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Introduction
Colorectal cancer (CRC) is a major public health 
problem, as the second leading cause of cancer-
related death in the United States and the fourth 
leading cause of cancer-related death world-
wide.1,2 Approximately 85% of CRC have been 
suggested to develop from adenomas through 
genetic and epigenetic changes, and it has been 

reported that endoscopic resection of colorectal 
polyps (CP) reduces the incidence of CRC.3,4

Pathologically, CP are classified into adenoma, 
hyperplastic polyp, sessile serrated adenoma/
polyp (SSAP), and other polyps, such as juvenile 
and inflammation polyp. The risk of developing 
CRC is different for each classification.3,5 It is 
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Abstract
Background: Recently the American Society for Gastrointestinal Endoscopy addressed the 
‘resect and discard’ strategy, determining that accurate in vivo differentiation of colorectal 
polyps (CP) is necessary. Previous studies have suggested a promising application of artificial 
intelligence (AI), using deep learning in object recognition. Therefore, we aimed to construct 
an AI system that can accurately detect and classify CP using stored still images during 
colonoscopy.
Methods: We used a deep convolutional neural network (CNN) architecture called Single Shot 
MultiBox Detector. We trained the CNN using 16,418 images from 4752 CPs and 4013 images 
of normal colorectums, and subsequently validated the performance of the trained CNN in 
7077 colonoscopy images, including 1172 CP images from 309 various types of CP. Diagnostic 
speed and yields for the detection and classification of CP were evaluated as a measure of 
performance of the trained CNN.
Results: The processing time of the CNN was 20 ms per frame. The trained CNN detected 
1246 CP with a sensitivity of 92% and a positive predictive value (PPV) of 86%. The sensitivity 
and PPV were 90% and 83%, respectively, for the white light images, and 97% and 98% for the 
narrow band images. Among the correctly detected polyps, 83% of the CP were accurately 
classified through images. Furthermore, 97% of adenomas were precisely identified under the 
white light imaging.
Conclusions: Our CNN showed promise in being able to detect and classify CP through 
endoscopic images, highlighting its high potential for future application as an AI-based CP 
diagnosis support system for colonoscopy.
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suggested that adenomas and SSAP have a similar 
relatively high risk for CRC development, whereas 
hyperplastic polyps rarely develop CRC.5,6

Recently the American Society for Gastrointestinal 
Endoscopy commissioned a Preservation and 
Incorporation of Valuable Endoscopic Innovation 
(PIVI) statement to address the ‘resect and dis-
card’ strategy.7,8 This strategy indicates that phy-
sicians can omit histopathological examination of 
resected polyps ⩽5 mm when an optical in vivo 
diagnosis of the polyps is done with high confi-
dence.8 PIVI also states that hyperplastic polyps 
in the rectosigmoid colon can be left in place 
without sampling or endoscopic resection owing 
to its nonmalignant nature.8 Therefore, accurate 
in vivo differentiation of CP leads to the reduc-
tion of unnecessary endoscopic resections, which 
may, in turn, decrease complications, physician 
burden, and medical costs.9,10

Recent studies have suggested a promising role of 
artificial intelligence (AI) using a deep learning 
method in various fields, including speech recog-
nition, visual object recognition, and object detec-
tion.11–13 Deep learning algorithms have shown to 
exceed human performance in playing certain 
games or in object recognition.14,15 In the field of 
medicine, previous reports have demonstrated a 
high potential of AI in the diagnosis of medical 
images, such as histology, radiography, and skin 
lesions.15–20 Thus, a computer-aided diagnosis of 
endoscopic images using AI has a potential to sur-
pass the diagnostic accuracy of trained specialists 
and may provide more accurate results, without 
interobserver differences, especially between 
experts and nonexperts.21 Furthermore, it has 
been reported that adenoma detection rates 
decrease with increasing time devoted to endos-
copies because of the fatigue, supporting the idea 
that computer-aided detection might provide 
more reliable results.22

Convolutional neural networks (CNNs) are one 
of the most popular network architectures of deep 
learning for images.11,23 Recent studies showed a 
promising role for CNNs for the detection or 
classification of CP during colonoscopy. Those 
studies developed a computer-assisted diagnosis 
(CAD) system that can support only the detec-
tion or the classification of CP.24–28 However, a 
CAD system that can detect and simultaneously 
classify CP is more useful. Therefore, we developed 
a CAD system that can support both detection and 

classification of CP during colonoscopy, and 
showed a high potential for future applications to 
real world clinical settings.

Methods

Patients
A retrospective review of clinical data from 12,895 
patients who had undergone colonoscopies was 
performed at a single institute (Tada Tomohiro 
Institute of Gastroenterology and Proctology, 
Japan) from December 2013 to March 2017. 
Among them, 3021 patients were detected to 
have at least one polyp and underwent polypec-
tomy. All of the specimens were examined by cer-
tified pathologists (BML Inc, Tokyo, Japan) and 
histologically confirmed. Patients who had histo-
logically confirmed adenocarcinoma, adenoma, 
hyperplastic polyps, SSAP, juvenile polyp, Peutz-
Jeghers polyp, and other polyps, such as inflam-
mation polyps or lymphoid aggregate, were 
included in this study. Colonoscopy was per-
formed using standard endoscope equipment 
(EVIS LUCERA and CF TYPE H260AL/I, PCF 
TYPE Q260AI, Q260AZI, H290I, and H290ZI; 
Olympus Medical Systems, Co., Ltd., Tokyo, 
Japan). All patient information was de-identified 
prior to the data analyses to maintain patient ano-
nymity. Patients’ informed consent was exempted 
because of the retrospective nature of the study 
using completely anonymized data, and this study 
was approved by the Institutional Review Board 
of the Japan Medical Association (ID JMA-
IIA00283, approved on 6 April 2017). The study 
protocol conforms to the ethical guidelines of the 
1975 Declaration of Helsinki as reflected in a 
prior approval by the institution’s human research 
committee.

Training and validation image preparation for 
convolutional neural network
All of the endoscopic images of the included 
patients were extracted and reviewed by two 
trained gastroenterologists (T.O. and T.T.). Only 
the nonmagnified images observed using conven-
tional white-light or narrow band imaging (NBI) 
mode were selected. Insufficiently insufflated 
colorectal images and unclear images with stool 
residue, halation, or bleeding were excluded from 
the training images. Finally, 16,418 images of 
4752 histologically proven polyps from 3021 
patients and 4013 images of normal colorectal 
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mucosa from 396 patients who had undergone 
colonoscopy between December 2013 and 
December 2016 were used to train the CNN 
algorithm.

For the validation set, 7077 independent images, 
including 1172 regions of CP from 174 patients 
who had undergone colonoscopy between January 
and March 2017 and had at least one CP, were pre-
pared. In the validation set, even images with feces 
or insufficient insufflation were included to evalu-
ate the performance of the CNN under real clinical 
settings. However, images from patients with 
inflammatory bowel disease were excluded because 
these may complicate the results. Images with 
bleeding after biopsy and images after the endo-
scopic treatment were also excluded. All of the pol-
yps included in the analysis were histologically 
proven. Only images observed by conventional 
white-light or NBI mode without magnification 
were included, using the same criteria as those for 
the training image set. Detailed cohort information 
is shown in Table 1, and the flow chart of this study 
design is depicted in Figure 1a. We mainly used the 
NBI mode for observing the surface and vascular 
pattern of CP to classify the CP. Thus, the number 
of NBI images was relatively small compared with 
that of white-light images.

Algorithm for convolutional neural network
To construct an AI-based detection and diagnos-
tic system, we utilized a deep neural network 
architecture called Single Shot MultiBox Detector 
(SSD) (https://arxiv.org/abs/1512.02325), with-
out altering its algorithm.23 SSD is a deep CNN 
that consists of 16 layers or more. Subsequently, 
a Caffe deep learning framework, originally devel-
oped at the Berkeley Vision and Learning Center, 
was used to train and validate the CNN. All layers 
of the CNN were fine-tuned using stochastic gra-
dient descent with a global learning rate of 0.0001. 
Each image was resized to 300 × 300 pixels; the 
bounding box was also resized accordingly. These 
values were set up by trial and error to ensure all 
data were compatible with SSD. The authors 
(T.O and T.T) manually annotated all of the CP 
with rectangular bounding boxes and classifica-
tion of polyps in the training set, and all of the 
images with this information were put into SSD 
architecture through Caffe deep learning frame-
work (Figure 1b).

Outcome measures and statistics
First, we manually annotated all of the CP in the 
validation set the same as the training set (‘true 
CP boxes’). The trained CNN also shaped the 
region of interests (ROIs) with rectangular 
bounding boxes (‘CNN boxes’) and output class 
of the CP with values ranging from 0 to 1, which 
showed the probability of which class the ROI 
belonged to. The higher the probability score, the 
more the CNN had confidence that the ROI 
included a certain class of CP.

To measure the outcome, we followed these rules: 
(a) when the CNN box overlapped more than 
80% of the region of the true CP box, it was con-
cluded that the CNN correctly detected the CP, 
and (b) when two or more CNN boxes with dif-
ferent classification of CP were depicted on the 
same region, the CNN box with highest probabil-
ity score was prioritized.

We had three parameters to evaluate the perfor-
mance of this CNN system in automatically 
detecting and classifying the images of CP: the 
diagnostic yields of detection and classification 
and the processing speed of the diagnosis. For 
detection performance, we analyzed (a) all images 
and (b) excluded CP ⩾ 10 mm in size, as those 
CP are rarely missed.29 For classification perfor-
mance, we evaluated (a) all detected CP and (b) 
only detected CP ⩽ 5 mm, to address the PIVI 
statement. All statistical analyses were performed 
using JMP Pro 10 statistical software (SAS 
Institute Japan, Tokyo, Japan).

Results

Association between the cut-off values of 
probability score and sensitivity/PPV in the 
validation set
To set an optimal cut-off value for the probability 
score to detect CP, we evaluated sensitivity and 
positive predictive value (PPV) by increasing the 
cut-off value by 0.1 from 0.1 in 10 randomly 
selected patients. Figure 2 shows the association 
between each cut-off value and sensitivity/PPV. 
We selected a cut-off value of 0.3 as an optimal 
cut-off for the probability score, in which the sen-
sitivity and PPV were 90% and 80%, respectively. 
Thus, ROIs with a probability score of ⩾0.3 were 
regarded as CP by the CNN.

https://journals.sagepub.com/home/tag
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Diagnostic yields of detection of CP by the 
trained CNN
The trained CNN evaluated colonoscopy images 
of the validation set with a speed of 48.7 images 
per second, equal to a processing time of 20 ms 
per frame.

Figure 3a and b show the representative images 
in which the trained CNN properly detected and 
classified CP. Figure 3c shows the false-negative 

(FN) case, in which the CNN missed the CP. 
Figure 3d shows the false-positive (FP) case, in 
which the CNN regarded a nonpolyp region or 
object as CP. Figure 3e and f represent the cases 
in which the CNN correctly detected the CP but 
misclassified them.

To evaluate the performance of the CNN in the 
detection of CP, we evaluated whether the CNN 
boxes overlapped with the true CP boxes, 

Table 1.  The information of polyps included in this study.

Training set

Polyp type Total polyps WLI NBI Total images

Adenoma 3513 (74) 9310 (53) 2085 (73) 11,395 (56)

Hyperplastic 1058 (22) 2002 (11) 519 (18) 2521 (12)

SSAP 22 (0) 116 (1) 23 (1) 139 (1)

Cancer 68 (1) 1468 (8) 131 (5) 1599 (8)

The others 91 (2) 657 (4) 107 (4) 764 (4)

Normal – 4013 (23) 0 (0) 4013 (20)

Total 4752 (100) 17,566 (100) 2865 (100) 20,431 (100)

Validation set

Adenoma n = 218 ≦5 mm 156 (50) 639 (9) 208 (63) 847 (12)

6–9 mm 52 (17)

>10 mm 10 (3)

Hyperplastic n = 63 ≦5 mm 56 (18) 145 (2) 69 (21) 214 (3)

6–9 mm 7 (2)

>10 mm 0 (0)

SSAP n = 7 ≦5 mm 0 (0) 33 (0) 8 (2) 41 (1)

6–9 mm 4 (1)

⩾10 mm 3 (1)

Cancer (all ⩾ 10 mm) n = 4 4 (1) 30 (0) 3 (1) 33 (0)

The others (all ⩽ 5 mm) n = 17 17 (6) 27 (0) 10 (3) 37 (1)

Normal – 5874 (87) 31 (9) 5905 (83)

Total 309 (100) 6748 (100) 329 (100) 7077 (100)

NBI, narrow band images; SSAP, sessile serrated adenoma/polyps; WLI, white-light images.
*images with multiple polyps were counted as different images.
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regardless of their classification. The CNN 
depicted 1246 bounding boxes (CNN boxes), and 

among them, the CNN correctly detected 1073 
CP out of the 1172 true CP (sensitivity 92%, PPV 
86%). Although each polyp had several images, 
304 CP (98%) out of 309 CP included in the vali-
dation set were detected by the trained CNN in at 
least one of the multiple images. By analyzing only 
the white-light images, the CNN demonstrated a 
sensitivity of 90% and PPV of 83% in the detection 
of CP. The CNN showed a sensitivity of 97% and 
PPV of 97% in only the NBI pictures, although the 
number of CP in NBI images was limited.

When analyzing only CP less than 10 mm in size, 
the CNN depicted 1143 CNN boxes, and in 
total, 969 boxes were overlapped with true CP 
boxes, showing a sensitivity of 92% and PPV of 
85%, comparable with those of all CP.

Figure 1.  Study design and the convolutional neural network (CNN) used in the present study.
(a) The flow chart shows the study design. We trained the CNN using more than 20,000 colonoscopy images and validated its 
performance in an independent image set of 309 colorectal polyps.
(b) We used Single Shot MultiBox Detector (SSD) as a CNN, which needs an input image and bounding box (green) for each 
object during training. Trained CNN puts out images with bounding boxes (white) with classification of polyp and predictive 
score for detected object.

Figure 2.  The association between cut-off values 
for the probability score and sensitivity/positive 
predictive values (PPV).

https://journals.sagepub.com/home/tag
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Evaluation of the false positive region and false 
negative region in which the CNN identified CP
Because it is important to evaluate why the CNN 
missed the CP to improve the performance of 
the CNN, we reviewed all of the FP and FN 
regions and classified them into several catego-
ries (Table 2).

A total of 99 FN polyps were classified into three 
categories: (a) those for which the surface texture 
was difficult to recognize, mainly because of 
small size or darkness (58%), (b) those images 
that were taken laterally or only partially (37%), 
and (c) those that were too large (5%) (Figure 
4a–d).

Figure 3.  Representative images of colorectal polyps used in the validation set [green box: true polyp, white 
box: region identified as polyp by the convolutional neural network (CNN)].
(a) Adenoma, and (b) hyperplastic polyp images correctly detected and classified by the CNN.
(c) Adenoma image missed by the CNN (false negative image).
(d) Normal colon fold recognized as adenoma by the CNN (false positive image).
(e) Adenoma and (f) hyperplastic polyp images correctly detected but misclassified by the CNN.

https://journals.sagepub.com/home/tag
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Among 173 FP regions, 64 regions (39%) were 
normal structure or objects that were easy to dis-
tinguish from CP by endoscopists, most of which 
were ileocecal valves (n = 56). A total of 56 FP 
regions (32%) were colorectal folds, and many 
of them were images with insufficient insuffla-
tion. The other FPs (20%) included artificial 
abnormal images caused by halation (n = 17), 
haze of the lens (n = 4), and blur (n = 2), or feces, 
which were relatively easy to distinguish from 
true CP. A total of 13 regions (8%) were sus-
pected as true CP, although we could not con-
firm them (Figure 4e–h).

Accuracy of classification of CP by the  
trained CNN
Table 3 shows the concordance between the true 
histology of CP and the classification of the CNN 
for each CP. In total, 83% of CP in conventional 
white-light images were correctly classified by the 
CNN. A total of 97% of adenomas were precisely 

classified as adenoma by the CNN [PPV 86%, 
negative predictive value (NPV) 85%] when ana-
lyzed without cancers in conventional white-light 
images only, although only 47% of hyperplastic 
polyps were correctly identified as hyperplastic 
polyps (PPV 64%, NPV 90%), and many SSAPs 
were misclassified as adenoma (26%) or hyper-
plastic polyps (52%). Similarly, 81% of CP in 
NBI images were correctly classified, and the sen-
sitivity to classify adenomas from the other polyps 
was 97% (PPV 83%, NPV 91%) in NBI images, 
although the number of NBI images was limited.

We also analyzed the performance of the CNN in 
the classification of CP ⩽ 5 mm in size. The CNN 
correctly classified 348 (98%) out of 356 ade-
noma images (PPV 85%, NPV of 88%) in con-
ventional white-light images, although for 
hyperplastic polyps, the classification perfor-
mance was modest (sensitivity 50%, PPV 77%, 
NPV 88%). In NBI mode, the CNN accurately 
classified 138 (97%) out of 142 adenoma images 

Table 2.  The distribution of the types of the images with false positive and false negative polyps.

False positive polyps (n = 173)

Types Sub-types Numbers (%)

Normal structures Ileocecal valve 56 (32)

Appendiceal orifice 6 (3)

Anus 2 (1)

Fold 56 (32)

Feces 6 (3)

True polyps? 13 (8)

The others Halation 17 (10)

Normal mucosa 9 (5)

Surface haze of the camera lens 4 (2)

Blur 2 (1)

Scar of polypectomy 1 (1)

Vascular dilatation 1 (1)

False negative polyps (n = 99)

Hard to recognize the texture (smallness or darkness) 57 (58)

Laterality or partialness 37 (37)

Too large 5 (5)

https://journals.sagepub.com/home/tag
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Figure 4.  Representative images of false positive and false negative polyps used in the validation set (green box: true polyp, white 
box: region identified as polyp by the convolutional neural network).
(a)–(d) Images of false negative polyps were classified into three types: (1) hard to recognize the texture, because of the small size of the polyps (a), 
and darkness (b); (2) polyp images were taken partially or laterally (c); (3) polyp images were relatively large (d).
(f)–(h) Images of false positive polyps were classified into four types: (1) normal structure such as ileocecal valve (e); (2) normal colorectal fold (f); (3) 
artificial images such as halation (g); (4) suspected true polyps (h).

https://journals.sagepub.com/home/tag
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(PPV 84%, NPV of 88%), although the number 
of NBI images was limited (Table 4). These 
results show that the performance of the CNN in 
the classification of CP was comparable regard-
less of polyp size.

Discussions
In the present study, we, for the first time to our 
knowledge, demonstrated the CNN-based detec-
tion and classification of CP using a large number 
of image sets. Our trained CNN effectively 
detected CP with considerable accuracy and sur-
prising speed, even when the CP were small, which 
may help reduce overlooked CP if applied during 
colonoscopy. Furthermore, the CNN classified 
and detected CP with considerable performance, 
which may help reduce unnecessary treatment 
benefitting both patients and physicians.

We applied SSD, a meta-architecture and feature 
extractor, to develop a deep-learning-based sys-
tem to detect and classify polyps.23,30 The SSD 

performs object recognition by using a feed-
forward convolutional network that produces a 
fixed-size collection of bounding boxes and scores 
for the presence of an object class in each box. 
This SSD can deal with objects of various sizes by 
combining predictions from multiple feature 
maps with different resolutions. Furthermore, it 
encapsulates the process into a single network, 
thus saving computational time. Currently, there 
are several high-performance meta-architectures 
that are suitable for this purpose. Fuentes and 
colleagues recently reported a deep-learning-
based detector to recognize tomato plant diseases 
and pests combining three detectors, including 
SSD, and reported a high degree of accuracy.30 
Therefore, by increasing the training images and 
by modifying the architecture itself, the accuracy 
of the CNN may be improved although our CNN 
has demonstrated a considerably good perfor-
mance already.23

The SSD algorithm enabled the CNN to not only 
detect CP, but also to classify the CP. This 

Table 3.  The distribution of the types of polyps classified by the CNN.

White light images (n = 783)

  The CNN classification (%)

  Adenoma Hyperplastic SSAP Cancer The others

True histology Adenoma (n  = 582) 562 (97) 14 (2) 0 (0) 4 (1) 2 (0)

Hyperplastic (n = 125) 64 (51) 59 (47) 0 (0) 0 (0) 2 (2)

SSAP (n = 23) 6 (26) 12 (52) 5 (22) 0 (0) 0 (0)

Cancer (n = 29) 6 (21) 0 (0) 0 (0) 23 (79) 0 (0)

The others (n = 24) 14 (58) 7 (29) 0 (0) 0 (0) 3 (13)

  Narrow band images (n = 290)

  The CNN classification (%)

  Adenoma Hyperplastic SSAP Cancer The others

True histology Adenoma (n = 203) 197 (97) 5 (2) 0 (0) 1 (0) 0 (0)

Hyperplastic (n = 68) 31 (46) 37 (54) 0 (0) 0 (0) 0 (0)

SSAP (n = 6) 2 (33) 4 (67) 0 (0) 0 (0) 0 (0)

Cancer (n = 3) 3 (100) 0 (0) 0 (0) 0 (0) 0 (0)

The others (n = 10) 3 (30) 7 (70) 0 (0) 0 (0) 0 (0)

CNN, convolutional neural network; SSAP, sessile serrated adenoma/polyp.

https://journals.sagepub.com/home/tag


Therapeutic Advances in Gastroenterology 13

10	 journals.sagepub.com/home/tag

system is more useful than the CAD systems that 
can perform either detection or diagnosis of CP 
to achieve the ‘resect and discard strategy’. The 
trained CNN classified adenomas, which are sub-
ject to endoscopic resection, with a sensitivity of 
97% and an accuracy of 87% (analyzed excluding 
cancers) in conventional white-light images. It 
has been reported that white-light colonoscopy 
has only a limited accuracy of 59–84% in differ-
entiating nonneoplastic polyps from neoplastic 
polyps.7,31,32 Furthermore, according to PIVI 
statements, ‘In order for a technology to be used 
to guide the decision to leave suspected rectosig-
moid hyperplastic polyps ⩽5 mm in size in place, 
the technology should provide ⩾90% NPV for 
adenomatous histology.’8 Our trained CNN clas-
sified adenomas with NPVs of 85% and 91% by 
white-light image and by NBI, respectively, and 
these results were comparable when analyzing 
only small CP (⩽5 mm in size). The CNN also 
provides completely objective classification with a 
probability score that is an important issue in the 
decision making of the ‘resect and discard’ or 
‘leave rectosigmoid colon hyperplastic polyps in 
situ’ policies for CP. Therefore, the CNN-based 
CP diagnostic system is a highly promising tech-
nology for ‘optical biopsy’ during colonoscopy.

Byrne and colleagues recently reported an AI-based 
model for real-time differentiation of adenomatous 

and hyperplastic diminutive polyps during stand-
ard colonoscopy.33 In their study, the authors 
trained their CNN using colonoscopy video in 
NBI mode only, and developed an AI system that 
can effectively distinguish surface patterns of pol-
yps under NBI. We mainly used white-light images 
during colonoscopy and utilized the NBI mode to 
evaluate the histology for a limited number of CP. 
Therefore, in the present study, the number of the 
training images in NBI mode were not sufficient to 
make the CNN learn the surface pattern of each 
polyp. However, our trained CNN distinguished 
the histology of CP under NBI mode better than 
white-light mode. Thus, for a future study, it will 
be useful to know that if by learning more NBI 
images, the CNN will improve detection perfor-
mance or classification ability. Furthermore, it is 
also fascinating to evaluate the performance of 
CNNs that have learned new imaging technolo-
gies, such as blue laser and autofluorescence, for 
the detection or classification of CP.34,35

We acknowledge several limitations of the present 
study. First, this is a retrospective study in a sin-
gle institute, thus, external validation and a pro-
spective study is necessary to evaluate the 
performance of our CNN. In particular, it is 
important to evaluate whether the CNN really 
supports physicians’ performance of colonoscopy 
in terms of detection rate and classification 

Table 4.  The distribution of the types of diminutive polyps classified by the CNN.

White light images (n = 480)

  The CNN classification (%)

  Adenoma Hyperplastic The others

True histology Adenoma (n = 356) 348 (98) 8 (2) 0

Hyperplastic (n = 100) 49 (49) 50 (50) 1 (1)

The others (n = 24) 14 (58) 7 (29) 3 (13)

  Narrow band images (n = 198)

  The CNN classification (%)

  Adenoma Hyperplastic The others

True histology Adenoma (n = 142) 138 (97) 4 (3) 0 (0)

Hyperplastic (n = 46) 24 (52) 22 (48) 0 (0)

The others (n = 10) 3 (30) 7 (70) 0 (0)

CNN, convolutional neural network.
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accuracy of CP. In this regard, recently Wang and 
colleagues conducted a double-blind randomized 
study and showed that their deep-learning com-
puter-aided system increased adenoma detection 
rate.36 Second, to improve the accuracy of the 
CNN, it is important to use a sufficient number 
of training images. In this regard, we used more 
than 15,000 histologically proven various types of 
CP images as the training set. However, the per-
formance to identify adenoma through normal 
white light was not satisfactory for the PIVI state-
ment, and half of the hyperplastic polyps were 
regarded as adenoma by the trained CNN. The 
performance of the CNN to classify CP may be 
underestimated because these analyses included 
CP images that were not taken close enough to 
observe the surface pattern, however, these results 
show that we have still room to further improve 
our CNN by increasing the amount of training 
images, including enhanced images, or modifying 
the CNN architecture. Furthermore, training 
images used in this study have selection biases, as 
many training images were ‘clear’ and ‘right size’ 
images that are among the causes of overlooking 
small CP, while there were more unclear images 
in the validation set. Therefore, we are collecting 
those images of polyps as well to make a much 
more powerful CNN that can be applied to real 
clinical settings. Finally, the present study was 
conducted in only still images. However, the pro-
cessing time of our CNN is fast enough to be 
applied to real-time video images that require 
processing time of less than 30 ms per frame, and 
we are now conducting a prospective study using 
present CNN during colonoscopy with a real-
time manner.

In conclusion, we developed and evaluated the 
CNN-based detector and classifier of CP using 
large numbers of colonoscopy images. Our 
trained CNN showed a robust performance to 
detect and classify CP and may be used as a 
CNN-based colonoscopy supporting system.
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