseases,

but to some degree, this is a simple, complementary, and effective way to reveal the functional

link underlying the association between SNPs and diseases.

In summary, all of the functional analysis results we found in this study demonstrated the

significance of the 2 candidate OP-associated SNPs (rs2278729 and rs3736228). We confirmed

that the 2 SNPs have cis-regulation effects on the expression of 3 genes (RPL31,CPT1A and
MTL5), at the same time, these 3 genes were differentially expressed between high BMD group
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and low BMD group. The above evidence provides some important clues for us to perform fur-

ther study on the functional molecular mechanism between OP and OP-associated genetic

variants. Performing the integrative analyses by utilizing the public data resources may provide

a new perspective into the functional molecular genetic mechanisms underlying human com-

plex diseases.
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