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ABSTRACT

Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated 
phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in 
many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and opti-
mization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and low-
er operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field 
has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more 
accessible, because high performance hardware and software are easily available with advances in computer science. All CFD 
processes contain three main components to provide useful information, such as pre-processing, solving mathematical equa-
tions, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate re-
sults. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used 
for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and 
pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, 
heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hard-
ware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to de-
liver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations 
between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to 
understand the pathophysiology of the development and progression of disease and for establishing and creating treatment 
modalities in the cardiovascular field. (Korean Circ J 2011;41:423-430)
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What is Computational Fluid Dynamics?

Computational fluid dynamics (CFD) is a mechanical en-
gineering field for comprehensively analyzing fluid flow, 
heat transfer, and associated phenomena with the use of com-
puter-based simulation. The technique is very powerful and 
spans a wide range of areas. In the beginning, CFD was pri-
marily limited to high-technology engineering areas-, but now 

it is a widely adopted methodology for solving complex pro-
blems in many modern engineering fields. CFD is becoming 
a vital component in the design of industrial products and 
systems. Examples are aerodynamics and hydrodynamics of 
vehicles, power plants including turbines, electronic engineer-
ing, chemical engineering, external and internal environmen-
tal architectural design, marine and environmental engineer-
ing, hydrology, meteorology, and biomedical engineering.1)2) 
The merit of CFD is developing new and improved devices 
and system designs, and optimization is conducted on exist-
ing equipment through computational simulations resulting 
in enhanced efficiency and lower operating costs. However, 
CFD is still emerging in the biomedical field. The main rea-
son why CFD in the biomedical field has lagged behind is the 
tremendous complexity of human anatomy and human body 
fluid behavior. Recently, biomedical research with CFD is 
more accessible because high performance hardware and soft-
ware are easily available with advances in computer science.1)
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The study of fluid mechanics includes the study of fluids 
either in motion (fluid in dynamic mode) or at rest (fluid in 
stationary mode). CFD is usually dedicated to fluids that are 
in motion, and how the fluid flow behavior influences proces-
ses. Additionally, the physical characteristics of fluid motion 
can usually be described through fundamental mathemati-
cal equations, usually in partial differential form, which gov-
ern the process of interest and are often called governing equ-
ations. These mathematical equations are solved by being 
converted by computer scientists using high-level computer 
programming languages. The computations reflect the study 
of fluid flow through numerical simulations, which involves 
employing programs performed on high-speed digital com-
puters to attain numerical solutions.2)

Using CFD, medical researchers can gain an increased kn-
owledge of how body fluids and system components are ex-
pected to perform, to make the required improvements for 
bio-fluid physiology studies, and to develop medical devices. 
CFD offers chances for simulation before a real commitment 
is undertaken to execute any medical design alteration and 
may provide the correct direction to develop medical inter-
ventions. 

Computational Fluid  
Dynamics Components 

Computational fluid dynamics is usually performed with 
use of commercial CFD codes. CFD codes are structured by 
numerical algorithms that consider fluid-flow problems. All 
CFD codes must contain three main components to provide 
useful information; 1) a pre-processor, 2) a solver, and 3) a 
post-processor.1) 

Pre-processor
Pre-processing consists of inputting a fluid flow problem 

into a CFD program. This includes defining the geometry of 
the region of interest, grid or mesh generation, selection of the 
physical and chemical phenomena that need to be modeled, 
a definition of fluid properties, and specification of appropri-
ate boundary conditions at the inlet and outlet. The larger the 
number of cell grids the better the solution accuracy. The ac-
curacy of a solution and the required time for computational 
problem solving are dependent on grid fineness. Most of the 
time spent is devoted to this process. In cardiovascular sys-
tems, computational imaging tools may confer the grid gen-
eration information, but limitations are that the resolution 
of current imaging tools is still low and geometry varies ac-
cording to the cardiac cycle. Blood acts as a non-Newtonian 
fluid, because blood has varying viscosities according to its 
shear rate. Fig. 1 shows the correlation between blood vis-
cosity and shear rate.3-5) Thus, the correct viscosity model us-
ing a mathematical equation should be selected according to 

the range of shear rates. The energy conservation law of fluid 
motion is an important consideration for basic concepts. Bo-
undary conditions, such as blood pressure, blood flow velo-
city, and temperature are readily available from invasive and 
non-invasive measurements based on the region of interest. 
Another essential consideration is that these boundary con-
ditions also vary according to the cardiac cycle and the uni-
que conditions of coronary circulation. Fig. 2 shows a sample 
of these pressure and velocity profiles during cardiac cycles 
for modeling and CFD.6) 

Solver 
Numerical solution techniques are available such as finite 

difference, finite element, finite volume, and spectral methods. 
Each has a distinct numerical technique, but the basis of the 
solver is to perform an approximation of unknown flow vari-
ables by means of simple functions, discretisation by substi-
tution of the approximations into the governing flow, and an 
algebraic solution. If the user uses a solution technique, the 
time spent depends upon the calculating capacity of the com-
puter. Usually, the finite volume method is adopted for cardio-
vascular systems. 

Post-processor
The object of this process is to visualize the computational 

results. Many visualization tools have been developed, includ-
ing domain geometry and grid display, vector plots, line and 
shaded contour plots, two-dimensional and three-dimensio-
nal surface plots, particle tracking, and color postscript out-
puts. After this process, the researcher can easily understand 
the simulation results. For example, the changes in blood 
flow profiles, pressure distribution, wall shear stress (WSS), 
oscillating shear index (OSI), and shear rate can be visual-

Fig. 1. Viscosity of Newtonian and non-Newtonian fluids accord-
ing to shear rate.
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ized using color rendering techniques. Furthermore, a cyclic 
motion view can be obtained during cardiac cycles.

Applications in the Cardiovascular  
System

Recently, medical researchers have used simulation tools 
to assist in predicting the behavior of circulatory blood flow 
inside the human body. Computational simulations provide 
invaluable information that is extremely difficult to obtain 
experimentally and is one of the many CFD sample applica-
tions in the biomedical area in which blood flow through an 
abnormal artery can be predicted. CFD analysis is increas-
ingly performed to study fluid phenomena inside the human 
vascular system. Medical simulations of circulatory function 
offer many benefits. They can lower the chances of postopera-
tive complications, assist in developing better surgical pro-
cedures, and deliver a good understanding of biological pro-
cesses, as well as more efficient and less destructive medical 
equipment such as blood pumps. Furthermore, medical ap-
plications using CFD have expanded not only into the dis-
eased clinical situation, but also into health life supportives, 
such as sport medicine and rehabilitation. Several examples 
are discussed as follows.

Coronary artery disease: atherosclerosis
Although many systemic risk factors predispose develop-

ment of atherosclerosis, it preferentially affects certain regions 
of circulation, suggesting that lesion-prone areas may at least 
in part be due to biomechanically related factors. Further-
more, luminal hemodynamics, such as flow velocity, pres-
sure changes, and WSS have been suggested as other risk 
factors for developing coronary atherosclerosis.7-9) 

Information regarding the spatial distribution of intralu-
minal hemodynamics of the coronary vascular tree are avail-
able using CFD.10-14) Fig. 3 shows an example of performing 
CFD from pre-processing to post-processing. At first, a mesh 
or grid of region of interest is generated from the coronary 

extract images of computerized tomogram. The researchers 
might use any three dimensional medical images. The Digital 
Imaging and Communications in Medicine (DICOM) files 
should be converted into a file which can be used in a soft ware 
analyzing three dimensional vector information. All the dig-
italized data, such as velocity and pressure information ac-
cording as cardiac cycle as a boundary condition were se-
lected to put into an appropriate algebraic solution. And, the 
next step is mathematic solving process by the computer. At 
this process, mechanical engineers and medical scientists sh-
ould discuss about all the clinical situations for selecting an 
appropriate viscosity models due to non-Newtonian fluid 
analysis, governing equations. Final step is visualization pro-
cess for user. There are so many representative processing 
results, such as pressure profiles, velocity profiles, particle 
tracing, time-averaged wall shear stress (TAWSS), OSI, etc. 
This figure shows high TAWSS, OSI at bifurcation. TAWSS 
shows higher at bifurcation apex, but OSI shows higher at 
lateral side of side branch.

Fig. 4 shows an final example of flow velocity and WSS pro-
files in a artificial coronary artery model.9) Low WSS and 
low flow velocity are formed at the outer wall of a curved ar-
tery at the bifurcation with the inner wall. Spatial fluctua-
tions in flow-velocity and recirculation occur at the curved 
outer wall of the left anterior descending coronary artery 
and are due to differences in flow-velocity and shear stress, 
particularly during the declaration phase of pulsatile flow. 
These results suggest that hemorheologic properties may be 
a part of the atherogenic process in the bifurcated and 
curved areas. 

This kind of study might be applied to a modified coro-
nary artery geometry model or varying viscosity models.13)14) 
Furthermore, the effect of percutaneous coronary interven-
tion15)16) and coronary bypass grafts17)18) can be simulated and 
suggest the best method of intervention. CFD may be useful 
to understand the biomechanical pathophysiology of athero-
sclerosis and its complications. 

Fig. 2. Pressure and velocity of the coronary artery and aorta as a boundary condition in the bifurcation model (Lee et al.). A: left coronary 
artery. B: abdominal aorta.
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Congenital heart disease; Fontan circulation
Fontan circulation, first described by Fontan and Baudet,19) 

is characterized by the absence of a right ventricle and func-
tions under unique hemodynamics. The key targets of geo-
metric correction of Fontan procedure are the separation of 
systemic and pulmonary venous return and establishing the 
pathway of a passive, direct, and unobstructed connection be-
tween the systemic venous return and the pulmonary artery 
(PA) for treating single ventricle physiology, as one example 

of congenital heart disease. 
While the Fontan procedure is a classic treatment proce-

dure for a functional single ventricle in patients with congeni-
tal heart diseases, it has a potentially harmful effect for nor-
mal circulation. The absence of a right ventricle induces a pres-
sure elevation in the venous system. The basic pathophysio-
logical mechanisms originate from increased central venous 
pressure and the superior vena cava (SVC) and inferior vena 
cava (IVC). 

Fig. 3. An example of CFD in left coronary artery. Finite volume method, adapting Rhie-Chow algorithm, computed with ANSYS CFX pack-
age program (Anflux, Seoul, Korea) in SUN SPARC station 20 (Sun Korea Co., Seoul, Korea) were used. At first, a mesh or grid of region of 
interest is generated from the coronary extract images of computerized tomogram. All the digitalized data velocity, pressure information ac-
cording as cardiac cycle as a boundary condition was selected to put into an appropriate algebraic solution. And, the next step is mathe-
matic solving process by the computer. At this process, mechanical engineers and medical scientists should discuss about all the clinical 
situations for selecting an appropriate algebraic solution. Final step is visualization process for user. There are so many representative pro-
cessing results, such as pressure profiles, velocity profiles, particle tracing, time-averaged wall shear stress (TAWSS), oscillating shear in-
dex (OSI), etc. This figure shows high TAWSS, OSI at bifurcation.

1. Preprocessing

2. Soving with an appropriate algebraic solution with computer; an example.
Carreau model of following equation for relationship between shear rate and viscosity 

The following continuity equation and Navier-Stokes equation were used as governing equations for the numerical analysis, where ρ, u, p, 
η and i, j were the density, velocity vector, pressure, apparent viscosity, and tensor indexes, respectively.

3. Post-processing; time averaged wall shear stress and oscillating shear index
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Elevated central venous pressure is poorly tolerated over 
time, particularly in the IVC, and has deleterious effects on 
liver and splanchnic circulation. Protein-losing enteropathy 
and plastic bronchitis20) characterize the worst outcomes. At 
the liver level, elevated central venous pressure may induce 
complex liver dysfunction and stimulate angiogenesis fac-
tors21) favoring a venovenous anastomosis, pulmonary ve-
nous fistula, and, potentially, aortopulmonary collateral an-
astomoses. At the lung level, the upper PA branches are po-
orly or not perfused, and the lymphatic circulation is globally 
impaired.22) The single ventricle faces a significant increase 
in total systemic resistance because it needs to “push” against 
not only the usual systemic resistance but also lung resistance. 
As a consequence, the systemic ventricle becomes hypertro-
phied, with elevated end-diastolic pressure, which diminishes 
diastolic performance.23)24) Several studies have focused on 
solving these problems.25-29) 

Computational fluid dynamics was performed after artifi-
cially modeling the Fontan circulation using medical infor-
mation. Fig. 5 shows the velocity profiles at maximal flow 
among cardiac cycle time periods. Significantly increased 
flows were driven from the SVC, particularly during inspira-
tion, indicating that unmixed blood flow to the PA and blood 
flow in the IVC may be more congested during inspiration 
than during expiration. During standing and inspiration, blo-
od flow profiles aggravate the stagnation of systemic venous 

blood flow return and failure of the blood mixing function, 
suggesting that an artificial pumping device is essential for 
correcting Fontan circulation failure.

Fig. 4. The velocity vectors (upper) and distribution of wall shear stress (lower) in the coronary artery model. Prominent abrupt changes in 
velocity and wall shear stress at the outer wall around the branched site are noted during the deceleration period.

(a) Acceleration period (b) Deceleration period

Fig. 5. Maximal velocity profile at inspiration (A) and expiration (B) 
in the supine position and inspiration (C) and expiration (D) in the 
standing position at an model of Fontan circulation. Tube structures 
represent cross-shaped reconstructed model of superior vena 
cava, inferior vena cava, right pulmonary artery, and left pulmonary 
artery at upper, lower, left and right tube.
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Work of the heart
This is another example of using CFD as a diagnositic tool 

for evaluating heart function.
Work of the heart (WHO) is calculated using a pressure-

volume curve. Some new indirect diagnostic tools are avail-
able to evaluate the WOH. The modified Windkessel model 
was used with blood viscosity models to develop a mathemati-
cal model for estimating WOH utilizing the pulse waves be-
tween two points of a vessel. The human arterial system is a 
network of vessels that converts intermittent flow of the he-
art into steady flow through the capillaries and venous system. 
The modified Windkessel model is a type of lumped param-
eter model that allows simulation of blood flow in the entire 
circulatory system as an electrical circuit (Fig. 6). 

In this figure, Qin, Q1, and Q1 are defined as the flow rate 
exiting from the left ventricle during systole, the flow rate pass-
ing through the peripheral system, and the flow rate passing 
through the distal system, respectively. Similarly, p1 and p2 are 
the pressures measured at the proximal and distal locations, 
representatives of central and peripheral blood pressure, re-
spectively. Moreover, C1 and C2 are proximal and distal 
compliances, where L corresponds to the inertia of blood (L= 
0.017 mmHgs2/mL). Flow rate in the left ventricle can be cal-
culated with the mathematical fluid analysis shown in Fig. 7 
by measuring blood pressure curves at two points in the pe-
ripheral arteries (brachial and radial arteries).30) The blood 
viscosity model is essential to solve the problem of an incre-
ased burden of work on the heart, so further study will be ne-
eded to verify which viscosity model results are similar com-
pared to in vivo results. However, this type of study might 

suggest the possibility of developing non-invasive devices 
for measuring WHO.31)32)

Other cardiovascular systems
Physiology and diseases of the aorta, carotid, and cerebral 

arteries are also studied with CFD. CFD is being increasing-
ly employed to understand carotid stenosis and its biological 
properties according to geometric risks,33-36) or via virtual pro-
totyping to recommend the best design for surgical recon-
struction during a carotid endarterectomy,37) and conjunctio-
nal research magnetic resonance images.37-42) Furthermore, 
CFD is being used to better understand blood flow through 
an aneurysm in the abdominal artery, and the development 
and progression of aortic dissection.43-47) In intracranial cere-
bral artery disease, CFD is also used to identify the geometric 
and hemodynamic risks for rupture of a cerebral aneurysm 
and for stent design for a cerebral aneurysm.48-52) 

Computational Fluid Dynamics  
Advantages and Limitations 

There are many advantages when considering CFD. Theo-
retical development in the computational sciences focuses on 
the construction and solution of governing equations and the 
study of various approximations to these equations. CFD com-
plements experimental and analytical approaches by provid-
ing an alternative cost-effective means of simulating real fluid 
flow, particularly in human body fluids. CFD has the capaci-
ty to simulate flow conditions that are not reproducible dur-
ing experimental tests found in geophysical and biological 
fluid dynamics, such as scenarios that are too huge, too re-
mote, or too small to be simulated experimentally. Further-
more, CFD provides rather detailed visual and comprehen-
sive information when compared to analytical and experi-
mental fluid dynamics.

Although CFD is advantageous, it cannot easily replace ex-
perimental testing as a method to gather information for 

Fig. 6. Modified Windkessel model for the human arterial system 
(Qin, Q1, and Q1 are defined as the flow rate exiting from the left 
ventricle during systole, the flow rate passing through the periph-
eral system, and the flow rate passing through the distal system, 
respectively. Similarly, p1 and p2 are the pressures measured at 
the proximal and distal locations, respectively. C1 and C2 are prox-
imal and distal compliances where L corresponds to the inertia of 
blood.

C1: Proximal compliance

P1: Proximal blood pressure
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Fig. 7. Proximal (Q1) and distal (Q2) flow rates in the left ventricle 
calculated with the Herschel-Bulkley equation.
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design purposes. Despite its many advantages, the research-
er must consider the inherent limitations of applying CFD. 
Numerical errors occur during computations; therefore, there 
will be differences between the computed results and reality. 
Visualizing numerical solutions using vectors, contours, or 
animated movies of unsteady flow are the most effective ways 
to interpret the huge amount of data generated from nume-
rical calculations. Wonderfully bright color pictures may pro-
vide a sense of realism to the actual fluid mechanics inside a 
flow system, but they are worthless if they are not quantita-
tively correct. Thus, numerical results must always be thor-
oughly examined before they are believed; therefore, a CFD 
user needs to learn how to properly analyze and make criti-
cal judgments about the computed results. 

Another important comment is collaboration between me-
chanical engineers and medical scientists. Not any one de-
partment can deliver a result. Each discipline should provide 
feedback on the results at each step.

 
Final Remarks

Rapid advances of many industrial applications in compu-
ter science are outstanding, which requires changes in CFD. 
This changing situation is partly attributed to the rapid evo-
lution of CFD techniques and models. Excellent creative mo-
dels for simulating complex fluid mechanics problems in the 
human body and therapeutic models are now being progres-
sively applied, particularly with the availability of commercial 
CFD computer programs. The increasing use of these pro-
grams in medicine might reveal how demanding the practi-
cal problems analyzed by CFD are. With decreasing hardware 
costs and rapid computing times, researchers and medical sci-
entists may be relying increasingly on this reliable CFD tool 
to deliver accurate results. However, a realistic multidiscipli-
nary approach is essential to accomplish these tasks. Indefi-
nite collaborations between mechanical engineers and clini-
cal and medical scientists are essential. CFD may be an im-
portant methodology for understanding the pathophysio-
logy of developing and progressing cardiovascular disease 
and for establishing creative treatment modalities in the car-
diovascular field. 
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